Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Systematic Review Article

The Role of Theragnostics in Breast Cancer: A Systematic Review of the Last 12 Years

Author(s): Michele Balma*, Virginia Liberini, Ambra Buschiazzo, Manuela Racca, Alessio Rizzo, Daniele Giovanni Nicolotti, Riccardo Laudicella, Natale Quartuccio, Michelangelo Longo, Giorgia Perlo, Enzo Terreno, Ronan Abgral, Martin William Huellner, Alberto Papaleo and Désirée Deandreis

Volume 19, Issue 8, 2023

Published on: 10 March, 2023

Article ID: e160223213723 Pages: 15

DOI: 10.2174/1573405619666230216114748

Price: $65

conference banner
Abstract

Background: Breast cancer is the most common malignancy in women, with high morbidity and mortality. Molecular alterations in breast cancer involve the expression or upregulation of various molecular targets that can be used for diagnostic nuclear medicine imaging and radiopharmaceutical treatment. Theragnostics is based on the binding of radionuclides to molecular targets. These radionuclides can induce a cytotoxic effect on the specific tumor cell (target) or its vicinity, thus allowing a personalized approach to patients with effective treatment and comparably small side effects.

Aim: This review aims to describe the most promising molecular targets currently under investigation for theragnostics and precision oncology in breast cancer.

Methods: A comprehensive literature search of studies on theragnostics in breast cancer was performed in the PubMed, PMC, Scopus, Google Scholar, Embase, Web of Science, and Cochrane library databases, between 2010 and 2022, using the following terms: breast neoplasm*, breast, breast cancer*, theragnostic*, theranostic*, radioligand therap*, RLT, MET, FLT, FMISO, FES, estradiol, trastuzumab, PD-L1, PSMA, FAPI, FACBC, fluciclovine, FAZA, GRPR, DOTATOC, DOTATATE, CXC4, endoglin, gastrin, mucin1, and syndecan1.

Results: Fifty-three studies were included in the systematic review and summarized in six clinical sections: 1) human epidermal growth factor receptor 2 (HER2); 2) somatostatin receptors (SSTRS); 3) prostate-specific membrane antigen radiotracers (PSMA); 4) fibroblast activation protein-α targeted radiotracers; 5) gastrin-releasing peptide receptor-targeted radiotracers; 6) other radiotracers for theragnostics.

Conclusion: The theragnostic approach will progressively allow better patient selection, and improve the prediction of response and toxicity, avoiding unnecessary and costly treatment.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers 2019; 5(1): 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[3]
Cardoso F, Kyriakides S, Ohno S, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30(8): 1194-220.
[http://dx.doi.org/10.1093/annonc/mdz173] [PMID: 31161190]
[4]
Erber R, Hartmann A. Histology of luminal breast cancer. Breast Care (Basel) 2020; 15(4): 327-36.
[http://dx.doi.org/10.1159/000509025] [PMID: 32982642]
[5]
Hamilton E, Shastry M, Shiller SM, Ren R. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev 2021; 100: 102286.
[http://dx.doi.org/10.1016/j.ctrv.2021.102286] [PMID: 34534820]
[6]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[7]
Burguin A, Diorio C, Durocher F. Breast cancer treatments: Updates and new challenges. J Pers Med 2021; 11(8): 808.
[http://dx.doi.org/10.3390/jpm11080808] [PMID: 34442452]
[8]
Loibl S, Gianni L. HER2-positive breast cancer. Lancet 2017; 389(10087): 2415-29.
[http://dx.doi.org/10.1016/S0140-6736(16)32417-5] [PMID: 27939064]
[9]
Balma M, Liberini V, Racca M, et al. Non-conventional and investigational PET radiotracers for breast cancer: A systematic review. Front Med (Lausanne) 2022; 9: 881551.
[http://dx.doi.org/10.3389/fmed.2022.881551] [PMID: 35492341]
[10]
Gennari A, André F, Barrios CH, et al. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol 2021; 32(12): 1475-95.
[http://dx.doi.org/10.1016/j.annonc.2021.09.019] [PMID: 34678411]
[11]
Salaün PY, Abgral R, Malard O, et al. Good clinical practice recommendations for the use of PET/CT in oncology. Eur J Nucl Med Mol Imaging 2020; 47(1): 28-50.
[http://dx.doi.org/10.1007/s00259-019-04553-8] [PMID: 31637482]
[12]
Langbein T, Weber WA, Eiber M. Future of theranostics: An outlook on precision oncology in nuclear medicine. J Nucl Med 2019; 60 (Suppl. 2): 13S-9S.
[http://dx.doi.org/10.2967/jnumed.118.220566] [PMID: 31481583]
[13]
Weber WA, Czernin J, Anderson CJ, et al. The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med 2020; 61 (Suppl. 2): 263S-72S.
[http://dx.doi.org/10.2967/jnumed.120.254532] [PMID: 33293447]
[14]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009; 339(1): b2700.
[http://dx.doi.org/10.1136/bmj.b2700] [PMID: 19622552]
[15]
Ahn BC. Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer. BioMed Res Int 2016; 2016: 1680464.
[http://dx.doi.org/10.1155/2016/1680464]
[16]
Kelkar SS, Reineke TM. Theranostics: Combining imaging and therapy. Bioconjug Chem 2011; 22(10): 1879-903.
[http://dx.doi.org/10.1021/bc200151q] [PMID: 21830812]
[17]
Ballinger JR. Theranostic radiopharmaceuticals: Established agents in current use. Br J Radiol 2018; 91(1091): 20170969.
[http://dx.doi.org/10.1259/bjr.20170969] [PMID: 29474096]
[18]
Filippi L, Chiaravalloti A, Schillaci O, et al. Theranostic approaches in nuclear medicine: Current status and future prospects. Expert Rev Med Devices 2020; 17(4): 331-43.
[http://dx.doi.org/10.1080/17434440.2020.1741348]
[19]
Shrivastava S, Jain S, Kumar D, Soni SL, Sharma M. A review on theranostics: An approach to targeted diagnosis and therapy. Asian J Pharmaceut Res Develop 2019; 7(2): 63-9.
[http://dx.doi.org/10.22270/ajprd.v7i2.463]
[20]
Koziorowski J, Ballinger J. Theragnostic radionuclides: A clinical perspective. Q J Nucl Med Mol Imaging 2022; 65(4): 9.
[http://dx.doi.org/10.23736/S1824-4785.21.03424-5]
[21]
Luster M, Clarke SE, Dietlein M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35(10): 1941-59.
[22]
Stokkel MPM, Handkiewicz Junak D, Lassmann M, et al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010; 37(11): 2218-28.
[23]
Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc 1946; 132: 838-47.
[http://dx.doi.org/10.1001/jama.1946.02870490016004] [PMID: 20274882]
[24]
Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc 1946; 131(2): 81-6.
[http://dx.doi.org/10.1001/jama.1946.02870190005002] [PMID: 21025609]
[25]
Younes A, Wong F. Experience with 90Y-ibritumomab tiuxetan for relapsed classical Hodgkin lymphoma. Ann Oncol 2009; 20(6): 1147-8.
[http://dx.doi.org/10.1093/annonc/mdp277] [PMID: 19465429]
[26]
Liberini V, Huellner MW, Grimaldi S, et al. The challenge of evaluating response to peptide receptor radionuclide therapy in gastroenteropancreatic neuroendocrine tumors: The present and the future. Diagnostics (Basel) 2020; 10(12): 1083.
[http://dx.doi.org/10.3390/diagnostics10121083] [PMID: 33322819]
[27]
Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376(2): 125-35.
[http://dx.doi.org/10.1056/NEJMoa1607427] [PMID: 28076709]
[28]
Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369(3): 213-23.
[http://dx.doi.org/10.1056/NEJMoa1213755] [PMID: 23863050]
[29]
Bauckneht M, Capitanio S, Donegani MI, et al. Role of baseline and post-therapy 18F-FDG PET in the prognostic stratification of metastatic castration-resistant prostate cancer (mCRPC) patients treated with radium-223. Cancers 2019; 12: 31.
[30]
Hapuarachchige S, Artemov D. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front Oncol 2020; 10: 1131.
[http://dx.doi.org/10.3389/fonc.2020.01131] [PMID: 32793481]
[31]
Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 2021; 385(12): 1091-103.
[http://dx.doi.org/10.1056/NEJMoa2107322] [PMID: 34161051]
[32]
Hofman MS, Violet J, Hicks RJ, et al. [ 177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol 2018; 19(6): 825-33.
[http://dx.doi.org/10.1016/S1470-2045(18)30198-0] [PMID: 29752180]
[33]
Mezni E, Vicier C, Guerin M, et al. New therapeutics in HER2-positive advanced breast cancer: Towards a change in clinical practices? Cancers 2020; 12: 1573.
[34]
Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet 2021; 397(10286): 1750-69.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3] [PMID: 33812473]
[35]
Velikyan I. Molecular imaging and radiotherapy: Theranostics for personalized patient management. Theranostics 2012; 2(5): 424-6.
[http://dx.doi.org/10.7150/thno.4428] [PMID: 22768022]
[36]
Velikyan I. (Radio)theranostic patient management in oncology exemplified by neuroendocrine neoplasms, prostate cancer, and breast cancer. Pharm 2020; 13: 39.
[37]
Bhusari P, Vatsa R, Singh G, et al. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer 2017; 140(4): 938-47.
[http://dx.doi.org/10.1002/ijc.30500] [PMID: 27813061]
[38]
Harari D, Yarden Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 2000; 19(53): 6102-14.
[http://dx.doi.org/10.1038/sj.onc.1203973] [PMID: 11156523]
[39]
Kreutzfeldt J, Rozeboom B, Dey N, De P. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies. Am J Cancer Res 2020; 10(4): 1045-67.
[PMID: 32368385]
[40]
Velikyan I, Schweighöfer P, Feldwisch J, et al. Diagnostic HER2-binding radiopharmaceutical, [68Ga]Ga-ABY-025, for routine clinical use in breast cancer patients. Am J Nucl Med Mol Imaging 2019; 9(1): 12-23.
[PMID: 30911434]
[41]
Wolff AC, Hammond MEH, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline update. Arch Pathol Lab Med 2014; 138(2): 241-56.
[http://dx.doi.org/10.5858/arpa.2013-0953-SA] [PMID: 24099077]
[42]
Hudis CA. Trastuzumab — Mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1): 39-51.
[http://dx.doi.org/10.1056/NEJMra043186] [PMID: 17611206]
[43]
Wolff AC, Hammond MEH, Schwartz JN, et al. American society of clinical oncology/college of american pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 2007; 131(1): 18-43.
[http://dx.doi.org/10.5858/2007-131-18-ASOCCO] [PMID: 19548375]
[44]
Sauter G, Lee J, Bartlett JMS, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor 2 testing: Biologic and methodologic considerations. J Clin Oncol 2009; 27(8): 1323-33.
[http://dx.doi.org/10.1200/JCO.2007.14.8197] [PMID: 19204209]
[45]
Potts SJ, Krueger JS, Landis ND, et al. Evaluating tumor heterogeneity in immunohistochemistry-stained breast cancer tissue. Lab Invest 2012; 92(9): 1342-57.
[http://dx.doi.org/10.1038/labinvest.2012.91] [PMID: 22801299]
[46]
Sekar TV, Dhanabalan A, Paulmurugan R. Imaging cellular receptors in breast cancers: An overview. Curr Pharm Biotechnol 2011; 12(4): 508-27.
[http://dx.doi.org/10.2174/138920111795164039] [PMID: 21342102]
[47]
Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89(10): 4285-9.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[48]
Maximiano S, Magalhães P, Guerreiro MP, Morgado M. Trastuzumab in the treatment of breast cancer. BioDrugs 2016; 30(2): 75-86.
[http://dx.doi.org/10.1007/s40259-016-0162-9] [PMID: 26892619]
[49]
Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 2010; 87(5): 586-92.
[http://dx.doi.org/10.1038/clpt.2010.12] [PMID: 20357763]
[50]
Laforest R, Lapi SE, Oyama R, et al. [89Zr]Trastuzumab: Evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer. Mol Imaging Biol 2016; 18(6): 952-9.
[http://dx.doi.org/10.1007/s11307-016-0951-z] [PMID: 27146421]
[51]
Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): The ZEPHIR trial. Ann Oncol 2016; 27(4): 619-24.
[http://dx.doi.org/10.1093/annonc/mdv577] [PMID: 26598545]
[52]
Bensch F, Brouwers AH, Lub-de Hooge MN, et al. 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients, when HER2 status cannot be determined by standard work up. Eur J Nucl Med Mol Imaging 2018; 45(13): 2300-6.
[http://dx.doi.org/10.1007/s00259-018-4099-8] [PMID: 30058029]
[53]
Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med 2013; 54(11): 1869-75.
[http://dx.doi.org/10.2967/jnumed.112.118612] [PMID: 24029656]
[54]
Mortimer JE, Bading JR, Colcher DM, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med 2014; 55(1): 23-9.
[http://dx.doi.org/10.2967/jnumed.113.122630] [PMID: 24337604]
[55]
Carrasquillo JA, Morris PG, Humm JL, et al. Copper-64 trastuzumab PET imaging: A reproducibility study. Q J Nucl Med Mol 2019; 63: 191-8.
[56]
Sörensen J, Velikyan I, Sandberg D, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 Affibody PET/CT. Theranostics 2016; 6(2): 262-71.
[http://dx.doi.org/10.7150/thno.13502] [PMID: 26877784]
[57]
Jokar N, Velikyan I, Ahmadzadehfar H, et al. Theranostic approach in breast cancer. Clin Nucl Med 2021; 46(8): e410-20.
[http://dx.doi.org/10.1097/RLU.0000000000003678] [PMID: 34152118]
[58]
Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004; 93(11): 2645-68.
[http://dx.doi.org/10.1002/jps.20178] [PMID: 15389672]
[59]
Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy. Cancer 2007; 109(2): 170-9.
[http://dx.doi.org/10.1002/cncr.22402] [PMID: 17154393]
[60]
Luque-Cabal M, García-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L, Palacio-Vázquez I. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clin Med Insights Oncol 2016; 10(Suppl. 1): CMO.S34537.
[http://dx.doi.org/10.4137/CMO.S34537] [PMID: 27042153]
[61]
Doddamane I, Butler R, Jhaveri A, Chung GG, Cheng D. Where does radioimmunotherapy fit in the management of breast cancer? Immunotherapy 2013; 5(8): 895-904.
[http://dx.doi.org/10.2217/imt.13.78] [PMID: 23902558]
[62]
Altunay B, Morgenroth A, Beheshti M, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2020; 48(5): 1371-89.
[63]
Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs 2019; 34(1): 11-26.
[64]
Liberini V, Laudicella R, Capozza M, et al. The future of cancer diagnosis, treatment and surveillance: A systemic review on immunotherapy and immuno-PET radiotracers. Molecules 2021; 26(8): 2201.
[http://dx.doi.org/10.3390/molecules26082201] [PMID: 33920423]
[65]
Boskovitz A, McLendon RE, Okamura T, Sampson JH, Bigner DD, Zalutsky MR. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of α-particle-emitting 211At-labeled trastuzumab. Nucl Med Biol 2009; 36(6): 659-69.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.04.003] [PMID: 19647172]
[66]
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109: 102-18.
[http://dx.doi.org/10.1016/j.addr.2015.12.003] [PMID: 26705852]
[67]
Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: An inside-out view. Nucl Med Biol 2007; 34(7): 757-78.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.04.001] [PMID: 17921028]
[68]
Othman MF, Verger E, Costa I, et al. In vitro cytotoxicity of Auger electron-emitting [67Ga]Ga-trastuzumab. Nucl Med Biol 2020; 80: 57-64.
[69]
Ray GL, Baidoo KE, Keller LMM, Albert PS, Brechbiel MW, Milenic DE. Pre-clinical assessment of 177Lu-labeled trastuzumab targeting HER2 for treatment and management of cancer patients with disseminated intraperitoneal disease. Pharmaceuticals (Basel) 2011; 5(1): 1-15.
[http://dx.doi.org/10.3390/ph5010001] [PMID: 22229017]
[70]
Gallardo A, Lerma E, Escuin D, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 2012; 106(8): 1367-73.
[http://dx.doi.org/10.1038/bjc.2012.85] [PMID: 22454081]
[71]
Razumienko EJ, Chen JC, Cai Z, Chan C, Reilly RM. Dual-receptor-targeted radioimmunotherapy of human breast cancer xenografts in athymic mice coexpressing HER2 and EGFR using 177Lu-or 111In-labeled bispecific radioimmunoconjugates. J Nucl Med 2016; 57(3): 444-52.
[http://dx.doi.org/10.2967/jnumed.115.162339] [PMID: 26429962]
[72]
D’Huyvetter M, Vos JD, Caveliers V, et al. Phase I trial of 131 I-GMIB-Anti-HER2-VHH1, a new promising candidate for her2-targeted radionuclide therapy in breast cancer patients. J Nucl Med 2021; 62(8): 1097-105.
[http://dx.doi.org/10.2967/jnumed.120.255679] [PMID: 33277400]
[73]
Guryev EL, Volodina NO, Shilyagina NY, et al. Radioactive (90 Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc Natl Acad Sci USA 2018; 115(39): 9690-5.
[http://dx.doi.org/10.1073/pnas.1809258115] [PMID: 30194234]
[74]
Irelli A, Sirufo MM, Morelli L, D’Ugo C, Ginaldi L, De Martinis M. Neuroendocrine cancer of the breast: A rare entity. J Clin Med 2020; 9(5): 1452.
[http://dx.doi.org/10.3390/jcm9051452] [PMID: 32414120]
[75]
Tsang JY, Tse GM. Breast cancer with neuroendocrine differentiation: An update based on the latest WHO classification. Mod Pathol 2021; 34(6): 1062-73.
[http://dx.doi.org/10.1038/s41379-021-00736-7] [PMID: 33531618]
[76]
Lee H, Suh M, Choi H, et al. A pan-cancer analysis of the clinical and genetic portraits of somatostatin receptor expressing tumor as a potential target of peptide receptor imaging and therapy. EJNMMI Res 2020; 10(1): 42.
[http://dx.doi.org/10.1186/s13550-020-00632-2] [PMID: 32335823]
[77]
Kumar U, Grigorakis SI, Watt HL, et al. Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1-5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res Treat 2005; 92(2): 175-86.
[http://dx.doi.org/10.1007/s10549-005-2414-0] [PMID: 15986128]
[78]
Savelli G, Zaniboni A, Bertagna F, et al. Peptide receptor radionuclide therapy (PRRT) in a patient affected by metastatic breast cancer with neuroendocrine differentiation. Breast Care (Basel) 2012; 7(5): 408-10.
[http://dx.doi.org/10.1159/000343612] [PMID: 24647781]
[79]
Terlević R, Perić Balja M, Tomas D, et al. Somatostatin receptor SSTR2A and SSTR5 expression in neuroendocrine breast cancer. Ann Diagn Pathol 2019; 38: 62-6.
[http://dx.doi.org/10.1016/j.anndiagpath.2018.11.002] [PMID: 30476894]
[80]
Dude I, Zhang Z, Rousseau J, et al. Evaluation of agonist and antagonist radioligands for somatostatin receptor imaging of breast cancer using positron emission tomography. EJNMMI Radiopharm Chem 2017; 2(1): 4.
[http://dx.doi.org/10.1186/s41181-017-0023-y] [PMID: 29503845]
[81]
Pollak M. The potential role of somatostatin analogues in breast cancer treatment. Yale J Biol Med 1997; 70(5-6): 535-9.
[PMID: 9825480]
[82]
Tirosh A, Kebebew E. The utility of 68Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors. Future Oncol 2018; 14(2): 111-22.
[http://dx.doi.org/10.2217/fon-2017-0393] [PMID: 29072093]
[83]
Giovannini E, Giovacchini G, Borsò E, et al. [68Ga]-Dota peptide PET/CT in neuroendocrine tumors: Main clinical applications. Curr Radiopharm 2019; 12(1): 11-22.
[http://dx.doi.org/10.2174/1874471012666181212101244] [PMID: 30539709]
[84]
Dalm SU, Nonnekens J, Doeswijk GN, et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models. J Nucl Med 2016; 57(2): 260-5.
[http://dx.doi.org/10.2967/jnumed.115.167007] [PMID: 26514177]
[85]
Liu Q, Zhang J, Kulkarni HR, Baum RP. 177Lu-DOTATOC peptide receptor radionuclide therapy in a patient with neuroendocrine breast carcinoma and breast invasive ductal carcinoma. Clin Nucl Med 2020; 45(5): e232-5.
[http://dx.doi.org/10.1097/RLU.0000000000003005] [PMID: 32209879]
[86]
Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate-specific membrane antigen PET: Clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 2018; 38(1): 200-17.
[http://dx.doi.org/10.1148/rg.2018170108] [PMID: 29320333]
[87]
Noss KR, Wolfe SA, Grimes SR. Upregulation of prostate specific membrane antigen/folate hydrolase transcription by an enhancer. Gene 2002; 285(1-2): 247-56.
[http://dx.doi.org/10.1016/S0378-1119(02)00397-9] [PMID: 12039052]
[88]
Salas Fragomeni RA, Amir T, Sheikhbahaei S, et al. Imaging of nonprostate cancers using PSMA-targeted radiotracers: Rationale, current state of the field, and a call to arms. J Nucl Med 2018; 59(6): 871-7.
[http://dx.doi.org/10.2967/jnumed.117.203570] [PMID: 29545375]
[89]
Wernicke AG, Varma S, Greenwood EA, et al. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers. Acta Pathol Microbiol Scand Suppl 2014; 122(6): 482-9.
[http://dx.doi.org/10.1111/apm.12195] [PMID: 24304465]
[90]
Polverari G, Ceci F, Calderoni L, et al. Male breast cancer detected by 68Ga-PSMA-11 PET/CT in a patient with prostate cancer with pelvic lymph node metastasis. Clin Genitourin Cancer 2019; 17(2): 154-6.
[http://dx.doi.org/10.1016/j.clgc.2018.11.020] [PMID: 30587404]
[91]
Daglioz Gorur G, Hekimsoy T, Isgoren S. Re: False positive uptake in bilateral gynecomastia on 68Ga-PSMA PET/CT scan. Clin Nucl Med 2018; 43(10): 785.
[http://dx.doi.org/10.1097/RLU.0000000000002086] [PMID: 29688944]
[92]
Kumar R, Mittal BR, Bhattacharya A, Singh H, Singh SK. Synchronous detection of male breast cancer and prostatic cancer in a patient with suspected prostatic carcinoma on 68Ga-PSMA PET/CT imaging. Clin Nucl Med 2018; 43(6): 431-2.
[http://dx.doi.org/10.1097/RLU.0000000000002063] [PMID: 29538032]
[93]
Malik D, Kumar R, Mittal BR, Singh H, Bhattacharya A, Singh SK. 68Ga-Labeled PSMA uptake in nonprostatic malignancies. Clin Nucl Med 2018; 43(7): 529-32.
[http://dx.doi.org/10.1097/RLU.0000000000002103] [PMID: 29688950]
[94]
Medina-Ornelas SS, García-Pérez FO, Medel-Gamez C, Paredes-Amoroto E. Metástasis cerebral única, evidenciada mediante PET/TC con 68Ga-PSMA en recurrencia de cáncer de mama. Rev Esp Med Nucl Imagen Mol 2018; 37(1): 61-2.
[http://dx.doi.org/10.1016/j.remnie.2017.10.007] [PMID: 28645683]
[95]
Parihar AS, Mittal BR, Sood A, Basher RK, Singh G. 68Ga-Prostate-specific membrane antigen PET/CT and 18F-FDG PET/CT of primary signet ring cell breast adenocarcinoma. Clin Nucl Med 2018; 43(11): e414-6.
[http://dx.doi.org/10.1097/RLU.0000000000002265] [PMID: 30247208]
[96]
Passah A, Arora S, Damle NA, et al. 68Ga-Prostate-specific membrane antigen PET/CT in triple-negative breast cancer. Clin Nucl Med 2018; 43(6): 460-1.
[http://dx.doi.org/10.1097/RLU.0000000000002071] [PMID: 29578872]
[97]
Tolkach Y, Gevensleben H, Bundschuh R, et al. Prostate-specific membrane antigen in breast cancer: A comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Res Treat 2018; 169(3): 447-55.
[http://dx.doi.org/10.1007/s10549-018-4717-y] [PMID: 29455299]
[98]
Sasikumar A, Joy A, Nair BP, Pillai MRA, Madhavan J. False positive uptake in bilateral gynecomastia on 68Ga-PSMA PET/CT scan. Clin Nucl Med 2017; 42(9): e412-4.
[http://dx.doi.org/10.1097/RLU.0000000000001742] [PMID: 28682848]
[99]
Sathekge M, Modiselle M, Vorster M, et al. 68Ga-PSMA imaging of metastatic breast cancer. Eur J Nucl Med Mol Imaging 2015; 42(9): 1482-3.
[http://dx.doi.org/10.1007/s00259-015-3066-x] [PMID: 25931036]
[100]
Sathekge M, Lengana T, Modiselle M, et al. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur J Nucl Med Mol Imaging 2017; 44(4): 689-94.
[http://dx.doi.org/10.1007/s00259-016-3563-6] [PMID: 27822700]
[101]
Morgenroth A, Tinkir E, Vogg ATJ, Sankaranarayanan RA, Baazaoui F, Mottaghy FM. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res 2019; 21(1): 116.
[http://dx.doi.org/10.1186/s13058-019-1205-1] [PMID: 31640747]
[102]
Brechbiel MW. Targeted α-therapy. Cancer Biother Radiopharm 2020; 35(6): 397.
[http://dx.doi.org/10.1089/cbr.2020.29008.mbr] [PMID: 32503377]
[103]
Filippi L, Chiaravalloti A, Schillaci O, Bagni O. The potential of PSMA-targeted alpha therapy in the management of prostate cancer. Expert Rev Anticancer Ther 2020; 20(10): 823-9.
[http://dx.doi.org/10.1080/14737140.2020.1814151] [PMID: 32820953]
[104]
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 2020; 17(8): 807-21.
[http://dx.doi.org/10.1038/s41423-020-0488-6] [PMID: 32612154]
[105]
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39(1): 89.
[http://dx.doi.org/10.1186/s13046-020-01586-y] [PMID: 32423420]
[106]
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 2015; 194(7): 2985-91.
[http://dx.doi.org/10.4049/jimmunol.1403134] [PMID: 25795789]
[107]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[108]
Sliker BH, Campbell PM. Fibroblasts influence the efficacy, resistance, and future use of vaccines and immunotherapy in cancer treatment. Vaccines (Basel) 2021; 9(6): 634.
[http://dx.doi.org/10.3390/vaccines9060634] [PMID: 34200702]
[109]
Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. State-of-the-art of FAPI-PET imaging: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48(13): 4396-414.
[http://dx.doi.org/10.1007/s00259-021-05475-0] [PMID: 34173007]
[110]
Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 2018; 59(9): 1423-9.
[http://dx.doi.org/10.2967/jnumed.118.210435] [PMID: 29626120]
[111]
Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J Nucl Med 2019; 60(6): 801-5.
[http://dx.doi.org/10.2967/jnumed.119.227967] [PMID: 30954939]
[112]
Flechsig P, Lindner T, Abderrahim L, et al. SNMMI image of the year: Novel radiotracer detects 28 cancer types, paving the way for development of new therapies - SNMMI. SNNMI 2019. Available from: https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=32020
[113]
Calais J, Mona CE. Will FAPI PET/CT replace FDG PET/CT in the next decade? Point—an important diagnostic, phenotypic, and biomarker role. AJR Am J Roentgenol 2021; 216(2): 305-6.
[http://dx.doi.org/10.2214/AJR.20.24302] [PMID: 32755205]
[114]
Kömek H, Can C, Güzel Y, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: A comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med 2021; 35(6): 744-52.
[http://dx.doi.org/10.1007/s12149-021-01616-5] [PMID: 33934311]
[115]
Elboga U, Sahin E, Kus T, et al. Superiority of 68Ga-FAPI PET/CT scan in detecting additional lesions compared to 18FDG PET/CT scan in breast cancer. Ann Nucl Med 2021; 35(12): 1321-31.
[http://dx.doi.org/10.1007/s12149-021-01672-x] [PMID: 34436740]
[116]
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 2019; 4(1): 16.
[http://dx.doi.org/10.1186/s41181-019-0069-0] [PMID: 31659499]
[117]
Backhaus P, Burg MC, Roll W, et al. Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer. Radiology 2022; 302(1): 39-47.
[http://dx.doi.org/10.1148/radiol.2021204677] [PMID: 34636633]
[118]
Mankoff DA, Sellmyer MA. PET of fibroblast-activation protein for breast cancer diagnosis and staging. Radiology 2022; 302(1): 48-9.
[http://dx.doi.org/10.1148/radiol.2021212098] [PMID: 34636639]
[119]
Watabe T, Liu Y, Kaneda-Nakashima K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- And 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med 2020; 61(4): 563-9.
[http://dx.doi.org/10.2967/jnumed.119.233122] [PMID: 31586001]
[120]
Eryilmaz K, Kilbas B. Fully-automated synthesis of 177Lu labelled FAPI derivatives on the module modular lab-Eazy. EJNMMI Radiopharm Chem 2021; 6: 1-9.
[121]
Moon ES, Elvas F, Vliegen G, et al. Targeting fibroblast activation protein (FAP): next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA5m chelators. EJNMMI Radiopharm Chem 2020; 5(1): 1-20.
[122]
Kuyumcu S, Kovan B, Sanli Y, et al. Safety of fibroblast activation protein-targeted radionuclide therapy by a low-dose dosimetric approach using 177Lu-FAPI04. Clin Nucl Med 2021; 46(8): 641-6.
[http://dx.doi.org/10.1097/RLU.0000000000003667] [PMID: 33883494]
[123]
Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018; 59(9): 1415-22.
[http://dx.doi.org/10.2967/jnumed.118.210443] [PMID: 29626119]
[124]
Ballal S, Yadav MP, Kramer V, et al. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: New frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48(3): 942-4.
[http://dx.doi.org/10.1007/s00259-020-04990-w] [PMID: 32783111]
[125]
Baum RP, Schuchardt C, Singh A, et al. Feasibility, biodistribution and preliminary dosimetry in peptide-targeted radionuclide therapy (PTRT) of diverse adenocarcinomas using 177 Lu-FAP-2286: First-in-human results. J Nucl Med 2021; 120: 259192.
[126]
Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. Radiolabeled bombesin analogs. Cancers (Basel) 2021; 13(22): 5766.
[http://dx.doi.org/10.3390/cancers13225766] [PMID: 34830920]
[127]
Yang M, Gao H, Zhou Y, et al. 18 F-Labeled GRPR agonists and antagonists: A comparative study in prostate cancer imaging. Theranostics 2011; 1: 220-9.
[http://dx.doi.org/10.7150/thno/v01p0220] [PMID: 21544226]
[128]
Baratto L, Duan H, Mäcke H, Iagaru A. Imaging the distribution of gastrin-releasing peptide receptors in cancer. J Nucl Med 2020; 61(6): 792-8.
[http://dx.doi.org/10.2967/jnumed.119.234971] [PMID: 32060215]
[129]
Baratto L, Duan H, Laudicella R, et al. Physiological 68Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. Eur J Nucl Med Mol Imaging 2020; 47(1): 115-22.
[http://dx.doi.org/10.1007/s00259-019-04503-4] [PMID: 31478089]
[130]
Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer JC, Gugger M. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), β-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res 2002; 8(4): 1139-46.
[PMID: 11948125]
[131]
Carlucci G, Kuipers A, Ananias HJK, et al. GRPR-selective PET imaging of prostate cancer using [18F]-lanthionine-bombesin analogs. Peptides 2015; 67: 45-54.
[http://dx.doi.org/10.1016/j.peptides.2015.03.004] [PMID: 25797109]
[132]
Pourghiasian M, Liu Z, Pan J, et al. 18F-AmBF3-MJ9: A novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorg Med Chem 2015; 23(7): 1500-6.
[http://dx.doi.org/10.1016/j.bmc.2015.02.009] [PMID: 25757604]
[133]
Morgat C, Schollhammer R, Macgrogan G, et al. Comparison of the binding of the gastrin-releasing peptide receptor (GRP-R) antagonist 68Ga-RM2 and 18F-FDG in breast cancer samples. PLoS One 2019; 14(1): e0210905.
[http://dx.doi.org/10.1371/journal.pone.0210905] [PMID: 30645633]
[134]
Baratto L, Laudicella R, Picchio M, Baldari S, Iagaru A. Imaging gastrin-releasing peptide receptors (GRPRs) in prostate cancer. Clin Transl Imaging 2019; 7(1): 39-44.
[http://dx.doi.org/10.1007/s40336-018-00308-x]
[135]
Stoykow C, Erbes T, Maecke HR, et al. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist 68Ga-RM2 And PET. Theranostics 2016; 6(10): 1641-50.
[http://dx.doi.org/10.7150/thno.14958] [PMID: 27446498]
[136]
Michalski K, Stoykow C, Bronsert P, et al. Association between gastrin-releasing peptide receptor expression as assessed with [68Ga]Ga-RM2 PET/CT and histopathological tumor regression after neoadjuvant chemotherapy in primary breast cancer. Nucl Med Biol 2020; 86-87: 37-43.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.05.003] [PMID: 32473549]
[137]
Michalski K, Kemna L, Asberger J, et al. Gastrin-releasing peptide receptor antagonist [68 ga]rm2 pet/ct for staging of pre-treated, metastasized breast cancer. Cancers (Basel) 2021; 13(23): 6106.
[http://dx.doi.org/10.3390/cancers13236106] [PMID: 34885214]
[138]
Aranda-Lara L, Ferro-Flores G, Azorín-Vega E, et al. Synthesis and evaluation of Lys 1 (αγ-Folate)Lys 3 (177 Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer. Appl Radiat Isot 2016; 107: 214-9.
[http://dx.doi.org/10.1016/j.apradiso.2015.10.030] [PMID: 26545016]
[139]
Kurth J, Krause BJ, Bergner C, et al. First in human dosimetry of [177Lu]RM2: A gastrin-releasing peptide receptor antagonist for targeted radiotherapy of metastasized castration resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 46: S285.
[140]
Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 2020; 19(9): 589-608.
[http://dx.doi.org/10.1038/s41573-020-0073-9] [PMID: 32728208]
[141]
Dalm SU, Bakker IL, de Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 2017; 58(2): 293-9.
[http://dx.doi.org/10.2967/jnumed.116.176636] [PMID: 27609789]
[142]
Guenther T, Deiser S, Felber V, et al. Substitution of L-Trp by α-methyl-L-Trp in 177 Lu-RM2 results in 177 Lu-AMTG, a high affinity GRPR ligand with improved in vivo stability. J Nucl Med 2022; 121: 263323.
[143]
Wang S, Wang L, Chen SW. Pan-cancer analysis of CXCR4 carcinogenesis in human tumors. Transl Cancer Res 2021; 10(9): 4180-95.
[http://dx.doi.org/10.21037/tcr-21-1561] [PMID: 35116714]
[144]
Bhattarai S, Mackeyev Y, Venkatesulu BP, Krishnan S, Singh PK. CXC chemokine receptor 4 (CXCR4) targeted gold nanoparticles potently enhance radiotherapy outcomes in breast cancer. Nanoscale 2021; 13(45): 19056-65.
[http://dx.doi.org/10.1039/D1NR05385J] [PMID: 34757363]
[145]
Dong J, Zhu C, Zhang F, Zhou Z, Sun M. “Attractive/adhesion force” dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release 2022; 341: 892-903.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.026] [PMID: 34953982]
[146]
Marques CS, Santos AR, Gameiro A, Correia J, Ferreira F. CXCR4 and its ligand CXCL12 display opposite expression profiles in feline mammary metastatic disease, with the exception of HER2-overexpressing tumors. BMC Cancer 2018; 18(1): 741.
[http://dx.doi.org/10.1186/s12885-018-4650-9] [PMID: 30012106]
[147]
Chen IX, Chauhan VP, Posada J, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci USA 2019; 116(10): 4558-66.
[http://dx.doi.org/10.1073/pnas.1815515116] [PMID: 30700545]
[148]
Vag T, Steiger K, Rossmann A, et al. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res 2018; 8(1): 90.
[http://dx.doi.org/10.1186/s13550-018-0442-0] [PMID: 30191351]
[149]
Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 Ligands: The Next Big Hit? J Nucl Med 2017; 58 (Suppl. 2): 77S-82S.
[http://dx.doi.org/10.2967/jnumed.116.186874] [PMID: 28864616]
[150]
Li H, Zhang X, Wu HY, et al. 64 Cu-Labeled Ubiquitin for PET Imaging of CXCR4 Expression in Mouse Breast Tumor. ACS Omega 2019; 4(7): 12432-7.
[http://dx.doi.org/10.1021/acsomega.9b00678] [PMID: 31460362]
[151]
Roland CL, Harken AH, Sarr MG, Barnett CC Jr. ICAM-1 expression determines malignant potential of cancer. Surgery 2007; 141(6): 705-7.
[http://dx.doi.org/10.1016/j.surg.2007.01.016] [PMID: 17560245]
[152]
Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 2000; 28(9): 1379-86.
[http://dx.doi.org/10.1016/S0891-5849(00)00223-9] [PMID: 10924857]
[153]
Zhu L, Mu Q, Yu J, et al. ICAM-1 targeted drug combination nanoparticles enhanced gemcitabine-paclitaxel exposure and breast cancer suppression in mouse models. Pharm 2021; 14: 89.
[154]
You L, Wang X, Guo Z, et al. MicroSPECT imaging of triple negative breast cancer cell tumor xenografted in athymic mice with radioiodinated anti-ICAM-1 monoclonal antibody. Appl Radiat Isot 2018; 139: 20-5.
[http://dx.doi.org/10.1016/j.apradiso.2018.04.005] [PMID: 29684714]
[155]
A Hunt JP, Mayer PA, D BR, et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nat 1989 1989; 3396219.
[156]
Gasparini G. Clinical significance of the determination of angiogenesis in human breast cancer: Update of the biological background and overview of the vicenza studies. Eur J Cancer 1996; 32(14): 2485-93.
[http://dx.doi.org/10.1016/S0959-8049(96)00376-0] [PMID: 9059337]
[157]
Rau KM, Su YL, Li SH, et al. High expression of endoglin in primary breast cancer may predict response to neoadjuvant chemotherapy. Mol Med Rep 2017; 16(5): 7185-90.
[http://dx.doi.org/10.3892/mmr.2017.7555] [PMID: 28944897]
[158]
Rau KM, Huang CC, Chiu TJ, et al. Neovascularization evaluated by CD105 correlates well with prognostic factors in breast cancers. Exp Ther Med 2012; 4(2): 231-6.
[http://dx.doi.org/10.3892/etm.2012.594] [PMID: 23139713]
[159]
Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R. Imaging of tumour neovasculature by targeting the TGF-β binding receptor endoglin. Eur J Cancer 2000; 36(5): 675-81.
[http://dx.doi.org/10.1016/S0959-8049(99)00335-4] [PMID: 10738134]
[160]
Ehlerding EB, Ferreira CA, Aluicio-Sarduy E, et al. 86/90 Y-Based theranostics targeting angiogenesis in a murine breast cancer model. Mol Pharm 2018; 15(7): 2606-13.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00133] [PMID: 29787283]
[161]
Rousseau C, Ruellan AL, Bernardeau K, et al. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. EJNMMI Res 2011; 1(1): 20.
[http://dx.doi.org/10.1186/2191-219X-1-20] [PMID: 22214534]
[162]
Baba F, Swartz K, Van Buren R, et al. Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat 2006; 98(1): 91-8.
[163]
Solursh M, Reiter RS, Jensen KL, Kato M, Bernfield M. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. Dev Biol 1990; 140(1): 83-92.
[http://dx.doi.org/10.1016/0012-1606(90)90055-N] [PMID: 2358126]
[164]
Sayyad MR, Puchalapalli M, Vergara NG, et al. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res Treat 2019; 178(1): 35-49.
[165]
Rakha EA, Boyce RWG, El-Rehim DA, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2005; 18(10): 1295-304.
[166]
Kelly VJ, Wu S, Gottumukkala V, et al. Preclinical evaluation of an 111 In/225 Ac theranostic targeting transformed MUC1 for triple negative breast cancer. Theranostics 2020; 10(15): 6946-58.
[http://dx.doi.org/10.7150/thno.38236] [PMID: 32550914]
[167]
Couto JR, Blank EW, Peterson JA, Kiwan R, Ceriani RL, Padlan EA. Engineering of antibodies for breast cancer therapy: construction of chimeric and humanized versions of the murine monoclonal antibody BrE-3. Adv Exp Med Biol 1994; 353: 55-9.
[http://dx.doi.org/10.1007/978-1-4615-2443-4_7] [PMID: 7985542]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy