Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

DTPA(DOTA)-Nimotuzumab Radiolabeling with Generator-produced Thorium for Radioimmunotherapy of EGFR-overexpressing Carcinomas

Author(s): Magdiel G. Bravo, Bayirta V. Egorova*, Aleksandr N. Vasiliev, Elena V. Lapshina, Stanislav V. Ermolaev and Mikhail O. Durymanov

Volume 16, Issue 3, 2023

Published on: 15 March, 2023

Page: [233 - 242] Pages: 10

DOI: 10.2174/1874471016666230221102518

Price: $65

Abstract

Introduction: The feasibility of preparing the “in-house” generators and the Th- DTPA(DOTA)-Nimotuzumab radioimmunoconjugate was evaluated. 226Th is perspective for TAT, however, due to short half-life it is preferable to apply this radionuclide for readily available epithelial malignancies. Nimotuzumab being specific for EGFR expressing cells as a targeting moiety is considered to be suitable for thorium delivery.

Methods: TEVA extraction chromatographic resin and anion exchange resin AG 1x8 were used as sorbents for 226Th generator. In order to determine features of labeling by Th4+ we applied 234Th as a longer-lived analog of short-lived 226Th and the immunoconjugates DTPA(DOTA)-Nimotuzumab were used for radiolabeling.

Results: The generator on the base of TEVA resin has shown higher volume activity of the product compared to the AG 1x8. The 226Th volume concentration was up to 80%/mL. The radiolabeling of BFCA by thorium radioisotopes reached 95% at the MR(Th:p-SCN-Bn-DTPA) = 1:100 and 86% for MR(Th:p-SCN-Bn-DOTA) = 1:5000 at 90°C. The procedure of Nimotuzumab labeling with Th4+ for radiotherapy of EGFR-overexpressing carcinomas was established. The overall labeling yield in both radioimmunoconjugates - DTPA and DOTA functionalized - was in the range of 45-50%. The immunoconjugate Nimotuzumab-p-SCN-Bn-DTPA was obtained with a molar ratio 1:25 (Nimotuzumab: BFCA), within 1 hour of conjugation at 25°C and labelled via postconjugation approach. Whereas Nimotuzumab-p-SCN-Bn-DOTA was obtained at the same conditions, but radiolabeled by the method of pre-conjugation.

Conclusion: Thorium-234 incorporation into both radioimmunoconjugates reached 45-50%. It has been shown that Th-DTPA-Nimotuzumab radioimmunoconjugate specifically bound with EGFR overexpressing epidermoid carcinoma A431 cells.

Graphical Abstract

[1]
Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; Norenberg, J.P. Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol., 2018, 13(2), 189-203.
[http://dx.doi.org/10.1007/s11523-018-0550-9] [PMID: 29423595]
[2]
Ferrier, M.G.; Radchenko, V.; Wilbur, D.S. Radiochemical aspects of alpha emitting radionuclides for medical application. Radiochim. Acta, 2019, 107(9-11), 1065-1085.
[http://dx.doi.org/10.1515/ract-2019-0005]
[3]
Mastren, T.; Akin, A.; Copping, R.; Brugh, M.; Wilbur, D.S.; Birnbaum, E.R.; Nortier, F.M.; John, K.D.; Fassbender, M.E. A reverse 230U/226Th radionuclide generator for targeted alpha therapy applications. Nucl. Med. Biol., 2020, 90-91, 69-73.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.09.006] [PMID: 33068963]
[4]
Ferrier, M.G.; Li, Y.; Chyan, M.K.; Wong, R.; Li, L.; Spreckelmeyer, S.; Hamlin, D.K.; Mastren, T.; Fassbender, M.E.; Orvig, C.; Wilbur, D.S. Thorium chelators for targeted alpha therapy: Rapid chelation of thorium-226. J. Labelled Comp. Radiopharm., 2020, 63(12), 502-516.
[http://dx.doi.org/10.1002/jlcr.3875] [PMID: 32812275]
[5]
Radchenko, V.; Engle, J.W.; Wilson, J.J.; Maassen, J.R.; Nortier, M.F.; Birnbaum, E.R.; John, K.D.; Fassbender, M.E. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim. Acta, 2016, 104(5), 291-304.
[http://dx.doi.org/10.1515/ract-2015-2486]
[6]
Vasiliev, A.N.; Ermolaev, S.V.; Lapshina, E.V.; Bravo, M.G.; Skasyrskaya, A.K. Production of 230 Pa as a source for medical radionuclides 230 U and 226 Th including isolation by liquid–liquid extraction. Solvent Extr. Ion Exch., 2022, 40(7), 735-755.
[http://dx.doi.org/10.1080/07366299.2022.2088059]
[7]
Lapshina, E.; Zhuikov, B.; Vasiliev, A.; Ostapenko, V.; Ermolaev, S. Production of 230Pa from proton-irradiated thorium and developing 230Pa/230U/226Th tandem generator. J. Med. Imaging Radiat. Sci., 2019, 50(1), S16.
[http://dx.doi.org/10.1016/j.jmir.2019.03.051]
[8]
Betenekov, N.D.; Denisov, E.I.; Vasiliev, A.N. Perspectives for Ac-225/Bi-213 generator developing using hydroxide inorganic sorbents. Radiochem, 2019, 61(2), 211-219.
[http://dx.doi.org/10.1134/S1066362219020140]
[9]
Montavon, G.; Le Du, A.; Champion, J.; Rabung, T.; Morgenstern, A. DTPA complexation of bismuth in human blood serum. Dalton Trans., 2012, 41(28), 8615-8623.
[http://dx.doi.org/10.1039/c2dt30230f] [PMID: 22678751]
[10]
Le Du, A.; Sabatié-Gogova, A.; Morgenstern, A.; Montavon, G. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy? J. Inorg. Biochem., 2012, 109, 82-89.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.12.011] [PMID: 22388013]
[11]
Morgenstern, A.; Apostolidis, C.; Molinet, R.; Lutzenkirchen, K. Radionuclides for medical use. Patent WO 2006/003123 2006.
[12]
Juzeniene, A.; Stenberg, V.Y.; Bruland, Ø.S.; Larsen, R.H. Preclinical and clinical status of PSMA-targeted alpha therapy for metastatic castration-resistant prostate cancer. Cancers, 2021, 13(4), 779.
[http://dx.doi.org/10.3390/cancers13040779] [PMID: 33668474]
[13]
Yadav, M.P.; Ballal, S.; Sahoo, R.K.; Bal, C. Efficacy and safety of 225Ac-DOTATATE targeted alpha therapy in metastatic paragangliomas: a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2022, 49(5), 1595-1606.
[http://dx.doi.org/10.1007/s00259-021-05632-5] [PMID: 34837103]
[14]
Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumour Biol., 2012, 33(3), 573-590.
[http://dx.doi.org/10.1007/s13277-011-0286-y] [PMID: 22143940]
[15]
Roland, B.W.; Oliver, W.P.; John, M.P. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother. Radiopharm., 2010, 25(2), 125-142.
[16]
Mazorra, Z.; Chao, L.; Lavastida, A.; Sanchez, B.; Ramos, M.; Iznaga, N.; Crombet, T. Nimotuzumab: beyond the EGFR signaling cascade inhibition. Semin. Oncol., 2018, 45(1-2), 18-26.
[http://dx.doi.org/10.1053/j.seminoncol.2018.04.008] [PMID: 30318080]
[17]
Pfost, B.; Morgenstern, A.; Seidl, C. Radioimmunotherapy of human bladder cancer in a nude mouse model comparing Bi-213-anti-EGFR-MAb and Th-226-anti-EGFR-Mab. J. Nucl. Med., 2009, 50(s2), 36.
[18]
Le Du, A. Etude des generateurs in vivo Pb-212/Bi-212 et U-230/Th-226 pour la radiotherpaie alpha ciblee. Radiochimie. Universite de Nantes; Francais, 2011.
[19]
Aliev, R.A.; Ermolaev, S.V.; Vasiliev, A.N.; Ostapenko, V.S.; Lapshina, E.V.; Zhuikov, B.L.; Zakharov, N.V.; Pozdeev, V.V.; Kokhanyuk, V.M.; Myasoedov, B.F.; Kalmykov, S.N. Isolation of medicine-applicable actinium-225 from thorium targets irradiated by medium-energy protons. Solvent Extr. Ion Exch., 2014, 32(5), 468-477.
[http://dx.doi.org/10.1080/07366299.2014.896582]
[20]
Knight, A.W.; Eitrheim, E.S.; Nelson, A.W.; Nelson, S.; Schultz, M.K. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioact., 2014, 134, 66-74.
[http://dx.doi.org/10.1016/j.jenvrad.2014.02.010] [PMID: 24681438]
[21]
Monroy-Guzmán, F. Isolation of uranium by anionic exchange resins. J. Chem. Chem. Eng., 2016, 10, 90-95.
[22]
Alhassanieh, O.; Abdul-Hadi, A.; Ghafar, M.; Aba, A. Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl. Radiat. Isot., 1999, 51(5), 493-498.
[http://dx.doi.org/10.1016/S0969-8043(99)00068-8]
[23]
Meares, C.F.; McCall, M.J.; Reardan, D.T.; Goodwin, D.A.; Diamanti, C.I.; McTigue, M. Conjugation of antibodies with bifunctional chelating agents: Isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal. Biochem., 1984, 142(1), 68-78.
[http://dx.doi.org/10.1016/0003-2697(84)90517-7] [PMID: 6440451]
[24]
Abbas, N.; Heyerdahl, H.; Bruland, Ø.S.; Borrebæk, J.; Nesland, J.; Dahle, J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res., 2011, 1(1), 18.
[http://dx.doi.org/10.1186/2191-219X-1-18] [PMID: 22214432]
[25]
Benedetto, R.; Massicano, A.V.F.; Silva, J.J. Development of radioimmunoconjugate for diagnosis and management of head-and-neck subclinical cancer and colorectal carcinoma. Braz. J. Pharm. Sci., 2017, 53(4), e170039.
[26]
Kruger, N.J. The Bradford Method for Protein Quantitation.The Protein Protocols Handbook. Springer Protocols Handbooks; Walker, J.M., Ed.; Humana Press, 2002, pp. 15-21.
[http://dx.doi.org/10.1385/1-59259-169-8:15]
[27]
Velikyan, I.; Sundberg, A.L.; Lindhe, O.; Höglund, A.U.; Eriksson, O.; Werner, E.; Carlsson, J.; Bergström, M.; Långström, B.; Tolmachev, V. Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J. Nucl. Med., 2005, 46(11), 1881-1888.
[PMID: 16269603]
[28]
Horwitz, E.P.; Dietz, M.L.; Chiarizia, R.; Diamond, H.; Maxwell, S.L., III; Nelson, M.R. Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal. Chim. Acta, 1995, 310(1), 63-78.
[http://dx.doi.org/10.1016/0003-2670(95)00144-O]
[29]
Mendes, M.; Aupiais, J.; Jutier, C.; Pointurier, F. Determination of weight distribution ratios of Pa(V) and Np(V) with some extraction chromatography resins and the AG1-X8 resin. Anal. Chim. Acta, 2013, 780, 110-116.
[http://dx.doi.org/10.1016/j.aca.2013.04.019] [PMID: 23680558]
[30]
Vasiliev, A.N.; Zobnin, V.A.; Pavlov, Y.S.; Chudakov, V.M. Radiation stability of sorbents in medical 225 Ac/213 Bi generators. Solvent Extr. Ion Exch., 2021, 39(4), 353-372.
[http://dx.doi.org/10.1080/07366299.2020.1846892]
[31]
Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and clinical application of actinium-225 and bismuth-213. Semin. Nucl. Med., 2020, 50(2), 119-123.
[http://dx.doi.org/10.1053/j.semnuclmed.2020.02.003] [PMID: 32172796]
[32]
Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S. Radiation effects on ion exchange materials; Brookhaven National Lab: NY (USA), 1977.
[http://dx.doi.org/10.2172/6548668]
[33]
McDevitt, M.R.; Finn, R.D.; Sgouros, G.; Ma, D.; Scheinberg, D.A. An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl. Radiat. Isot., 1999, 50(5), 895-904.
[http://dx.doi.org/10.1016/S0969-8043(98)00151-1] [PMID: 10214708]
[34]
Malmbeck, R.; Banik, N.L. Behaviour of DGA and Ln resin with alpha radiation dose. Radiochim. Acta, 2022, 110(3), 185-191.
[http://dx.doi.org/10.1515/ract-2020-0113]
[35]
Beckford, D. Synthesis and evaluation of radioconjugates formed with selected trivalent radiometals. 2011.
[36]
Forrer, F.; Chen, J.; Fani, M.; Powell, P.; Lohri, A.; Müller-Brand, J.; Moldenhauer, G.; Maecke, H.R. in vitro characterization of 177Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(9), 1443-1452.
[http://dx.doi.org/10.1007/s00259-009-1120-2] [PMID: 19350237]
[37]
Larsen, R.H.; Borrebaek, J.; Dahle, J.; Melhus, K.B.; Krogh, C.; Valan, M.H.; Bruland, Ø.S. Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother. Radiopharm., 2007, 22(3), 431-437.
[http://dx.doi.org/10.1089/cbr.2006.321] [PMID: 17651051]
[38]
Borrebaek, J.; Larsen, A.; Brevik, E. An improved labeling method for Thorium-227 labeled antibodies for targeted alpha therapy. J. Nucl. Med., 2009, 50(2), 1821.
[39]
Dahle, J.; Borrebæk, J.; Melhus, K.B.; Bruland, Ø.S.; Salberg, G.; Olsen, D.R.; Larsen, R.H. Initial evaluation of 227Th-p-benzyl-DOTA-rituximab for low-dose rate α-particle radioimmunotherapy. Nucl. Med. Biol., 2006, 33(2), 271-279.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.12.004] [PMID: 16546683]
[40]
Hagemann, U.B.; Ellingsen, C.; Schuhmacher, J.; Kristian, A.; Mobergslien, A.; Cruciani, V.; Wickstroem, K.; Schatz, C.A.; Kneip, C.; Golfier, S.; Smeets, R.; Uran, S.; Hennekes, H.; Karlsson, J.; Bjerke, R.M.; Ryan, O.B.; Mumberg, D.; Ziegelbauer, K.; Cuthbertson, A.S. Mesothelin-targeted thorium-227 conjugate (msln-ttc): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive cancers. Clin. Cancer Res., 2019, 25(15), 4723-4734.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3476] [PMID: 31064781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy