Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Examining the Role of Histaminergic, Orexinergic, and Cannabinergic Systems in Redox Regulation in Gastric Adenocarcinoma

Author(s): Ana Laura Torres-Román, Karla Lucero Rodríguez-Flores, Víctor Manuel Hernández-Mora, Erika Ruiz-García, Oscar Prospero-García, Alberto Guijosa, Anayansi Molina, Marcela Morales-Mulia, Michael Aschner, Abel Santamaría and Alette Ortega-Gómez*

Volume 23, Issue 18, 2023

Published on: 10 March, 2023

Page: [1806 - 1817] Pages: 12

DOI: 10.2174/1389557523666230221104504

Price: $65

Abstract

Histaminergic, orexinergic, and cannabinoid systems play a role in both physiologic and oncogenic mechanisms in digestive tissues. These three systems are important mediators of tumor transformation, as they are associated with redox alterations, which are key aspects in oncological disorders. The three systems are known to promote alterations in the gastric epithelium through intracellular signaling pathways, such as oxidative phosphorylation, mitochondrial dysfunction, and increased Akt, which might promote tumorigenesis. Histamine promotes cell transformation through redox-mediated alterations in the cell cycle, DNA repair, and immunological response. The increase in histamine and oxidative stress generates angiogenic and metastatic signals through the VEGF receptor and H2R-cAMP-PKA pathway. Immunosuppression in the presence of histamine and ROS is linked to a decrease in dendritic and myeloid cells in gastric tissue. These effects are counteracted by histamine receptor antagonists, such as cimetidine. Regarding orexins, overexpression of the Orexin 1 Receptor (OX1R) induces tumor regression through the activation of MAPK-dependent caspases and src-tyrosine. OX1R agonists are candidates for the treatment of gastric cancer by stimulating apoptosis and adhesive interactions. Lastly, cannabinoid type 2 (CB2) receptor agonists increase ROS, leading to the activation of apoptotic pathways. In contrast, cannabinoid type 1 (CB1) receptor agonists decrease ROS formation and inflammation in gastric tumors exposed to cisplatin. Overall, the repercussion of ROS modulation through these three systems on tumor activity in gastric cancer depends on intracellular and/or nuclear signals associated with proliferation, metastasis, angiogenesis, and cell death. Here, we review the role of these modulatory systems and redox alterations in gastric cancer.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Engin, A.B.; Karahalil, B.; Engin, A.; Karakaya, A.E. DNA repair enzyme polymorphisms and oxidative stress in a Turkish population with gastric carcinoma. Mol. Biol. Rep., 2011, 38(8), 5379-5386.
[http://dx.doi.org/10.1007/s11033-011-0690-9] [PMID: 21390502]
[3]
Kim, Y.W.; Byzova, T.V. Oxidative stress in angiogenesis and vascular disease. Blood, 2014, 123(5), 625-631.
[http://dx.doi.org/10.1182/blood-2013-09-512749] [PMID: 24300855]
[4]
García-Román, J.; Zentella-Dehesa, A. Vascular permeability changes involved in tumor metastasis. Cancer Lett., 2013, 335(2), 259-269.
[http://dx.doi.org/10.1016/j.canlet.2013.03.005] [PMID: 23499893]
[5]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[6]
Sasaki, M.; Joh, T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J. Clin. Biochem. Nutr., 2007, 40(1), 1-12.
[http://dx.doi.org/10.3164/jcbn.40.1] [PMID: 18437208]
[7]
Strzelczyk, J.K.; Wiczkowski, A. Oxidative damage and carcinogenesis. Contemp. Oncol., 2012, 3(3), 230-233.
[http://dx.doi.org/10.5114/wo.2012.29290] [PMID: 23788885]
[8]
Jaiswal, M.; LaRusso, N.F.; Gores, G.J. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: Linking inflammation to oncogenesis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(3), G626-G634.
[http://dx.doi.org/10.1152/ajpgi.2001.281.3.G626] [PMID: 11518674]
[9]
Correa, P. Does helicobacter pylori cause gastric cancer via oxidative stress? Biol. Chem., 2006, 387(4), 361-364.
[http://dx.doi.org/10.1515/BC.2006.048] [PMID: 16606332]
[10]
Chuang, M.H.; Wu, M.S.; Lin, J.T.; Chiou, S.H. Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics, 2005, 5(15), 3895-3901.
[http://dx.doi.org/10.1002/pmic.200401232] [PMID: 16152655]
[11]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[12]
Chueh, P.J. Cell membrane redox systems and transformation. Antioxid. Redox Signal., 2000, 2(2), 177-187.
[http://dx.doi.org/10.1089/ars.2000.2.2-177] [PMID: 11229524]
[13]
Pan, J.S.; Hong, M.Z.; Ren, J.L. Reactive oxygen species: A double-edged sword in oncogenesis. World J. Gastroenterol., 2009, 15(14), 1702-1707.
[http://dx.doi.org/10.3748/wjg.15.1702] [PMID: 19360913]
[14]
Sepúlveda fonseca, J.D.; Quintero farías, R.A. Obesidad y cáncer: Fisiopatología y evidencia epidemiológica. Rev. Med. Risaralda, 2016, 22(2), 91-97.
[http://dx.doi.org/10.22517/25395203.11581]
[15]
Grandi, D.; Schunack, W.; Morini, G. Epithelial cell proliferation is promoted by the histamine H3 receptor agonist (R)-α-methylhistamine throughout the rat gastrointestinal tract. Eur. J. Pharmacol., 2006, 538(1-3), 141-147.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.049] [PMID: 16682020]
[16]
Gutteridge, J.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem., 1995, 41(12), 1819-1828.
[http://dx.doi.org/10.1093/clinchem/41.12.1819] [PMID: 7497639]
[17]
Fultang, L.; Vardon, A.; De Santo, C.; Mussai, F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int. J. Cancer, 2016, 139(3), 501-509.
[http://dx.doi.org/10.1002/ijc.30051] [PMID: 26913960]
[18]
Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation. (Review). Oncol. Lett., 2012, 4(6), 1151-1157.
[http://dx.doi.org/10.3892/ol.2012.928] [PMID: 23226794]
[19]
Sharma, L.K.; Fang, H.; Liu, J.; Vartak, R.; Deng, J.; Bai, Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum. Mol. Genet., 2011, 20(23), 4605-4616.
[http://dx.doi.org/10.1093/hmg/ddr395] [PMID: 21890492]
[20]
Yu, L.; Chen, X.; Wang, L.; Chen, S. The sweet trap in tumors: Aerobic glycolysis and potential targets for therapy. Oncotarget, 2016, 7(25), 38908-38926.
[http://dx.doi.org/10.18632/oncotarget.7676] [PMID: 26918353]
[21]
Piazuelo, E.; Cebrián, C.; Escartín, A.; Jiménez, P.; Soteras, F.; Ortego, J.; Lanas, A. Superoxide dismutase prevents development of adenocarcinoma in a rat model of Barrett’s esophagus. World J. Gastroenterol., 2005, 11(47), 7436-7443.
[http://dx.doi.org/10.3748/wjg.v11.i47.7436] [PMID: 16437713]
[22]
Toh, J.W.T.; Wilson, R.B. Pathways of gastric carcinogenesis, Helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals. Int. J. Mol. Sci., 2020, 21(17), 6451.
[http://dx.doi.org/10.3390/ijms21176451] [PMID: 32899442]
[23]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[24]
Massari, N.A.; Nicoud, M.B.; Medina, V.A. Histamine receptors and cancer pharmacology: An update. Br. J. Pharmacol., 2020, 177(3), 516-538.
[http://dx.doi.org/10.1111/bph.14535] [PMID: 30414378]
[25]
Medina, V.A.; Rivera, E.S. Histamine receptors and cancer pharmacology. Br. J. Pharmacol., 2010, 161(4), 755-767.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00961.x] [PMID: 20636392]
[26]
Li, L.; Liu, R.; Peng, C.; Chen, X.; Li, J. Pharmacogenomics for the efficacy and side effects of antihistamines. Exp. Dermatol., 2022, 31(7), 993-1004.
[http://dx.doi.org/10.1111/exd.14602] [PMID: 35538735]
[27]
Coruzzi, G.; Adami, M.; Pozzoli, C. Role of histamine H4 receptors in the gastrointestinal tract. Front. Biosci., 2012, S4(1), 226-239.
[http://dx.doi.org/10.2741/s264] [PMID: 22202056]
[28]
Zhang, C.; Xiong, Y.; Li, J.; Yang, Y.; Liu, L.; Wang, W.; Wang, L.; Li, M.; Fang, Z. Deletion and down-regulation of HRH4 gene in gastric carcinomas: A potential correlation with tumor progression. PLoS One, 2012, 7(2), e31207.
[http://dx.doi.org/10.1371/journal.pone.0031207] [PMID: 22363581]
[29]
Fang, Z.; Yao, W.; Xiong, Y.; Li, J.; Liu, L.; Shi, L.; Zhang, W.; Zhang, C.; Nie, L.; Wan, J. Attenuated expression of HRH4 in colorectal carcinomas: A potential influence on tumor growth and progression. BMC Cancer, 2011, 11(1), 195-1-11.
[http://dx.doi.org/10.1186/1471-2407-11-195] [PMID: 21609450]
[30]
Faustino-Rocha, A.I.; Ferreira, R.; Gama, A.; Oliveira, P.A.; Ginja, M. Antihistamines as promising drugs in cancer therapy. Life Sci., 2017, 172, 27-41.
[http://dx.doi.org/10.1016/j.lfs.2016.12.008] [PMID: 27986539]
[31]
Chen, X.; Zhao, Y.; Luo, W.; Chen, S.; Lin, F.; Zhang, X.; Fan, S.; Shen, X.; Wang, Y.; Liang, G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics, 2020, 10(22), 10290-10308.
[http://dx.doi.org/10.7150/thno.46728] [PMID: 32929349]
[32]
Dong, J.; Li, J.; Liu, S.M.; Feng, X.Y.; Chen, S.; Chen, Y.B.; Zhang, X.S. CD33+/p-STAT1+ double-positive cell as a prognostic factor for stage IIIa gastric cancer. Med. Oncol., 2013, 30(1), 442.
[http://dx.doi.org/10.1007/s12032-012-0442-2] [PMID: 23307253]
[33]
Ku, H.J.; Kim, H.Y.; Kim, H.H.; Park, H.J.; Cheong, J.H. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells. World J. Gastroenterol., 2014, 20(1), 175-182.
[http://dx.doi.org/10.3748/wjg.v20.i1.175] [PMID: 24415870]
[34]
Ghosh, A.K.; Hirasawa, N.; Ohuchi, K. Enhancement by histamine of vascular endothelial growth factor production in granulation tissuevia H 2 receptors. Br. J. Pharmacol., 2001, 134(7), 1419-1428.
[http://dx.doi.org/10.1038/sj.bjp.0704372] [PMID: 11724747]
[35]
Blaya, B.; Nicolau-Galmés, F.; Jangi, S.; Ortega-Martínez, I.; Alonso-Tejerina, E.; Burgos-Bretones, J.; Pérez-Yarza, G.; Asumendi, A.; Boyano, M. Histamine and histamine receptor antagonists in cancer biology. Inflamm. Allergy Drug Targets, 2010, 9(3), 146-157.
[http://dx.doi.org/10.2174/187152810792231869] [PMID: 20632959]
[36]
Brawner, K.M.; Morrow, C.D.; Smith, P.D. Gastric microbiome and gastric cancer. Cancer J., 2014, 20(3), 211-216.
[http://dx.doi.org/10.1097/PPO.0000000000000043] [PMID: 24855010]
[37]
Okuzumi, J.; Yamame, T.; Kitao, Y.; Tokiwa, K.; Fujita, Y.; Nishino, H.; Iwashima, A. Increase mucosal ornithine decarboxylase activity in human gastric cancer. Cancer Res., 1991, 51(5), 1448-1451.
[PMID: 1997184]
[38]
Armitage, J.; Sidner, R. Antitumour effect of cimetidine. Lancet, 1979, 313(8121), 882-883.
[http://dx.doi.org/10.1016/S0140-6736(79)91306-0] [PMID: 86136]
[39]
Tønnesen, H.; Bülow, S.; Fischerman, K.; Hjortrup, A.; Møller, P.V.; Bo Svendsen, L.; Knigge, U.; Damm, P.; Hesselfeldt, P.; Krogh, P.I.; Julius, S.O.; Martin, C.P. Effect of cimetidine on survival after gastric cancer. Lancet, 1988, 332(8618), 990-992.
[http://dx.doi.org/10.1016/S0140-6736(88)90743-X] [PMID: 2902494]
[40]
Lin, C.Y.; Bai, D.J.; Yuan, H.Y.; Wang, K.; Yang, G.L.; Hu, M.B.; Wu, Z.Q.; Li, Y. Perioperative cimetidine administration promotes peripheral blood lymphocytes and tumor infiltrating lymphocytes in patients with gastrointestinal cancer: Results of a randomized controlled clinical trial. World J. Gastroenterol., 2004, 10(1), 136-142.
[http://dx.doi.org/10.3748/wjg.v10.i1.136] [PMID: 14695785]
[41]
Li, Y.; Yang, G-L.; Yuan, H.Y.; Bai, D-J.; Wang, K.; Lin, C-R.; Hu, M.B.; Feng, M.H. Effects of perioperative cimetidine administration on peripheral blood lymphocytes and tumor infiltrating lymphocytes in patients with gastrointestinal cancer: results of a randomized controlled clinical trial. Hepatogastroenterology, 2005, 52(62), 504-508.
[PMID: 15816467]
[42]
Li; Jiang, C-G.; Li, Y-S.; Li, J-B.; Li, F. Cimetidine inhibits the adhesion of gastric cancer cells expressing high levels of sialyl Lewis x in human vascular endothelial cells by blocking E-selectin expression. Int. J. Mol. Med., 2011, 27(4), 537-544.
[http://dx.doi.org/10.3892/ijmm.2011.618] [PMID: 21327325]
[43]
Burch, P.M.; Heintz, N.H. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid. Redox Signal., 2005, 7(5-6), 741-751.
[http://dx.doi.org/10.1089/ars.2005.7.741] [PMID: 15890020]
[44]
Foyer, C.H.; Wilson, M.H.; Wright, M.H. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic. Biol. Med., 2018, 122, 137-149.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.047] [PMID: 29605447]
[45]
Talhaoui, I.; Shafirovich, V.; Liu, Z.; Saint-Pierre, C.; Akishev, Z.; Matkarimov, B.T.; Gasparutto, D.; Geacintov, N.E.; Saparbaev, M. Oxidatively generated guanine(C8)-thymine(N3) intrastrand cross-links in double-stranded DNA are repaired by excision repair pathways. J. Biol. Chem., 2015, 290(23), 14610-14617.
[http://dx.doi.org/10.1074/jbc.M115.647487] [PMID: 25903131]
[46]
Zhang, C.; Yu, Y.; Ma, L.; Fu, P. Histamine H3 receptor promotes cell survival via regulating PKA/CREB/CDKNIA/signal transduction pathway in hepatocellular carcinoma. OncoTargets Ther., 2020, 13, 3765-3776.
[http://dx.doi.org/10.2147/OTT.S250655] [PMID: 32440145]
[47]
Meng, F.; Han, Y.; Staloch, D.; Francis, T.; Stokes, A.; Francis, H. The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis. Hepatology, 2011, 54(5), 1718-1728.
[http://dx.doi.org/10.1002/hep.24573] [PMID: 21793031]
[48]
Tomita, K.; Izumi, K.; Okabe, S. Roxatidine- and cimetidine-induced angiogenesis inhibition suppresses growth of colon cancer implants in syngeneic mice. J. Pharmacol. Sci., 2003, 93(3), 321-330.
[http://dx.doi.org/10.1254/jphs.93.321] [PMID: 14646250]
[49]
Kobayashi, K.; Matsumoto, S.; Morishima, T.; Kawabe, T.; Okamoto, T. Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. Cancer Res., 2000, 60(14), 3978-3984.
[PMID: 10919677]
[50]
Hansson, M.; Hermodsson, S.; Brune, M.; Mellqvist, U.H.; Naredi, P.; Betten, Å.; Gehlsen, K.R.; Hellstrand, K. Histamine protects T cells and natural killer cells against oxidative stress. J. Interferon Cytokine Res., 1999, 19(10), 1135-1144.
[http://dx.doi.org/10.1089/107999099313073] [PMID: 10547153]
[51]
Rahgoshai, S.; Mohammadi, M.; Refahi, S.; Oladghaffari, M.; Aghamiri, S.M.R. Protective effects of IMOD and cimetidine against radiation-induced cellular damage. J. Biomed. Phys. Eng., 2018, 8(1), 133-140.
[PMID: 29732348]
[52]
Tavani, A.; Fioretti, F.; Franceschi, S.; La Vecchia, C. Pilot study-cimetidine enhances lymphocyte infiltration of human colorectal carcinoma: Results of a small randomized control trial. Cancer, 1998, 82(11), 2296-2297.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2296:AID-CNCR31>3.0.CO;2-N] [PMID: 9610714]
[53]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)—Cimetidine as an anti-cancer agent. Ecancermedicalscience, 2014, 8, 485.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25525463]
[54]
Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Abad, C.; Tan, Y.V. Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front. Endocrinol., 2019, 10, 709.
[http://dx.doi.org/10.3389/fendo.2019.00709] [PMID: 31695678]
[55]
Lappano, R.; Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat. Rev. Drug Discov., 2011, 10(1), 47-60.
[http://dx.doi.org/10.1038/nrd3320] [PMID: 21193867]
[56]
Dayot, S.; Speisky, D.; Couvelard, A.; Bourgoin, P.; Gratio, V.; Cros, J.; Rebours, V.; Sauvanet, A.; Bedossa, P.; Paradis, V.; Ruszniewski, P.; Couvineau, A.; Voisin, T. In vitro, in vivo and ex vivo demonstration of the antitumoral role of hypocretin-1/orexin-A and almorexant in pancreatic ductal adenocarcinoma. Oncotarget, 2018, 9(6), 6952-6967.
[http://dx.doi.org/10.18632/oncotarget.24084] [PMID: 29467942]
[57]
O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol., 2014, 27, 126-135.
[http://dx.doi.org/10.1016/j.ceb.2014.01.005] [PMID: 24508914]
[58]
Walker, W.H., II; Borniger, J.C. Molecular mechanisms of cancer-induced sleep disruption. Int. J. Mol. Sci., 2019, 20(11), 2780.
[http://dx.doi.org/10.3390/ijms20112780] [PMID: 31174326]
[59]
Kukkonen, J.P.; Leonard, C.S. Orexin/hypocretin receptor signalling cascades. Br. J. Pharmacol., 2014, 171(2), 314-331.
[http://dx.doi.org/10.1111/bph.12324] [PMID: 23902572]
[60]
Suo, L.; Chang, X.; Zhao, Y. The orexin-A-regulated Akt/mTOR pathway promotes cell proliferation through inhibiting apoptosis in pancreatic cancer cells. Front. Endocrinol., 2018, 9, 647.
[http://dx.doi.org/10.3389/fendo.2018.00647]
[61]
Bai, B.; Chen, X.; Zhang, R.; Wang, X.; Jiang, Y.; Li, D.; Wang, Z.; Chen, J. Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein–dependent signaling and migration in the human colon cancer cell line HT-29. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1153-1164.
[http://dx.doi.org/10.1016/j.bbamcr.2017.03.003] [PMID: 28288880]
[62]
Ammoun, S.; Lindholm, D.; Wootz, H.; Åkerman, K.E.O.; Kukkonen, J.P. G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J. Biol. Chem., 2006, 281(2), 834-842.
[http://dx.doi.org/10.1074/jbc.M508603200] [PMID: 16282319]
[63]
Dale, N.C.; Hoyer, D.; Jacobson, L.H.; Pfleger, K.D.G.; Johnstone, E.K.M. Orexin signaling: A complex, multifaceted process. Front. Cell. Neurosci., 2022, 16, 812359.
[http://dx.doi.org/10.3389/fncel.2022.812359] [PMID: 35496914]
[64]
Kukkonen, J.P. Orexin/Hypocretin Signaling. In: Behavioral Neuroscience of Orexin/Hypocretin. Current Topics in Behavioral Neurosciences; Lawrence, A.; de Lecea, L., Eds.; , 2016, 33
[65]
Leonard, C.S.; Kukkonen, J.P. Orexin/hypocretin receptor signalling: A functional perspective. Br. J. Pharmacol., 2014, 171(2), 294-313.
[http://dx.doi.org/10.1111/bph.12296] [PMID: 23848055]
[66]
Nakabayashi, M.; Suzuki, T.; Takahashi, K.; Totsune, K.; Muramatsu, Y.; Kaneko, C.; Date, F.; Takeyama, J.; Darnel, A.D.; Moriya, T.; Sasano, H. Orexin-A expression in human peripheral tissues. Mol. Cell. Endocrinol., 2003, 205(1-2), 43-50.
[http://dx.doi.org/10.1016/S0303-7207(03)00206-5] [PMID: 12890566]
[67]
Zhang, S.; Blache, D.; Vercoe, P.E.; Adam, C.L.; Blackberry, M.A.; Findlay, P.A.; Eidne, K.A.; Martin, G.B. Expression of orexin receptors in the brain and peripheral tissues of the male sheep. Regul. Pept., 2005, 124(1-3), 81-87.
[http://dx.doi.org/10.1016/j.regpep.2004.07.010] [PMID: 15544844]
[68]
Johnson, C.E.; Huang, Y.Y.; Parrish, A.B.; Smith, M.I.; Vaughn, A.E.; Zhang, Q.; Wright, K.M.; Van Dyke, T.; Wechsler-Reya, R.J.; Kornbluth, S.; Deshmukh, M. Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20820-20825.
[http://dx.doi.org/10.1073/pnas.0709101105] [PMID: 18093951]
[69]
Liu, M.; Li, C.M.; Chen, Z.F.; Ji, R.; Guo, Q.H.; Li, Q.; Zhang, H.L.; Zhou, Y.N. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med., 2014, 33(6), 1451-1458.
[http://dx.doi.org/10.3892/ijmm.2014.1713] [PMID: 24676394]
[70]
Nicole, P.; Couvineau, P.; Jamin, N.; Voisin, T.; Couvineau, A. Crucial role of the orexin-B C-terminus in the induction of OX 1 receptor-mediated apoptosis: analysis by alanine scanning, molecular modelling and site-directed mutagenesis. Br. J. Pharmacol., 2015, 172(21), 5211-5223.
[http://dx.doi.org/10.1111/bph.13287] [PMID: 26282891]
[71]
Biegańska, K.; Sokołowska, P.; Jöhren, O.; Zawilska, J.B. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. J. Mol. Neurosci., 2012, 48(3), 706-712.
[http://dx.doi.org/10.1007/s12031-012-9799-0] [PMID: 22588980]
[72]
Chase, M.H. A unified survival theory of the functioning of the hypocretinergic system. J. Appl. Physiol., 2013, 115(7), 954-971.
[http://dx.doi.org/10.1152/japplphysiol.00700.2012] [PMID: 23640599]
[73]
Couvineau, A.; Dayot, S.; Nicole, P.; Gratio, V.; Rebours, V.; Couvelard, A.; Voisin, T. The anti-tumoral properties of orexin/hypocretin hypothalamic neuropeptides: an unexpected therapeutic role. Front. Endocrinol., 2018, 9, 573.
[http://dx.doi.org/10.3389/fendo.2018.00573] [PMID: 30319552]
[74]
Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Blais, A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J. Gastroenterol., 2021, 27(44), 7582-7596.
[http://dx.doi.org/10.3748/wjg.v27.i44.7582] [PMID: 34908800]
[75]
Hu, S.; Niu, J.; Zhang, R.; Li, X.; Luo, M.; Sang, T.; Guo, J.; Liu, J.; Ding, X.; Li, X.; Ma, Y.; Gao, R. Orexin A associates with inflammation by interacting with OX1R/OX2R receptor and activating prepro-Orexin in cancer tissues of gastric cancer patients. Gastroenterol. Hepatol., 2020, 43(5), 240-247.
[http://dx.doi.org/10.1016/j.gastrohep.2019.10.006] [PMID: 31983458]
[76]
Wen, J.; Zhao, Y.; Shen, Y.; Guo, L. Effect of orexin A on apoptosis in BGC-823 gastric cancer cells via OX1R through the AKT signaling pathway. Mol. Med. Rep., 2015, 11(5), 3439-3444.
[http://dx.doi.org/10.3892/mmr.2015.3190] [PMID: 25586545]
[77]
Liu, Y.; Zhao, Y.; Ju, S.; Guo, L. Orexin A upregulates the protein expression of OX1R and enhances the proliferation of SGC-7901 gastric cancer cells through the ERK signaling pathway. Int. J. Mol. Med., 2015, 35(2), 539-545.
[http://dx.doi.org/10.3892/ijmm.2014.2038] [PMID: 25515760]
[78]
Graybill, N.L.; Weissig, V. A review of orexin’s unprecedented potential as a novel, highly-specific treatment for various localized and metastatic cancers. SAGE Open Med., 2017, 5.
[http://dx.doi.org/10.1177/2050312117735774] [PMID: 29147564]
[79]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[80]
Kram, D.E.; Krasnow, S.M.; Levasseur, P.R.; Zhu, X.; Stork, L.C.; Marks, D.L. Dexamethasone chemotherapy does not disrupt orexin signaling. PLoS One, 2016, 11(12), e0168731.
[http://dx.doi.org/10.1371/journal.pone.0168731] [PMID: 27997622]
[81]
Weymann, K.B.; Wood, L.J.; Zhu, X.; Marks, D.L. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav. Immun., 2014, 37, 84-94.
[http://dx.doi.org/10.1016/j.bbi.2013.11.003] [PMID: 24216337]
[82]
Messal, N.; Fernández, N.; Dayot, S.; Gratio, V.; Nicole, P.; Prochasson, C.; Chantret, I.; LeGuilloux, G.; Jarry, A.; Couvelard, A.; Tréton, X.; Voisin, T.; Ogier-Denis, E.; Couvineau, A. Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(11), 3618-3628.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.023] [PMID: 30251681]
[83]
Laburthe, M.; Voisin, T. The orexin receptor OX 1 R in colon cancer: A promising therapeutic target and a new paradigm in G protein-coupled receptor signalling through ITIMs. Br. J. Pharmacol., 2012, 165(6), 1678-1687.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01510.x] [PMID: 21627633]
[84]
Voisin, T.; Firar, A.E.; Rouyer-Fessard, C.; Gratio, V.; Laburthe, M. A hallmark of immunoreceptor, the tyrosine‐based inhibitory motif ITIM, is present in the G protein‐coupled receptor OX1R for orexins and drives apoptosis: A novel mechanism. FASEB J., 2008, 22(6), 1993-2002.
[http://dx.doi.org/10.1096/fj.07-098723] [PMID: 18198212]
[85]
Chen, Q.; Zhou, Y.; Zhou, L.; Fu, Z.; Yang, C.; Zhao, L.; Li, S.; Chen, Y.; Wu, Y.; Ling, Z.; Wang, Y.; Huang, J.; Li, J. TRPC6-dependent Ca2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis., 2020, 11(3), 170.
[http://dx.doi.org/10.1038/s41419-020-2360-0] [PMID: 32139669]
[86]
Greene, E.S.; Zampiga, M.; Sirri, F.; Ohkubo, T.; Dridi, S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci. Rep., 2020, 10(1), 19191.
[http://dx.doi.org/10.1038/s41598-020-76329-2] [PMID: 33154530]
[87]
Wang, Z.; Luo, H.; Xia, H. Theaflavins attenuate ethanol induced oxidative stress and cell apoptosis in gastric mucosa epithelial cells via downregulation of the mitogen activated protein kinase pathway. Mol. Med. Rep., 2018, 18(4), 3791-3799.
[http://dx.doi.org/10.3892/mmr.2018.9352] [PMID: 30106096]
[88]
Neganova, M.; Liu, J.; Aleksandrova, Y.; Klochkov, S.; Fan, R. Therapeutic influence on important targets associated with chronic inflamation and oxidative stress in cancer treatment. Cancers, 2021, 13(23), 6062.
[http://dx.doi.org/10.3390/cancers13236062] [PMID: 34885171]
[89]
Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The involvement of the oxidative stress status in cancer pathology: A double view on the role of the antioxidants. Oxid. Med. Cell. Longev., 2021, 2021, 1-25.
[http://dx.doi.org/10.1155/2021/9965916] [PMID: 34394838]
[90]
Mijatović S.; Savić-Radojević A.; Plješa-Ercegovac, M.; Simić T.; Nicoletti, F.; Maksimović-Ivanić D. The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants, 2020, 9(5), 374.
[http://dx.doi.org/10.3390/antiox9050374] [PMID: 32365852]
[91]
Kruk, J.; Aboul-Enein, H.Y. Reactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types. Mini Rev. Med. Chem., 2017, 17(11), 904-919.
[PMID: 28245782]
[92]
Handa, O.; Naito, Y.; Yoshikawa, T. Helicobacter pylori: A ROS-inducing bacterial species in the stomach. Inflamm. Res., 2010, 59(12), 997-1003.
[http://dx.doi.org/10.1007/s00011-010-0245-x] [PMID: 20820854]
[93]
Zhang, X.; Qin, Y.; Pan, Z.; Li, M.; Liu, X.; Chen, X.; Qu, G.; Zhou, L.; Xu, M.; Zheng, Q.; Li, D. Cannabidiol induces cell cycle arrest and cell apoptosis in human gastric cancer SGC-7901 cells. Biomolecules, 2019, 9(8), 302.
[http://dx.doi.org/10.3390/biom9080302] [PMID: 31349651]
[94]
Ligresti, A.; Moriello, A.S.; Starowicz, K.; Matias, I.; Pisanti, S.; De Petrocellis, L.; Laezza, C.; Portella, G.; Bifulco, M.; Di Marzo, V. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther., 2006, 318(3), 1375-1387.
[http://dx.doi.org/10.1124/jpet.106.105247] [PMID: 16728591]
[95]
Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutiérrez, S.; Martín-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; López-Rodríguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15(4), 558-564.
[http://dx.doi.org/10.1038/nn.3053] [PMID: 22388959]
[96]
Maya-López, M.; Zazueta, C.; Retana-Márquez, S.; Ali, S. The endocannabinoid system in the central nervous system: emphasis on the role of the mitochondrial cannabinoid receptor 1 (mtCB1R). In: NeuroPsychopharmacotherapy; Riederer, P.; Laux, G.; Nagatsu, T.; Le, W.; Riederer, C., Eds.; Springer: Cham, 2021, pp. 1-23.
[97]
Ma, L.; Jia, J.; Niu, W.; Jiang, T.; Zhai, Q.; Yang, L.; Bai, F.; Wang, Q.; Xiong, L. Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions. Sci. Rep., 2015, 5(1), 12440.
[http://dx.doi.org/10.1038/srep12440] [PMID: 26215450]
[98]
Rupprecht, A.; Theisen, U.; Wendt, F.; Frank, M.; Hinz, B. The combination of Δ9-tetrahydrocannabinol and cannabidiol suppresses mitochondrial respiration of human glioblastoma cells via downregulation of specific respiratory chain proteins. Cancers, 2022, 14(13), 3129.
[http://dx.doi.org/10.3390/cancers14133129] [PMID: 35804909]
[99]
Borrelli, F.; Pagano, E.; Romano, B.; Panzera, S.; Maiello, F.; Coppola, D.; De Petrocellis, L.; Buono, L.; Orlando, P.; Izzo, A.A. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis, 2014, 35(12), 2787-2797.
[http://dx.doi.org/10.1093/carcin/bgu205] [PMID: 25269802]
[100]
Pan, H.; Mukhopadhyay, P.; Rajesh, M.; Patel, V.; Mukhopadhyay, B.; Gao, B.; Haskó, G.; Pacher, P. Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J. Pharmacol. Exp. Ther., 2009, 328(3), 708-714.
[http://dx.doi.org/10.1124/jpet.108.147181] [PMID: 19074681]
[101]
Petrelli, F.; Zaniboni, A.; Coinu, A.; Cabiddu, M.; Ghilardi, M.; Sgroi, G.; Barni, S. Cisplatin or not in advanced gastric cancer: A systematic review and meta-analysis. PLoS One, 2013, 8(12), e83022.
[http://dx.doi.org/10.1371/journal.pone.0083022] [PMID: 24386137]
[102]
Tanvir, R.; Javeed, A.; Rehman, Y. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett., 2018, 365(12), 114.
[http://dx.doi.org/10.1093/femsle/fny114] [PMID: 29733374]
[103]
Adejumo, A.C.; Bukong, T.N. Cannabis use and risk of Clostridioides difficile infection: Analysis of 59,824 hospitalizations. Anaerobe, 2020, 61, 102095.
[http://dx.doi.org/10.1016/j.anaerobe.2019.102095] [PMID: 31493498]
[104]
Adejumo, A.C.; Labonte, P.; Bukong, T.N. Relationship between recreational cannabis use and Helicobacter pylori infection. Cannabis Cannabinoid Res., 2021, can.2021.0139.
[http://dx.doi.org/10.1089/can.2021.0139] [PMID: 34748370]
[105]
Sedeighzadeh, S.S.; Galehdari, H.; Tabandeh, M.R.; Shamsara, M.; Roohbakhsh, A. The endocannabinoid, anandamide, acts as a novel inhibitor of LPS-induced inflammasome activation in human gastric cancer AGS cell line: Involvement of CB1 and TRPV1 receptors. Int. J. Inflamm., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/6698049]
[106]
Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double‐edged sword. Cancer Med., 2019, 8(5), 2252-2267.
[http://dx.doi.org/10.1002/cam4.2101] [PMID: 30929309]
[107]
Mishra, P.; Paital, B.; Jena, S.; Swain, S.S.; Kumar, S.; Yadav, M.K.; Chainy, G.B.N.; Samanta, L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci. Rep., 2019, 9(1), 7408.
[http://dx.doi.org/10.1038/s41598-019-43320-5] [PMID: 31092832]
[108]
Lau, A.; Villeneuve, N.; Sun, Z.; Wong, P.; Zhang, D. Dual roles of Nrf2 in cancer. Pharmacol. Res., 2008, 58(5-6), 262-270.
[http://dx.doi.org/10.1016/j.phrs.2008.09.003] [PMID: 18838122]
[109]
Xue, D.; Zhou, X.; Qiu, J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed. Pharmacother., 2020, 131, 110676.
[http://dx.doi.org/10.1016/j.biopha.2020.110676] [PMID: 32858502]
[110]
Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev., 2013, 27(20), 2179-2191.
[http://dx.doi.org/10.1101/gad.225680.113] [PMID: 24142871]
[111]
Pouremamali, F.; Jeddi, F.; Samadi, N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem., 2022, 114, 174-184.
[http://dx.doi.org/10.1016/j.procbio.2020.01.033]
[112]
Jeddi, F.; Soozangar, N.; Sadeghi, M.R.; Somi, M.H.; Shirmohamadi, M.; Eftekhar-Sadat, A.T.; Samadi, N. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed. Pharmacother., 2018, 97, 286-292.
[http://dx.doi.org/10.1016/j.biopha.2017.10.129] [PMID: 29091877]
[113]
Singer, E.; Judkins, J.; Salomonis, N.; Matlaf, L.; Soteropoulos, P.; McAllister, S.; Soroceanu, L. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis., 2015, 6(1), e1601.
[http://dx.doi.org/10.1038/cddis.2014.566] [PMID: 25590811]
[114]
Jastrząb, A.; Gęgotek, A.; Skrzydlewska, E. Cannabidiol regulates the expression of keratinocyte proteins involved in the inflammation process through transcriptional regulation. Cells, 2019, 8(8), 827.
[http://dx.doi.org/10.3390/cells8080827] [PMID: 31382646]
[115]
Kim, M.K.; Park, H.J.; Kim, S.R.; Choi, Y.K.; Bae, S.K.; Bae, M.K. Involvement of heme oxygenase-1 in orexin-a-induced angiogenesis in vascular endothelial cells. Korean J. Physiol. Pharmacol., 2015, 19(4), 327-334.
[http://dx.doi.org/10.4196/kjpp.2015.19.4.327] [PMID: 26170736]
[116]
Farkhondeh, T.; Pourbagher-Shahri, A.M.; Azimi-Nezhad, M.; Forouzanfar, F.; Brockmueller, A.; Ashrafizadeh, M.; Talebi, M.; Shakibaei, M.; Samarghandian, S. Roles of Nrf2 in gastric cancer: Targeting for therapeutic strategies. Molecules, 2021, 26(11), 3157.
[http://dx.doi.org/10.3390/molecules26113157] [PMID: 34070502]
[117]
Nirmaladevi, R.; Paital, B.; Jayachandran, P.; Padma, P.R.; Nirmaladevi, R. Epigenetic alterations in cancer. Front. Biosci., 2020, 25(6), 1058-1109.
[http://dx.doi.org/10.2741/4847] [PMID: 32114424]
[118]
Li, Y.; Yang, Y.; Lu, Y.; Herman, J.G.; Brock, M.V.; Zhao, P.; Guo, M. Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer, 2015, 18(2), 280-287.
[http://dx.doi.org/10.1007/s10120-014-0370-2] [PMID: 24748501]
[119]
Shivapriya, P.M.; Singh, A.; Pandey, P.; Chhabra, N.; Sahoo, A.K.; Paital, B.; Varadwaj, P.K.; Samanta, S.K. Pathways in small cell lung cancer and its therapeutic perspectives. F.B.L, 2021, 26(12), 1668-1678.
[http://dx.doi.org/10.52586/5059] [PMID: 34994180]
[120]
Cao, J.; Song, Y.; Bi, N.; Shen, J.; Liu, W.; Fan, J.; Sun, G.; Tong, T.; He, J.; Shi, Y.; Zhang, X.; Lu, N.; He, Y.; Zhang, H.; Ma, K.; Luo, X.; Lv, L.; Deng, H.; Cheng, J.; Zhu, J.; Wang, L.; Zhan, Q. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res., 2013, 73(11), 3326-3335.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3055] [PMID: 23592755]
[121]
Marks, R.M.; Roche, W.R.; Czerniecki, M.; Penny, R.; Nelson, D.S. Mast cell granules cause proliferation of human microvascular endothelial cells. Lab. Invest., 1986, 55(3), 289-294.
[PMID: 2427796]
[122]
Thompson, W.D.; Brown, F.I. Quantitation of histamine-induced angiogenesis in the chick chorioallantoic membrane: mode of action of histamine is indirect. Int. J. Microcirc. Clin. Exp., 1987, 6(4), 343-357.
[PMID: 3429144]
[123]
Sörbo, J.; Jakobsson, A.; Norrby, K. Mast-cell histamine is angiogenic through receptors for histamine1 and histamine2. Int. J. Exp. Pathol., 1994, 75(1), 43-50.
[PMID: 7511407]
[124]
Pós, Z.; Sáfrány, G.; Müller, K.; Tóth, S.; Falus, A.; Hegyesi, H. Phenotypic profiling of engineered mouse melanomas with manipulated histamine production identifies histamine H2 receptor and rho-C as histamine-regulated melanoma progression markers. Cancer Res., 2005, 65(10), 4458-4466.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0011] [PMID: 15899839]
[125]
Suarez-Carmona, M.; Lesage, J.; Cataldo, D.; Gilles, C. EMT and inflammation: Inseparable actors of cancer progression. Mol. Oncol., 2017, 11(7), 805-823.
[http://dx.doi.org/10.1002/1878-0261.12095] [PMID: 28599100]
[126]
Kukkonen, J.P. Orexin/hypocretin signaling. Curr. Top. Behav. Neurosci., 2016, 33, 17-50.
[http://dx.doi.org/10.1007/7854_2016_49] [PMID: 27909990]
[127]
Kirchgessner, A.L. Orexins in the brain-gut axis. Endocr. Rev., 2002, 23(1), 1-15.
[http://dx.doi.org/10.1210/edrv.23.1.0454] [PMID: 11844742]
[128]
Mediavilla, C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem. Int., 2020, 141, 104882.
[http://dx.doi.org/10.1016/j.neuint.2020.104882] [PMID: 33068686]
[129]
Voisin, T.; El Firar, A.; Fasseu, M.; Rouyer-Fessard, C.; Descatoire, V.; Walker, F.; Paradis, V.; Bedossa, P.; Henin, D.; Lehy, T.; Laburthe, M. Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: An openable gate to apoptosis. Cancer Res., 2011, 71(9), 3341-3351.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3473] [PMID: 21415167]
[130]
Malfitano, A.M.; Ciaglia, E.; Gangemi, G.; Gazzerro, P.; Laezza, C.; Bifulco, M. Update on the endocannabinoid system as an anticancer target. Expert Opin. Ther. Targets, 2011, 15(3), 297-308.
[http://dx.doi.org/10.1517/14728222.2011.553606] [PMID: 21244344]
[131]
Velasco, G.; Sánchez, C.; Guzmán, M. Endocannabinoids and cancer. Handb. Exp. Pharmacol., 2015, 231, 449-472.
[http://dx.doi.org/10.1007/978-3-319-20825-1_16] [PMID: 26408171]
[132]
Katsidoni, V.; Kastellakis, A.; Panagis, G. Biphasic effects of Δ9-tetrahydrocannabinol on brain stimulation reward and motor activity. Int. J. Neuropsychopharmacol., 2013, 16(10), 2273-2284.
[http://dx.doi.org/10.1017/S1461145713000709] [PMID: 23830148]
[133]
Tzavara, E.T.; Wade, M.; Nomikos, G.G. Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: Site and mechanism of action. J. Neurosci., 2003, 23(28), 9374-9384.
[http://dx.doi.org/10.1523/JNEUROSCI.23-28-09374.2003] [PMID: 14561865]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy