Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Need and Possibilities of Phytocompounds against SARS-CoV-2: Recent Advances in COVID-19 Therapy

Author(s): Pradeep Kumar R.*

Volume 10, Issue 1, 2024

Published on: 17 April, 2023

Article ID: e210223213863 Pages: 17

DOI: 10.2174/2215083809666230221151814

Price: $65

conference banner
Abstract

Efforts have been made during the past two years to find out novel and effective drugs against SARS-CoV-2. Plants have become a source for the development of novel and improved medications against viruses due to the advancement of biomedical technologies and pharmacological evaluations. Phytocompounds including flavonoids, phenolics, alkaloids, lignans, terpenoids and tannins have been demonstrated to have antiviral properties, particularly against SARS CoV-2. The present review discusses information on the potential antiviral traditional medicines, medicinally important plants, their extracts and the specific bioactive compounds present in such plants along with their mode of action. It also gives an insight regarding the limitations in exploring medicinal plants for phytocompound antimicrobial drug discovery, and suggests novel and prospective strategies considering the fact that they are naturally occurring and relatively less harmful with a view to combating the present pandemic and the ones that may happen in the future.

[1]
Cascio A, Bosilkovski M, Rodriguez-Morales AJ, Pappas G. The socio-ecology of zoonotic infections. Clin Microbiol Infect 2011; 17(3): 336-42.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03451.x] [PMID: 21175957]
[2]
Christou L. The global burden of bacterial and viral zoonotic infections. Clin Microbiol Infect 2011; 17(3): 326-30.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03441.x] [PMID: 21129102]
[3]
Grais RF, Strebel P, Mala P, Watson J, Nandy R, Gayer M. Measles vaccination in humanitarian emergencies: A review of recent practice. Confl Health 2011; 5: 21.
[http://dx.doi.org/10.1186/1752-1505-5-21]
[4]
Hussain R, Hassali MA, Patel I. Nipah virus outbreak in India. Indian J Pharm Prac 2019; 12(3): 154-5.
[http://dx.doi.org/10.5530/ijopp.12.3.34]
[5]
WHO. Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/?gclid=EAIaIQobChMI2KWEl9-D7gIV0zMrCh1jqgMtEAAYASAAEgJcs_D_BwE
[6]
WHO. WHO Coronavirus (COVID-19) Dashboard-WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available from: https://covid19.who.int/
[7]
Medhi B, Prajapat M, Sarma P, et al. Drug for corona virus: A systematic review Indian J Pharmacol 2020; 52(1): 56-65, 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[8]
FDA. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or
[9]
Patel TK, Barvaliya M, Kevadiya BD, Patel PB, Bhalla HL. Does adding of hydroxychloroquine to the standard care provide any benefit in reducing the mortality among COVID-19 patients?: a systematic review. J Neuroimmune Pharmacol 2020; 15(3): 350-8.
[http://dx.doi.org/10.1007/s11481-020-09930-x] [PMID: 32519281]
[10]
Ogbru O. lopinavir & ritonavir (Kaletra): HIV drug with COVID- 19 coronavirus potential? Available from: https://www.medicinenet.com/lopinavir_and_ritonavir/article.htm#can_lopinavir_and_ritonavir_treat_the_covid-19_coronavirus
[11]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[12]
Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA 2020; 324(11): 1048-57.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[13]
Clinic C. What it means to be a coronavirus “Long-Hauler” Available from: https://health.clevelandclinic.org/what-it-means-to-be-a-coronavirus-long-hauler/ [Accessed Apr 21, 2021].
[14]
Ali RMM, Ghonimy MBI. Post-COVID-19 pneumonia lung fibrosis: a worrisome sequelae in surviving patients. Egypt J Radiol Nucl Med 2021; 52(1): 101.
[http://dx.doi.org/10.1186/s43055-021-00484-3]
[15]
Ball MJ, Lukiw WJ, Kammerman EM, Hill JM. Intracerebral propagation of Alzheimer’s disease: Strengthening evidence of a herpes simplex virus etiology. Alzheimers Dement 2013; 9(2): 169-75.
[http://dx.doi.org/10.1016/j.jalz.2012.07.005] [PMID: 23159044]
[16]
Hober D, Sane F, Jaïdane H, Riedweg K, Goffard A, Desailloud R. Immunology in the clinic review series; Focus on type 1 Diabetes and viruses: Role of antibodies enhancing the infection with Coxsackievirus- B in the pathogenesis of Type 1 diabetes. In: Clini Exp Immunol 2012; 168: 47-51.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04559.x]
[17]
Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: A meta-analysis of observational studies. Ann Intern Med 2013; 158(5 Pt 1): 329-37.
[http://dx.doi.org/10.7326/0003-4819-158-5-201303050-00005] [PMID: 23460056]
[18]
Martin MA, VanInsberghe D, Koelle K. Insights from SARSCoV- 2 Sequences. Science (80) 2021; 371(6528): 466-7.
[19]
Jiang S. Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature 2020; 579(7799): 321.
[http://dx.doi.org/10.1038/d41586-020-00751-9] [PMID: 32179860]
[20]
Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[21]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod American Chem Soc 2020; 83(3): 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285]
[22]
Lyu D, Msimbira LA, Nazari M, et al. The coevolution of plants and microbes underpins sustainable agriculture. Microorganisms 2021; 9(5): 1036.
[http://dx.doi.org/10.3390/microorganisms9051036] [PMID: 34065848]
[23]
Wang H, Oo Khor T, Shu L, et al. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12(10): 1281-305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[24]
Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 2012; 3(4): 200-1.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[25]
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-1.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055]
[26]
Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID‐19 patients in northeast Chongqing. J Med Virol 2020; 92(7): 797-806.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[27]
Tong S, Conrardy C, Ruone S, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 2009; 15(3): 482-5.
[http://dx.doi.org/10.3201/eid1503.081013] [PMID: 19239771]
[28]
Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 2014; 281(18): 4085-96.
[http://dx.doi.org/10.1111/febs.12936] [PMID: 25039866]
[29]
McBride R, van Zyl M, Fielding B. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6(8): 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[30]
Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol 2020; 11: 1800.
[http://dx.doi.org/10.3389/fmicb.2020.01800] [PMID: 32793182]
[31]
CDC. Implications of the Emerging SARS-CoV-2 Variant VOC. Available from: https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-emerging-variant.html
[32]
CDC. About Variants of the Virus that Causes COVID-19. About Variants of the Virus that Causes COVID-19 Available from: https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant. html
[33]
Gautam I. Explained: B.1.617 Variant and the COVID-19 Surge in India-explained News. The Indian Express 2021. Available from: https://indianexpress.com/article/explained/maharashtra-double-mutant-found-b-1-617-variant-and-the-surge-7274080/
[34]
Gautam I. The Novel Coronavirus Variants and India’s Uncertain Future. The Wire Science 2021. Available from: https://science.thewire.in/health/sars-cov-2-variants-b117-b1617-india-second-wave-uncertain-future/
[35]
WHO.Tracking SARS-CoV-2 Variants. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ [Accessed: June 26, 2021].
[36]
WHO. Tracking SARS-CoV-2 Variants Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ [Accessed: Dec 21, 2021].
[37]
Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[38]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM Structure of the 2019-NCoV Spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.aax0902]
[39]
Wondmkun YT, Mohammed OA. A review on novel drug targets and future directions for COVID-19 treatment. Biologics 2020; 14: 77-82.
[http://dx.doi.org/10.2147/BTT.S266487] [PMID: 32921981]
[40]
Ma Y, Tong X, Xu X, Li X, Lou Z, Rao Z. Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein Cell 2010; 1(7): 688-97.
[http://dx.doi.org/10.1007/s13238-010-0079-x] [PMID: 21203940]
[41]
Chang C, Lo SC, Wang YS, Hou MH. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2016; 21(4): 562-72.
[http://dx.doi.org/10.1016/j.drudis.2015.11.015] [PMID: 26691874]
[42]
Jain J, Kumar A, Narayanan V, et al. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. J Ayurveda Integr Med 2020; 11(3): 329-35.
[http://dx.doi.org/10.1016/j.jaim.2018.05.006] [PMID: 30685096]
[43]
Divya R. SARS-COV-2 and Kabasura Kudineer. A mini review on the antiviral properties of ancient siddha medicine from India. Thorac Dis Cardiothorac Surg 2020; 1(2): 3-4.
[http://dx.doi.org/10.31579/jtcs.2020/011]
[44]
Kiran G, Karthik L, Shree Devi MS, et al. In silico computational screening of kabasura kudineer - official siddha formulation and JACOM against SARS-CoV-2 spike protein. J Ayurveda Integr Med 2022; 13(1): 100324.
[http://dx.doi.org/10.1016/j.jaim.2020.05.009] [PMID: 32527713]
[45]
Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn 2021; 39(11): 4111-21.
[http://dx.doi.org/10.1080/07391102.2020.1774419] [PMID: 32462988]
[46]
Sarkar L, Putchala RK, Safiriyu AA, Das Sarma J. Azadirachta indica A. juss ameliorates mouse hepatitis virus-induced neuroinflammatory demyelination by modulating cell-to-cell fusion in an experimental animal model of multiple sclerosis. Front Cell Neurosci 2020; 14: 116.
[http://dx.doi.org/10.3389/fncel.2020.00116] [PMID: 32477069]
[47]
Subbaiyan A, Ravichandran K, Singh SV, et al. In silico molecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J Pure Appl Microbiol 2020; 14(5) (Suppl. 1): 989-98.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[48]
Kim D, Min J, Jang M, et al. Natural Bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human Coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 2019; 9(11): 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[49]
Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 2017; 17(1): 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[50]
Greig AS, Bouillant AMP. Binding effects of concanavalin A on a coronavirus. Can J Comp Med 1977; 41(1): 122-6.
[PMID: 832184]
[51]
Decker JS, Menacho-Melgar R, Lynch MD. Low-cost, large-scale production of the anti-viral lectin griffithsin. Front Bioeng Biotechnol 2020; 8: 1020.
[http://dx.doi.org/10.3389/fbioe.2020.01020] [PMID: 32974328]
[52]
Khazeei Tabari MA, Khoshhal H, Tafazoli A, Khandan M, Bagheri A. Applying computer simulations in battling with COVID-19, using pre-analyzed molecular and chemical data to face the pandemic. Inform Med Unlocked 2020; p. 100458.
[http://dx.doi.org/10.1016/j.imu.2020.100458]
[53]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[54]
Magro G. SARS-CoV-2 and COVID-19: What are our options? Where should we focus our attention on to find new drugs and strategies? Travel Med Infect Dis 2020; 37: 101685.
[http://dx.doi.org/10.1016/j.tmaid.2020.101685] [PMID: 32334088]
[55]
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 Mpro: A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules 2021; 11(4): 607.
[http://dx.doi.org/10.3390/biom11040607] [PMID: 33921886]
[56]
Singh H, Srivastava S, Yadav B, et al. AYUSH-64 as an adjunct to standard care in mild to moderate COVID-19: An open-label randomized controlled trial in Chandigarh, India. Complement Ther Med 2022; 66: 102814.
[http://dx.doi.org/10.1016/j.ctim.2022.102814] [PMID: 35149205]
[57]
Ram TS, Munikumar M, Raju VN, et al. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J Ayurveda Integr Med 2022; 13(1): 100413.
[http://dx.doi.org/10.1016/j.jaim.2021.02.004] [PMID: 33654345]
[58]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[59]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn 2020; 40(6): 2647-62.
[http://dx.doi.org/10.1080/07391102.2020.1841680] [PMID: 33140695]
[60]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[61]
Chen CN, Lin CPC, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3,3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[62]
Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. phytomedicine 2020; 85: 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286]
[63]
Singh A, Mishra A. Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. J Biomol Struct Dyn 2021; 39(12): 4427-32.
[http://dx.doi.org/10.1080/07391102.2020.1777903] [PMID: 34281489]
[64]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of alkaloids from justicia adhatoda as potent SARS-CoV-2 main protease inhibitors: An in silico perspective. J Mol Struct 2021; 1229: 129489.
[http://dx.doi.org/10.1016/j.molstruc.2020.129489] [PMID: 33100380]
[65]
Somu C, Karuppiah H, Sundaram J. Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm, Bombyx mori. J Ethnopharmacol 2019; 245: 112155.
[http://dx.doi.org/10.1016/j.jep.2019.112155] [PMID: 31449858]
[66]
Nivetha R, Bhuvaragavan S, Muthu Kumar T, et al. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. J Biomol Struct Dyn 2022; 40(21): 11070-81. doi:https://doi.org/10.1080/07391102.2021.1955009
[http://dx.doi.org/10.21203/rs.3.rs-31134/v1]
[67]
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid-a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015; 20(11): 20614-41.
[http://dx.doi.org/10.3390/molecules201119721]
[68]
Pollier J, Goossens A. Oleanolic acid. Phytochemistry 2012; 77: 10-2.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.022] [http://dx.doi.org/10.1016/j.phytochem.2011.12.022]
[69]
Kumar A, Choudhir G, Shukla SK, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn 2021; 39(10): 3760-70.
[http://dx.doi.org/10.1080/07391102.2020.1772112] [PMID: 32448034]
[70]
Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: Two Natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019-NCoVMpro), molecular docking and SAR study. arXiv 2021; 17(3): 469-79.
[http://dx.doi.org/10.2174/1573409916666200422075440]
[71]
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med 2020; 7(7): 444.
[http://dx.doi.org/10.3389/fmed.2020.00444] [PMID: 32850918]
[72]
Sampangi-Ramaiah MH, Vishwakarma R, Uma Shaanker R. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 Main Protease. Curr Sci 2020; 118(7): 1087-92.
[http://dx.doi.org/10.18520/cs/v118/i7/1087-1092]
[73]
Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect 2020; 10(4): 171-86.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[74]
Gilling DH, Kitajima M, Torrey JR, Bright KR. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol 2014; 116(5): 1149-63.
[http://dx.doi.org/10.1111/jam.12453] [PMID: 24779581]
[75]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[76]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[77]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[78]
Swain SS, Panda SK, Luyten W. Phytochemicals against SARS-CoV as potential drug leads. Biomed J 2021; 44(1): 74-85.
[http://dx.doi.org/10.1016/j.bj.2020.12.002] [PMID: 33736953]
[79]
Park JY, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 504-12.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[80]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of polyphenols from Broussonetia papyrifera as SARS-CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2021; 39(17): 6747-60.
[http://dx.doi.org/10.1080/07391102.2020.1802347] [PMID: 32762411]
[81]
Park JY, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012; 20(19): 5928-35.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[82]
Aftab SO, Ghouri MZ, Masood MU, et al. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020; 18(1): 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[83]
Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS‐CoV ‐2. Protein Sci 2020; 29(7): 1596-605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[84]
Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[85]
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[86]
Islam MT, Sarkar C, El-Kersh DM, et al. Natural products and their derivatives against coronavirus: A review of the non‐clinical and pre‐clinical data. Phytother Res 2020; 34(10): 2471-92.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[87]
Jin YH, Min JS, Jeon S, et al. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 2021; 86: 153440.
[http://dx.doi.org/10.1016/j.phymed.2020.153440] [PMID: 33376043]
[88]
Shawky E, Nada AA, Ibrahim RS. Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Advances 2020; 10(47): 27961-83.
[http://dx.doi.org/10.1039/D0RA05126H] [PMID: 35519104]
[89]
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[90]
Siddique S, Kumar RP. 3β-Acetoxy-21α-H-Hop-22(29)Ene, a novel multitargeted phytocompound against SARS-CoV-2: In silico screening. J Biomol Struct Dyn 2022; 1-8.
[http://dx.doi.org/10.1080/07391102.2022.2058094]
[91]
Pradeepkumar Siddique S. 22-hydroxyhopane, a novel multitargeted phytocompound against SARS-CoV-2 from Adiantum Latifolium Lam. Nat Prod Res 2022; 36(16): 4276-81.
[http://dx.doi.org/10.1080/14786419.2021.1976177]
[92]
Ohbayashi T, Takeshita K, Kitagawa W, et al. Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci 2015; 112(37): E5179-88.
[http://dx.doi.org/10.1073/pnas.1511454112] [PMID: 26324935]
[93]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[94]
Liu M, Yu Q, Xiao H, et al. The inhibitory activities and antiviral mechanism of medicinal plant ingredient quercetin against grouper iridovirus infection. Front Microbiol 2020; 11: 586331.
[http://dx.doi.org/10.3389/fmicb.2020.586331] [PMID: 33178170]
[95]
Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of indian traditional medicine in combating corona virus (SARS-CoV 2): A mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19.
[http://dx.doi.org/10.2174/18734316MTA4hOTEvx] [PMID: 32767920]
[96]
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a potential treatment for COVID-19. Front Pharmacol 2021; 12: 675287.
[http://dx.doi.org/10.3389/fphar.2021.675287] [PMID: 34025433]
[97]
Bizzoca ME, Leuci S, Mignogna MD, et al. Natural compounds may contribute in preventing SARS-CoV-2 infection: a narrative review. Food Sci Hum Wellness 2022; 11: 1134-42.
[http://dx.doi.org/10.1016/j.fshw.2022.04.005]
[98]
Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2022; 40(1): 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1775704] [PMID: 32469279]
[99]
Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochem Biophys 2015; 72(3): 727-39.
[http://dx.doi.org/10.1007/s12013-015-0524-9] [PMID: 25627548]
[100]
Breining P, Frølund AL, Højen JF, et al. Camostat mesylate against SARS‐CoV‐2 and COVID‐19-rationale, dosing and safety. Basic Clin Pharmacol Toxicol 2021; 128(2): 204-12.
[http://dx.doi.org/10.1111/bcpt.13533] [PMID: 33176395]
[101]
Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[102]
Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV-2 spike protein and human ACE2. Sci Rep 2020; 10(1): 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[103]
Man MQ, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. evidence-based complement. Altern Med 2019; 2019: 2676307.
[http://dx.doi.org/10.1155/2019/2676307]
[104]
Cheng FJ, Huynh TK, Yang CS, et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients 2021; 13(8): 2800.
[http://dx.doi.org/10.3390/nu13082800] [PMID: 34444960]
[105]
Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. J Biomol Struct Dyn 2020; 39(9): 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1763199] [PMID: 32362217]
[106]
Koshak DAE, Koshak PEA. Nigella sativa L. as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Curr Ther Res 2020; 93: 100602.
[http://dx.doi.org/10.1016/j.curtheres.2020.100602]
[107]
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 2021; 39(12): 4225-33.
[http://dx.doi.org/10.1080/07391102.2020.1775129] [PMID: 32462996]
[108]
Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[109]
Prasanth DSNBK, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C. In silico identification of potential inhibitors from cinnamon against main protease and spike glycoprotein of SARS CoV-2. J Biomol Struct Dyn 2021; 39(13): 4618-32.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[110]
Schwarz S, Sauter D, Wang K, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 2014; 80(02/03): 177-82.
[http://dx.doi.org/10.1055/s-0033-1360277] [PMID: 24458263]
[111]
Pusztai R, Abrantes M, Serly J, Duarte N, Molnar J, Ferreira MJU. Antitumor-promoting activity of lignans: inhibition of human cytomegalovirus IE gene expression. Anticancer Res 2010; 30(2): 451-4.
[PMID: 20332453]
[112]
Cheng MJ, Lee KH, Tsai IL, Chen IS. Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorg Med Chem 2005; 13(21): 5915-20.
[http://dx.doi.org/10.1016/j.bmc.2005.07.050] [PMID: 16140017]
[113]
Huang RL, Huang YL, Ou JC, Chen CC, Hsu FL, Chang C. Screening of 25 compounds isolated fromPhyllanthus species for anti-human hepatitis B virus in vitro. Phytother Res 2003; 17(5): 449-53.
[http://dx.doi.org/10.1002/ptr.1167] [PMID: 12748977]
[114]
Alhajj MS, Qasem MA, Al-Mufarrej SI. Inhibitory activity of Illicium verum extracts against avian viruses. Adv Virol 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/4594635] [PMID: 32411246]
[115]
Liu M, Yu Q, Xiao H, et al. Antiviral activity of Illicium verum Hook. f. extracts against grouper iridovirus infection. J Fish Dis 2020; 43(5): 531-40.
[http://dx.doi.org/10.1111/jfd.13146] [PMID: 32100315]
[116]
Chuanasa T, Phromjai J, Lipipun V, et al. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res 2008; 80(1): 62-70.
[http://dx.doi.org/10.1016/j.antiviral.2008.05.002] [PMID: 18565600]
[117]
Lipipun V, Sasivimolphan P, Yoshida Y, et al. Topical cream-based oxyresveratrol in the treatment of cutaneous HSV-1 infection in mice. Antiviral Res 2011; 91(2): 154-60.
[http://dx.doi.org/10.1016/j.antiviral.2011.05.013] [PMID: 21669230]
[118]
Schnitzler P, Schuhmacher A, Astani A, Reichling J. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 2008; 15(9): 734-40.
[http://dx.doi.org/10.1016/j.phymed.2008.04.018] [PMID: 18693101]
[119]
Kwon HJ, Ryu YB, Kim YM, et al. In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg Med Chem 2013; 21(15): 4706-13.
[http://dx.doi.org/10.1016/j.bmc.2013.04.085] [PMID: 23746631]
[120]
Yang CW, Lee YZ, Kang IJ, et al. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res 2010; 88(2): 160-8.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[121]
Yang CW, Lee YZ, Hsu HY, et al. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity. Sci Rep 2017; 7(1): 4105.
[http://dx.doi.org/10.1038/s41598-017-04203-9] [PMID: 28642467]
[122]
Yusuf MA, Singh BN, Sudheer K, et al. Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules 2019; 9(2): 68.
[http://dx.doi.org/10.3390/biom9020068]
[123]
Li SW, Yang TC, Lai CC, et al. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol 2014; 738: 125-32.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.028] [PMID: 24877694]
[124]
Huang CT, Hung CY, Hseih YC, et al. Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. Phytomedicine 2019; 64: 152904.
[http://dx.doi.org/10.1016/j.phymed.2019.152904] [PMID: 31454654]
[125]
Zhao J, Zheng H, Sui Z, et al. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine 2019; 123: 154726.
[http://dx.doi.org/10.1016/j.cyto.2019.05.013] [PMID: 31302461]
[126]
Seadawy MG, Gad AF, Elhoseny MF, et al. In vitro: natural compounds (thymol, carvacrol, hesperidine, and thymoquinone) against SARS-CoV-2 strain isolated from egyptian patients. Prod Nat 2020; 34(3): 26750-7.
[http://dx.doi.org/10.1101/2020.11.07.367649]
[127]
Yucharoen R, Meepowpan P, Tragoolpua Y. Inhibitory effect of peppermint extracts and menthol against herpes simplex virus infection. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2012; 39(1): 97-110.
[128]
Nolkemper S, Reichling J, Stintzing F, Carle R, Schnitzler P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med 2006; 72(15): 1378-82.
[http://dx.doi.org/10.1055/s-2006-951719] [PMID: 17091431]
[129]
Koehn FE, Sarath GP, Neil DN, Cross SS. Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett 1991; 32(2): 169-72.
[http://dx.doi.org/10.1016/0040-4039(91)80845-W] [PMID: 32287435]
[130]
Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res 2013; 97(1): 41-8.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.004] [PMID: 23098745]
[131]
Huang H, Zhou W, Zhu H, Zhou P, Shi X. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs. Toxicol Appl Pharmacol 2017; 323: 36-43.
[http://dx.doi.org/10.1016/j.taap.2017.03.016] [PMID: 28322895]
[132]
Xu G, Dou J, Zhang L, Guo Q, Zhou C. Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum. Biol Pharm Bull 2010; 33(2): 238-43.
[http://dx.doi.org/10.1248/bpb.33.238] [PMID: 20118546]
[133]
Chu M, Xu L, Zhang M, Chu Z, Wang Y. Role of baicalin in anti-influenza virus A as a potent inducer of IFN-gamma. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/263630] [PMID: 26783516]
[134]
Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Molecules 2020; 25(1): 183.
[http://dx.doi.org/10.3390/molecules25010183] [PMID: 31906391]
[135]
Liu S, Wei W, Shi K, Cao X, Zhou M, Liu Z. In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. J Ethnopharmacol 2014; 155(2): 1061-7.
[http://dx.doi.org/10.1016/j.jep.2014.05.064] [PMID: 25009077]
[136]
Fujihashi T, Hara H, Sakata T, et al. Anti-human immunodeficiency virus (HIV) activities of halogenated gomisin J derivatives, new nonnucleoside inhibitors of HIV type 1 reverse transcriptase. Antimicrob Agents Chemother 1995; 39(9): 2000-7.
[http://dx.doi.org/10.1128/AAC.39.9.2000] [PMID: 8540706]
[137]
Chen M, Kilgore N, Lee KH, Chen DF. Rubrisandrins A and B, lignans and related anti-HIV compounds from Schisandra rubriflora. J Nat Prod 2006; 69(12): 1697-701.
[http://dx.doi.org/10.1021/np060239e] [PMID: 17190445]
[138]
Tian RR, Xiao WL, Yang LM, et al. The isolation of rubrifloralignan A and Its Anti-HIV-1 activities. Chin J Nat Med 2006; 4: 40-4.
[139]
Anand AV, Balamuralikrishnan B, Kaviya M, et al. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules 2021; 26(6): 1775.
[http://dx.doi.org/10.3390/molecules26061775] [PMID: 33809963]
[140]
Hayashi K, Narutaki K, Nagaoka Y, Hayashi T, Uesato S. Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. Biol Pharm Bull 2010; 33(7): 1199-205.
[http://dx.doi.org/10.1248/bpb.33.1199] [PMID: 20606313]
[141]
Wang Y, Wang X, Xiong Y, et al. New strategy for identifying potential natural HIV-1 non-nucleoside reverse transcriptase inhibitors against drug-resistance: an in silico study. J Biomol Struct Dyn 2020; 38(11): 3327-41.
[http://dx.doi.org/10.1080/07391102.2019.1656673] [PMID: 31422767]
[142]
Kuo YC, Kuo YH, Lin YL, Tsai WJ. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Res 2006; 70(3): 112-20.
[http://dx.doi.org/10.1016/j.antiviral.2006.01.011] [PMID: 16540181]
[143]
Liu CH, Jassey A, Hsu HY, Lin LT. Antiviral activities of silymarin and derivatives. Molecules 2019; 24(8): 1552.
[http://dx.doi.org/10.3390/molecules24081552] [PMID: 31010179]
[144]
Song JH, Choi HJ. Silymarin efficacy against influenza A virus replication. Phytomedicine 2011; 18(10): 832-5.
[http://dx.doi.org/10.1016/j.phymed.2011.01.026] [PMID: 21377857]
[145]
Chen H, Liu P, Zhang T, et al. Effects of diphyllin as a novel V-ATPase inhibitor on TE-1 and ECA-109 cells. Oncol Rep 2018; 39(3): 921-8.
[http://dx.doi.org/10.3892/or.2018.6191] [PMID: 29328465]
[146]
Sørensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res 2007; 22(10): 1640-8.
[http://dx.doi.org/10.1359/jbmr.070613] [PMID: 17576165]
[147]
Tolo FM, Rukunga GM, Muli FW, et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J Ethnopharmacol 2006; 104(1-2): 92-9.
[http://dx.doi.org/10.1016/j.jep.2005.08.053] [PMID: 16198524]
[148]
Kaunda JS, Zhang YJ. The Genus Carissa: An ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect 2017; 181-99.
[http://dx.doi.org/10.1007/s13659-017-0123-0]
[149]
Chen CJ, Michaelis M, Hsu HK, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol 2008; 120(1): 108-11.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[150]
Peng W, Liu Y, Hu M, et al. Toona sinensis: A comprehensive review on its traditional usages, phytochemisty, pharmacology and toxicology. Revista Brasileira de Farmacognosia 2019; 29(1): 111-24.
[http://dx.doi.org/10.1016/j.bjp.2018.07.009]
[151]
Schnitzler P, Nolkemper S, Stintzing FC, Reichling J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine 2008; 15(1-2): 62-70.
[http://dx.doi.org/10.1016/j.phymed.2007.11.013] [PMID: 18068963]
[152]
Wen CC, Shyur LF, Jan JT, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med 2011; 1(1): 41-50.
[http://dx.doi.org/10.1016/S2225-4110(16)30055-4] [PMID: 24716104]
[153]
Ulasli M, Gurses SA, Bayraktar R, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep 2014; 41(3): 1703-11.
[http://dx.doi.org/10.1007/s11033-014-3019-7] [PMID: 24413991]
[154]
Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 2003; 10(6-7): 504-10.
[http://dx.doi.org/10.1078/094471103322331467] [PMID: 13678235]
[155]
da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. Int J Mol Sci 2020; 21(10): 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[156]
Schnitzler P, Schön K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 2001; 56(4): 343-7.
[PMID: 11338678]
[157]
NIH. Antibodies and T cells protect against SARS-CoV-2. Available from: https://www.nih.gov/news-events/nih-research-matters/antibodies-t-cells-protect-against-sars-cov-2
[158]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[159]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323: 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019]
[160]
Pundarikakshudu K, Kanaki NS. Analysis and regulation of Traditional Indian Medicines (TIM). J AOAC Int 2019; 102(4): 977-8.
[http://dx.doi.org/10.5740/jaoacint.18-0376] [PMID: 30558694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy