Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Recent Developments of ADCs with the Tubulysins as the Payloads

Author(s): Xu Xiangrong, Lei Yao* and Angela Yao

Volume 23, Issue 18, 2023

Published on: 09 March, 2023

Page: [1797 - 1805] Pages: 9

DOI: 10.2174/1389557523666230220121648

Price: $65

Abstract

As a novel bio-targeting antitumor agent, an antibody-drug conjugate (ADC) combines the high selectivity of monoclonal antibody and potent cytotoxicity of drug or payload. It can expand the scope of clinical application of small molecule drugs. Tubulysin and its bio-precursor pretubulysin (PT) are potent tubulin-binding antitumor drugs. Due to the excellent antitumoral, antimetastatic, antiangiogenic, and anti-multidrug resistance properties, Tubulysins or PT is believed to be a promising cancer therapeutic approach. Currently, the modifications of tubulysin are centering on the C-11 acetoxyl and N,O-acetal groups, and numerous promising payloads are identified. There are at least 5 sites to introduce appropriate drug linkers in tubulysin and PT for connecting the antibodies. The possible sites of attachment are located in Mep, Tuv, or Tup parts. Cleavage and non-cleavage linkers are used in these ADCs. The chemical reactions involved in the final conjugation of antibody and linkerpayload (LP) are cysteine, lysine, site-specific, and click chemistry reactions. In this article, the recent development of ADCs with tubulysins as the payloads is reviewed, with the hope of providing a reference and future strategies for developing new ADSs.

Graphical Abstract

[1]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[2]
Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther., 2022, 7(1), 93.
[http://dx.doi.org/10.1038/s41392-022-00947-7] [PMID: 35318309]
[3]
Kostova, V.; Désos, P.; Starck, J.B.; Kotschy, A. The chemistry behind ADCs. Pharmaceuticals, 2021, 14(5), 442.
[http://dx.doi.org/10.3390/ph14050442] [PMID: 34067144]
[4]
Maderna, A.; Leverett, C.A. Recent advances in the development of new auristatins: Structural modifications and application in antibody drug conjugates. Mol. Pharm., 2015, 12(6), 1798-1812.
[http://dx.doi.org/10.1021/mp500762u] [PMID: 25697404]
[5]
Akaiwa, M.; Dugal-Tessier, J.; Mendelsohn, B.A. Antibody–drug conjugate payloads; study of auristatin derivatives. Chem. Pharm. Bull., 2020, 68(3), 201-211.
[http://dx.doi.org/10.1248/cpb.c19-00853] [PMID: 32115527]
[6]
Parker, J.S. Tubulysins as Antibody–Drug Conjugate (ADC) Payloads. In: Cytotoxic Payloads for Antibody–Drug Conjugates; Thurston, D.E.; Jackson, P.J.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019, pp. 380-397.
[http://dx.doi.org/10.1039/9781788012898-00380]
[7]
Murray, B.C.; Peterson, M.T.; Fecik, R.A. Chemistry and biology of tubulysins: Antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep., 2015, 32(5), 654-662.
[http://dx.doi.org/10.1039/C4NP00036F] [PMID: 25677951]
[8]
Zhao, P.; Zhang, Y.; Li, W.; Jeanty, C.; Xiang, G.; Dong, Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B, 2020, 10(9), 1589-1600.
[http://dx.doi.org/10.1016/j.apsb.2020.04.012] [PMID: 33088681]
[9]
Bauzon, M.; Drake, P.M.; Barfield, R.M.; Cornali, B.M.; Rupniewski, I.; Rabuka, D. Maytansine-bearing antibody-drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. OncoImmunology, 2019, 8(4)e1565859
[http://dx.doi.org/10.1080/2162402X.2019.1565859] [PMID: 30906660]
[10]
Weiss, C.; Figueras, E.; Borbely, A.N.; Sewald, N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J. Pept. Sci., 2017, 23(7-8), 514-531.
[http://dx.doi.org/10.1002/psc.3015] [PMID: 28661555]
[11]
Kern, S.; Truebenbach, I.; Höhn, M.; Gorges, J.; Kazmaier, U.; Zahler, S.; Vollmar, A.M.; Wagner, E. Combined antitumoral effects of pretubulysin and methotrexate. Pharmacol. Res. Perspect., 2019, 7(1)e00460
[http://dx.doi.org/10.1002/prp2.460] [PMID: 30693087]
[12]
Truebenbach, I.; Kern, S.; Loy, D.M.; Höhn, M.; Gorges, J.; Kazmaier, U.; Wagner, E. Combination chemotherapy of L1210 tumors in mice with pretubulysin and methotrexate lipo-oligomer nanoparticles. Mol. Pharm., 2019, 16(6), 2405-2417.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00038] [PMID: 31025870]
[13]
Truebenbach, I.; Zhang, W.; Wang, Y.; Kern, S.; Höhn, M.; Reinhard, S.; Gorges, J.; Kazmaier, U.; Wagner, E. Co-delivery of pretubulysin and siEG5 to EGFR overexpressing carcinoma cells. Int. J. Pharm., 2019, 569118570
[http://dx.doi.org/10.1016/j.ijpharm.2019.118570] [PMID: 31352048]
[14]
Ouyang, B.; Wang, L.; Qi, J.; Fan, M.; Wang, H.; Yao, L. Synthesis and evaluation of biological properties of 2-amino-thiazole-4-carboxamides: Amide linkage analogues of pretubulysin. Biol. Pharm. Bull., 2020, 43(8), 1154-1158.
[http://dx.doi.org/10.1248/bpb.b20-00278] [PMID: 32741936]
[15]
Xu, X.; Fan, M.; Qi, J.; Yao, L. Design, synthesis, and antitumor activity evaluation of pretubulysin analogs. Chem. Biol. Drug Des., 2021, 98(3), 341-351.
[http://dx.doi.org/10.1111/cbdd.13852] [PMID: 33930251]
[16]
Li, W.; Tan, L.; Zhang, Z.; Xia, Q.; Lei, D.; Li, Y.; Zhang, T.; Zeng, S.; Sima, X.; Wang, Y. The X-ray structure of tubulysin analogue TGL in complex with tubulin and three possible routes for the development of next-generation tubulysin analogues. Biochem. Biophys. Res. Commun., 2021, 565, 29-35.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.086] [PMID: 34090207]
[17]
Pandit, A.; Yadav, K.; Reddy, R.B.; Sengupta, S.; Sharma, R.; Chelvam, V. Structure activity relationships (SAR) study to design and synthesize new tubulin inhibitors with enhanced anti-tubulin activity: In silico and in vitro analysis. J. Mol. Struct., 2021, 1223129204
[http://dx.doi.org/10.1016/j.molstruc.2020.129204]
[18]
Ryu, J-S.; Park, Y.; Lee, J. Synthesis of a cyclic analogue of Tuv N-Methyl tubulysin. Synlett, 2015, 26(8), 1063-1068.
[http://dx.doi.org/10.1055/s-0034-1379900]
[19]
Shao, M.; Bai, X.; Ma, X.; Yan, N.; Yao, L. Synthesis and antitumor activities of 3-substituted-analine derivatives: Structure modifications of Tuv part of tubulysins. Chem. Cent. J., 2018, 12(1), 115.
[http://dx.doi.org/10.1186/s13065-018-0483-5] [PMID: 30443866]
[20]
Gingipalli, L.; Toader, D.; Wang, F. Tubulysin derivatives. WO2015157594, 2015.
[21]
Park, Y.; Bae, S.Y.; Hah, J.M.; Lee, S.K.; Ryu, J.S. Synthesis of stereochemically diverse cyclic analogs of tubulysins. Bioorg. Med. Chem., 2015, 23(21), 6827-6843.
[http://dx.doi.org/10.1016/j.bmc.2015.10.003] [PMID: 26474666]
[22]
Lamidi, O.F.; Sani, M.; Lazzari, P.; Zanda, M.; Fleming, I.N. The tubulysin analogue KEMTUB10 induces apoptosis in breast cancer cells via p53, Bim and Bcl-2. J. Cancer Res. Clin. Oncol., 2015, 141(9), 1575-1583.
[http://dx.doi.org/10.1007/s00432-015-1921-6] [PMID: 25633717]
[23]
Reddy, J.A.; Dorton, R.; Bloomfield, A.; Nelson, M.; Dircksen, C.; Vetzel, M.; Kleindl, P.; Santhapuram, H.; Vlahov, I.R.; Leamon, C.P. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep., 2018, 8(1), 8943.
[http://dx.doi.org/10.1038/s41598-018-27320-5] [PMID: 29895863]
[24]
Gril, B.; Wei, D.; Zimmer, A.S.; Robinson, C.; Khan, I.; Difilippantonio, S.; Overstreet, M.G.; Steeg, P.S. HER2 antibody-drug conjugate controls growth of breast cancer brain metastases in hematogenous xenograft models, with heterogeneous blood–tumor barrier penetration unlinked to a passive marker. Neuro-oncol., 2020, 22(11), 1625-1636.
[http://dx.doi.org/10.1093/neuonc/noaa118] [PMID: 32386414]
[25]
Reddy, R.B. M, V.; Krishnan, M.A.; Chelvam, V. Synthesis of tubuvaline (Tuv) fragment of tubulysin via diastereoselective dihydroxylation of homoallylamine. Synth. Commun., 2021, 51(5), 797-809.
[http://dx.doi.org/10.1080/00397911.2020.1855355]
[26]
Wang, X.M.; Liu, Y.W.; Wang, Q.E.; Zhou, Z.; Si, C.M.; Wei, B.G. A divergent method to key unit of tubulysin V through one-pot diastereoselective Mannich process of N,O-acetal with ketone. Tetrahedron, 2019, 75(2), 260-268.
[http://dx.doi.org/10.1016/j.tet.2018.11.053]
[27]
Wu, K.; Jin, Q.; Doubleday, W. Alternative processes for the preparation of tubulysins and intermediates thereof, especially preparation of tert-butoxycarbonyl-protected tubuvaline via transition metal-free aza-Michael conjugate addition between ethyl (E)-2-(4- methylpent-2-enoyl)thiazole-4-carboxylate and tert-butyl methylcarbamate in the presence of KHMDS in THF. Patent: WO2020051503, 2020.
[28]
Wu, Z.; Long, B.; Li, Y.; Jiang, Q.; Liu, J.; Liu, Z. Synthesis method of key intermediate Tuv natural anticancer drug Tubulysins. Patent: CN111454230, 2020.
[29]
Wei, B.; Wang, X.; Mao, Z.; Zhou, Z.; Wang, C.; Nie, X.; Lin, G. Method for preparing key fragment Tuv of Tubulysin China. Patent: CN110684044, 2020.
[30]
Tao, W.; Zhou, W.; Zhou, Z.; Si, C.M.; Sun, X.; Wei, B.G. An enantioselective total synthesis of tubulysin V. Tetrahedron, 2016, 72(39), 5928-5933.
[http://dx.doi.org/10.1016/j.tet.2016.08.038]
[31]
Vishwanatha, T.M.; Giepmans, B.; Goda, S.K.; Dömling, A. Tubulysin synthesis featuring stereoselective catalysis and highly convergent multicomponent assembly. Org. Lett., 2020, 22(14), 5396-5400.
[http://dx.doi.org/10.1021/acs.orglett.0c01718] [PMID: 32584589]
[32]
Wu, Z.; Long, B. Method for preparation of intermediate TUP of Tubulysin. Patent: CN109796358, 2019.
[33]
Zheng, B.; Ortiz, A.; Guerrero, C.A.; Luzung, M.R.; Zhu, J.; Schmidt, M.A.; Eastgate, M.D. Stereoselective synthesis of a tubulysin core for antibody–drug conjugate studies. Org. Process Res. Dev., 2022, 26(8), 2138-2144.
[http://dx.doi.org/10.1021/acs.oprd.2c00010]
[34]
Doemling, A. S. S.; Goda, S. K. Tubulysin derivatives and methods for preparing the same. Patent: WO2020022892, 2020.
[35]
Long, B.; Tao, C.; Li, Y.; Zeng, X.; Cao, M.; Wu, Z. Total synthesis of tubulysin U and N 14 -desacetoxytubulysin H. Org. Biomol. Chem., 2020, 18(28), 5349-5353.
[http://dx.doi.org/10.1039/D0OB01109F] [PMID: 32643750]
[36]
Chelvam, V.; Pandit, A.; Baddipally, R.R.; Yadav, K.; Pathak, B.; Roy, D. Solid phase peptide synthesis of the third generation tubulysin analogues and their medical application as anticancer agents. US Patent: US20220056079, 2022.
[37]
Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann, L.A. The multiple multicomponent approach to natural product mimics: tubugis, N-substituted anticancer peptides with picomolar activity. J. Am. Chem. Soc., 2011, 133(20), 7692-7695.
[http://dx.doi.org/10.1021/ja2022027] [PMID: 21528905]
[38]
Leverett, C.A.; Sukuru, S.C.K.; Vetelino, B.C.; Musto, S.; Parris, K.; Pandit, J.; Loganzo, F.; Varghese, A.H.; Bai, G.; Liu, B.; Liu, D.; Hudson, S.; Doppalapudi, V.R.; Stock, J.; O’Donnell, C.J.; Subramanyam, C. Design, synthesis, and cytotoxic evaluation of novel tubulysin analogues as ADC payloads. ACS Med. Chem. Lett., 2016, 7(11), 999-1004.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00274] [PMID: 27882198]
[39]
Chelvam, V.; Reddy, R.; Dudhe, P. Synthesis of the deacetoxytubuvaline fragment of pretubulysin and its lipophilic analogs for enhanced permeability in cancer cell lines. Synlett, 2019, 30(1), 77-81.
[http://dx.doi.org/10.1055/s-0037-1611359]
[40]
Tran, A.T.; Tran, C.V.; Le, H.V.; Tran, L.V.; Tran, T.T.P.; Tran, S.V.; Tran, C.V. Design, synthesis, and cytotoxic activity of new tubulysin analogues. Synlett, 2022, 33(2), 187-195.
[http://dx.doi.org/10.1055/s-0041-1737139]
[41]
Wu, Z.; Long, B. Method for preparing efficient anti-tumor active polypeptide tubulysin M. World Wide Patent: WO2021232791, 2021.
[42]
Wu, Z.; Long, B.; Li, Y.; Liu, J.; Li, L. Method for preparation of polypeptide Tubulysin U. Patent: WO2021227512, 2021.
[43]
Li, M.; Banerjee, K.; Friestad, G.K. Diastereocontrol in radical addition to β-benzyloxy hydrazones: Revised approach to tubuvaline and synthesis of O-benzyltubulysin V benzyl ester. J. Org. Chem., 2021, 86(21), 15139-15152.
[http://dx.doi.org/10.1021/acs.joc.1c01798] [PMID: 34636574]
[44]
Nicolaou, K.C.; Erande, R. D.; Vourloumis, D.; Pulukuri, K. K.; Rigol, S. Preparation of tubulysin analogues as anticancer agents and payloads for antibody-drug conjugates useful for treatment of cancer. Patent: WO2019108685, 2019.
[45]
Drača, D.; Mijatović, S.; Krajnović, T.; Kaluđerović, G.N.; Wessjohann, L.A.; Maksimović-Ivanić, D.; Maksimovic-Ivanic, D. Synthetic tubulysin derivative, tubugi-1, against invasive melanoma cells: the cell death triangle. Anticancer Res., 2019, 39(10), 5403-5415.
[http://dx.doi.org/10.21873/anticanres.13734] [PMID: 31570435]
[46]
Drača, D.; Mijatović, S.; Krajnović, T.; Pristov, J.B.; Đukić, T.; Kaluđerović, G.N.; Wessjohann, L.A.; Maksimović-Ivanić, D. The synthetic tubulysin derivative, tubugi-1, improves the innate immune response by macrophage polarization in addition to its direct cytotoxic effects in a murine melanoma model. Exp. Cell Res., 2019, 380(2), 159-170.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.028] [PMID: 31042500]
[47]
Kufka, R.; Rennert, R. Kaluđerović; G.N.; Weber, L.; Richter, W.; Wessjohann, L.A. Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells. Beilstein J. Org. Chem., 2019, 15, 96-105.
[http://dx.doi.org/10.3762/bjoc.15.11] [PMID: 30680044]
[48]
Richter, W. Preparation of cytotoxic tubulysin compounds for conjugation. WO2015113760, 2015.
[49]
Han, Amy Tubulysins and protein-tubulysin conjugates. WO2021262910, 2021.
[50]
Courter, J.R.; Hamilton, J.Z.; Hendrick, N.R.; Zaval, M.; Waight, A.B.; Lyon, R.P.; Senter, P.D.; Jeffrey, S.C.; Burke, P.J. Structure-activity relationships of tubulysin analogues. Bioorg. Med. Chem. Lett., 2020, 30(14)127241
[http://dx.doi.org/10.1016/j.bmcl.2020.127241] [PMID: 32527543]
[51]
Nicolaou, K.C.; Rigol, S. Total synthesis in search of potent antibody–drug conjugate payloads. from the fundamentals to the translational. Acc. Chem. Res., 2019, 52(1), 127-139.
[http://dx.doi.org/10.1021/acs.accounts.8b00537] [PMID: 30575399]
[52]
Nicolaou, K.C.; Erande, R.D.; Yin, J.; Vourloumis, D.; Aujay, M.; Sandoval, J.; Munneke, S.; Gavrilyuk, J. Improved total synthesis of tubulysins and design, synthesis, and biological evaluation of new tubulysins with highly potent cytotoxicities against cancer cells as potential payloads for antibody–drug conjugates. J. Am. Chem. Soc., 2018, 140(10), 3690-3711.
[http://dx.doi.org/10.1021/jacs.7b12692] [PMID: 29381062]
[53]
Nicolaou, K.C.; Yin, J.; Mandal, D.; Erande, R.D.; Klahn, P.; Jin, M.; Aujay, M.; Sandoval, J.; Gavrilyuk, J.; Vourloumis, D. Total synthesis and biological evaluation of natural and designed tubulysins. J. Am. Chem. Soc., 2016, 138(5), 1698-1708.
[http://dx.doi.org/10.1021/jacs.5b12557] [PMID: 26829208]
[54]
Wu, K.; Jin, Q.; Doubleday, W. Process for the preparation of tubulysins and intermediates thereof. WO2019051322, 2019.
[55]
Hamilton, J.Z.; Pires, T.A.; Mitchell, J.A.; Cochran, J.H.; Emmerton, K.K.; Zaval, M.; Stone, I.J.; Anderson, M.E.; Jin, S.; Waight, A.B.; Lyon, R.P.; Senter, P.D.; Jeffrey, S.C.; Burke, P.J. Improving antibody-tubulysin conjugates through linker chemistry and site-specific conjugation. ChemMedChem, 2021, 16(7), 1077-1081.
[http://dx.doi.org/10.1002/cmdc.202000889] [PMID: 33369163]
[56]
Zhao, R.; Yang, Q.; Zhao, L.; Huang, Y.; Ye, H.; Gai, S.; Lai, J.; Li, W.; Bai, L.; Cao, M. Cell binding molecule-tubulysin derivatives conjugate and preparation method therefor. World Wide Patent: WO2021000067, 2021.
[57]
Zhao, R. Y.; Yang, Q.; Huang, Y.; Zhao, L.; Ye, H.; Lei, J.; Xu, Y.; Cao, M.; Guo, H.; Jia, J.; Tong, Q.; Li, W.; Zhou, X.; Xie, H.; Bai, L. A conjugate of a tubulysin analog with branched linkers. World Patent: WO2019127607, 2019.
[58]
Zhao, R. Y.; Yang, Q.; Huang, Y.; Zhao, L.; Ye, H.; Zhuo, X.; Yang, C.; Lei, J.; Xu, Y.; Guo, H. AConjugation linkers, cell binding molecule-drug conjugates containing the peptide linkers, methods of making and uses such conjugation peptide linkers containing 2,3-diaminosuccinyl group. Patent: WO2020073345, 2020.
[59]
Jain, N.; Smith, S.W.; Ghone, S.; Tomczuk, B. Current ADC linker Chemistry. Pharm. Res., 2015, 32(11), 3526-3540.
[http://dx.doi.org/10.1007/s11095-015-1657-7] [PMID: 25759187]
[60]
Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C. Antibody–drug conjugates: The last decade. Pharmaceuticals, 2020, 13(9), 245.
[http://dx.doi.org/10.3390/ph13090245] [PMID: 32937862]
[61]
Tumey, L.N.; Leverett, C.A.; Vetelino, B.; Li, F.; Rago, B.; Han, X.; Loganzo, F.; Musto, S.; Bai, G.; Sukuru, S.C.K.; Graziani, E.I.; Puthenveetil, S.; Casavant, J.; Ratnayake, A.; Marquette, K.; Hudson, S.; Doppalapudi, V.R.; Stock, J.; Tchistiakova, L.; Bessire, A.J.; Clark, T.; Lucas, J.; Hosselet, C.; O’Donnell, C.J.; Subramanyam, C. Optimization of tubulysin antibody-drug conjugates: A case study in Addressing ADC Metabolism. ACS Med. Chem. Lett., 2016, 7(11), 977-982.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00195] [PMID: 27882194]
[62]
Jaminet, P. A.; Jaminet, S. S.; Ha, E.H. Antimitotic tetrapeptide-antibody conjugates and methods of using same. Patent: WO2022046941, 2022.
[63]
Cheng, H.; Cong, Q.; Dervin, D.; Stevens, A.; Vemuri, K.; Huber, M.; Juliano, J.; Cuison, S.; Sung, J.; Passmore, D.; Chong, C.; Greenbaum, M.; Kwok, E.; Jiang, J.; Pan, C.; Rao-Naik, C.; Rangan, V.; Kempe, T.; Tatum, A.; Deshpande, S.; Cardarelli, P.; Vite, G.; Gangwar, S. Synthesis and biological evaluation of a carbamate-containing tubulysin antibody-drug conjugate. Bioconjug. Chem., 2020, 31(10), 2350-2361.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00429] [PMID: 32881482]
[64]
Young, I. S.; Lou, S.; Gangwar, S. Antibody-drug conjugate with a tubulysin analog warhead having a stabilized acetate group in the Tuv subunit. US20190388553, 2019.
[65]
Yamazoe, S.; Kotapati, S.; Hogan, J.M.; West, S.M.; Deng, X.A.; Diong, S.J.; Arbanas, J.; Nguyen, T.A.; Jashnani, A.; Gupta, D.; Rajpal, A.; Dollinger, G.; Strop, P. Impact of drug conjugation on thermal and metabolic stabilities of aglycosylated and N-glycosylated antibodies. Bioconjug. Chem., 2022, 33(4), 576-585.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00572] [PMID: 35344340]
[66]
Nicolaou, K.C.; Pan, S.; Pulukuri, K.K.; Ye, Q.; Rigol, S.; Erande, R.D.; Vourloumis, D.; Nocek, B.P.; Munneke, S.; Lyssikatos, J.; Valdiosera, A.; Gu, C.; Lin, B.; Sarvaiaya, H.; Trinidad, J.; Sandoval, J.; Lee, C.; Hammond, M.; Aujay, M.; Taylor, N.; Pysz, M.; Purcell, J.W.; Gavrilyuk, J. Design, synthesis, and biological evaluation of tubulysin analogues, linker-drugs, and antibody–drug conjugates, insights into structure–activity relationships, and tubulysin–tubulin binding derived from X-ray crystallographic analysis. J. Org. Chem., 2021, 86(4), 3377-3421.
[http://dx.doi.org/10.1021/acs.joc.0c02755] [PMID: 33544599]
[67]
Zhao, R. Y.; Yang, Q.; Huang, Y.; Gai, S.; Ye, H.; Zhao, L.; Guo, H.; Bai, L.; Li, W.; Jia, J.; Guo, Z.; Zheng, J.; Chen, X.; Kong, X.; Lin, C.; Du, Y.; Zhang, Y.; Zhou, L.; Zhang, X.; Zheng, X.; Chen, B.; Yang, Y.; Dai, M.; Xu, Y.; Fang, Z.; Zhou, X.; Jiang, X.; Chen, M.; Zhang, L.; Li, Y. A formulation of a conjugate of a tubulysin analog to t cell-binding molecule. Patent: WO2020258893, 2020.
[68]
Leamon, C.P.; Reddy, J.A.; Bloomfield, A.; Dorton, R.; Nelson, M.; Vetzel, M.; Kleindl, P.; Hahn, S.; Wang, K.; Vlahov, I.R. Prostate-specific membrane antigen-specific antitumor activity of a self-immolative tubulysin conjugate. Bioconjug. Chem., 2019, 30(6), 1805-1813.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00335] [PMID: 31075200]
[69]
Roy, J.; Hettiarachchi, S.U.; Kaake, M.; Mukkamala, R.; Low, P.S. Design and validation of fibroblast activation protein alpha targeted imaging and therapeutic agents. Theranostics, 2020, 10(13), 5778-5789.
[http://dx.doi.org/10.7150/thno.41409] [PMID: 32483418]
[70]
Wayua, C.; Roy, J.; Putt, K.S.; Low, P.S. Selective tumor targeting of desacetyl vinblastine hydrazide and tubulysin B via conjugation to a cholecystokinin 2 receptor (CCK2R) ligand. Mol. Pharm., 2015, 12(7), 2477-2483.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00218] [PMID: 26043355]
[71]
Cohen, R.; Vugts, D.J.; Visser, G.W.M.; Stigter-van Walsum, M.; Bolijn, M.; Spiga, M.; Lazzari, P.; Shankar, S.; Sani, M.; Zanda, M.; van Dongen, G.A.M.S. Development of novel ADCs: Conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. Cancer Res., 2014, 74(20), 5700-5710.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1141] [PMID: 25145670]
[72]
Wu, K.L.; Yu, C.; Lee, C.; Zuo, C.; Ball, Z.T.; Xiao, H. Precision modification of native antibodies. Bioconjug. Chem., 2021, 32(9), 1947-1959.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00342] [PMID: 34428033]
[73]
Walsh, S.J.; Omarjee, S.; Galloway, W.R.J.D.; Kwan, T.T.L.; Sore, H.F.; Parker, J.S.; Hyvönen, M.; Carroll, J.S.; Spring, D.R. A general approach for the site-selective modification of native proteins, enabling the generation of stable and functional antibody–drug conjugates. Chem. Sci., 2019, 10(3), 694-700.
[http://dx.doi.org/10.1039/C8SC04645J] [PMID: 30774870]
[74]
Maruani, A.; Smith, M.E.B.; Miranda, E.; Chester, K.A.; Chudasama, V.; Caddick, S. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat. Commun., 2015, 6(1), 6645.
[http://dx.doi.org/10.1038/ncomms7645] [PMID: 25824906]
[75]
Kumar, A.; Mao, S.; Dimasi, N.; Gao, C. Design and validation of linkers for site-specific preparation of antibody–drug conjugates carrying multiple drug copies per cysteine conjugation site. Int. J. Mol. Sci., 2020, 21(18), 6882.
[http://dx.doi.org/10.3390/ijms21186882] [PMID: 32961794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy