Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Common Pathogenetic Pathways of Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus

Author(s): Charalampos K. Giannopoulos, Ioanna G. Tzima, Nikolaos K. Tentolouris and Ioannis A. Vasileiadis*

Volume 19, Issue 9, 2023

Published on: 20 March, 2023

Article ID: e160223213720 Pages: 19

DOI: 10.2174/1573399819666230216112032

Price: $65

Abstract

Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are two cardinal manifestations of the metabolic syndrome, which is becoming a growing global pandemic and a health care burden. They constitute a pathogenetic duo, with complex interplay through interrelated, but still partly understood, pathophysiological pathways, which mainly involve lipid toxicity (expressed through increased hepatic de novo lipogenesis, hepatic and peripheral insulin resistance, upregulated lipolysis, lipoprotein abnormalities, hyperinsulinemia), impaired autophagy, mitochondrial dysfunction, endoplasmic reticulum stress, adipose tissue dysfunction with a consequent latent inflammatory state, inflammasome activation, genetic and epigenetic factors, altered gut microbiota and finally dietary factors. In this review, based on data from recent studies and focusing mainly on common molecular mechanisms, we will highlight the common pathophysiological grounds and the interplay between NAFLD and T2DM.

[1]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[2]
Paik JM, Henry L, De Avila L, Younossi E, Racila A, Younossi ZM. Mortality related to nonalcoholic fatty liver disease is increasing in the united states. Hepatol Commun 2019; 3(11): 1459-71.
[3]
Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149(2): 389-397.e10.
[http://dx.doi.org/10.1053/j.gastro.2015.04.043] [PMID: 25935633]
[4]
Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017; 65(5): 1557-65.
[http://dx.doi.org/10.1002/hep.29085] [PMID: 28130788]
[5]
Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017; 14(1): 32-42.
[http://dx.doi.org/10.1038/nrgastro.2016.147] [PMID: 27729660]
[6]
Jacome-Sosa MM, Parks EJ. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol 2014; 25(3): 213-20.
[http://dx.doi.org/10.1097/MOL.0000000000000080] [PMID: 24785962]
[7]
Duez H, Lamarche B, Valéro R, et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 2008; 117(18): 2369-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.739888] [PMID: 18443237]
[8]
Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146(3): 726-35.
[http://dx.doi.org/10.1053/j.gastro.2013.11.049] [PMID: 24316260]
[9]
Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev 2013; 34(1): 84-129.
[http://dx.doi.org/10.1210/er.2012-1009] [PMID: 23238855]
[10]
Sajan MP, Standaert ML, Rivas J, et al. Role of atypical protein kinase C in activation of sterol regulatory element binding protein-1c and nuclear factor kappa B (NFκB) in liver of rodents used as a model of diabetes, and relationships to hyperlipidaemia and insulin resistance. Diabetologia 2009; 52(6): 1197-207.
[http://dx.doi.org/10.1007/s00125-009-1336-5] [PMID: 19357831]
[11]
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[12]
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res 2013; 52(1): 175-91.
[http://dx.doi.org/10.1016/j.plipres.2012.11.002] [PMID: 23206728]
[13]
Smith GI, Shankaran M, Yoshino M, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest 2020; 130(3): 1453-60.
[http://dx.doi.org/10.1172/JCI134165] [PMID: 31805015]
[14]
Bugianesi E, Moscatiello S, Ciaravella MF, Marchesini G. Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 2010; 16(17): 1941-51.
[http://dx.doi.org/10.2174/138161210791208875] [PMID: 20370677]
[15]
Rosso C, Kazankov K, Younes R, et al. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J Hepatol 2019; 71(5): 1012-21.
[http://dx.doi.org/10.1016/j.jhep.2019.06.031] [PMID: 31301321]
[16]
Lomonaco R, Ortiz-Lopez C, Orsak B, et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55(5): 1389-97.
[http://dx.doi.org/10.1002/hep.25539] [PMID: 22183689]
[17]
Ortiz-Lopez C, Lomonaco R, Orsak B, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with Nonalcoholic Fatty Liver Disease (NAFLD). Diabetes Care 2012; 35(4): 873-8.
[http://dx.doi.org/10.2337/dc11-1849] [PMID: 22374640]
[18]
Sabio G, Das M, Mora A, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 2008; 322(5907): 1539-43.
[http://dx.doi.org/10.1126/science.1160794] [PMID: 19056984]
[19]
Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of Fatty liver. Endocr Rev 2008; 29(7): 939-60.
[http://dx.doi.org/10.1210/er.2008-0009] [PMID: 18723451]
[20]
Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010; 375(9733): 2267-77.
[http://dx.doi.org/10.1016/S0140-6736(10)60408-4] [PMID: 20609972]
[21]
Paradis V, Perlemuter G, Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 2001; 34(4): 738-44.
[http://dx.doi.org/10.1053/jhep.2001.28055] [PMID: 11584370]
[22]
Petrides AS, DeFronzo RA. Glucose and insulin metabolism in cirrhosis. J Hepatol 1989; 8(1): 107-14.
[http://dx.doi.org/10.1016/0168-8278(89)90169-4] [PMID: 2646365]
[23]
Li X, Jiao Y, Xing Y, Gao P. Diabetes mellitus and risk of hepatic fibrosis/cirrhosis. 2019; 5308308.
[24]
Gaggini M, Morelli M, Buzzigoli E, DeFronzo R, Bugianesi E, Gastaldelli A. Non-Alcoholic Fatty Liver Disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013; 5(5): 1544-60.
[http://dx.doi.org/10.3390/nu5051544] [PMID: 23666091]
[25]
Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134(5): 1369-75.
[http://dx.doi.org/10.1053/j.gastro.2008.01.075] [PMID: 18355813]
[26]
Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118(3): 829-38.
[http://dx.doi.org/10.1172/JCI34275] [PMID: 18317565]
[27]
Roumans KHM, Lindeboom L, Veeraiah P. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance 2020; 11(1): 8191.
[http://dx.doi.org/10.1038/s41467-020-15684-0]
[28]
Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci 2003; 100(6): 3077-82.
[http://dx.doi.org/10.1073/pnas.0630588100] [PMID: 12629214]
[29]
Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007; 6(1): 69-78.
[http://dx.doi.org/10.1016/j.cmet.2007.05.005] [PMID: 17618857]
[30]
Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007; 45(6): 1366-74.
[http://dx.doi.org/10.1002/hep.21655] [PMID: 17476695]
[31]
Li ZZ, Berk M, McIntyre TM, Feldstein AE. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 2009; 284(9): 5637-44.
[http://dx.doi.org/10.1074/jbc.M807616200] [PMID: 19119140]
[32]
Yuan J, Horvitz HR. A first insight into the molecular mechanisms of apoptosis. Cell 2004; 116(2) (Suppl.): S53-6.
[http://dx.doi.org/10.1016/S0092-8674(04)00028-5]
[33]
Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 2003; 39(6): 978-83.
[http://dx.doi.org/10.1016/S0168-8278(03)00460-4] [PMID: 14642615]
[34]
Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 2007; 56(8): 1124-31.
[http://dx.doi.org/10.1136/gut.2006.118059] [PMID: 17470478]
[35]
Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 2015; 21(5): 739-46.
[http://dx.doi.org/10.1016/j.cmet.2015.04.004] [PMID: 25955209]
[36]
Groop LC, Bonadonna RC, DelPrato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84(1): 205-13.
[http://dx.doi.org/10.1172/JCI114142] [PMID: 2661589]
[37]
Fabbrini E, Tiemann Luecking C, Love-Gregory L, et al. Physiological mechanisms of weight gain−induced steatosis in people with obesity. Gastroenterology 2016; 150(1): 79-81.e2.
[http://dx.doi.org/10.1053/j.gastro.2015.09.003] [PMID: 26376348]
[38]
Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 2015; 58(5): 886-99.
[http://dx.doi.org/10.1007/s00125-015-3525-8] [PMID: 25725623]
[39]
Czaja MJ. Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 2016; 61(5): 1304-13.
[http://dx.doi.org/10.1007/s10620-015-4025-x] [PMID: 26725058]
[40]
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131-5.
[http://dx.doi.org/10.1038/nature07976] [PMID: 19339967]
[41]
Kashima J, Shintani-Ishida K, Nakajima M, et al. Immunohistochemical study of the autophagy marker microtubule-associated protein 1 light chain 3 in normal and steatotic human livers. Hepatology research 2014; 44(7): 779-87.
[http://dx.doi.org/10.1111/hepr.12183]
[42]
Marrif HI, Al-Sunousi SI. Pancreatic β cell mass death. Front Pharmacol 2016; 7: 83.
[http://dx.doi.org/10.3389/fphar.2016.00083] [PMID: 27092078]
[43]
Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J 2018; 17: 709-20.
[PMID: 30190661]
[44]
Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One 2012; 7(8): e41836.
[http://dx.doi.org/10.1371/journal.pone.0041836] [PMID: 22870253]
[45]
Xu X, Hua Y, Sreejayan N, Zhang Y, Ren J. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 2013; 5(1): 61-3.
[http://dx.doi.org/10.1093/jmcb/mjs055] [PMID: 23258696]
[46]
Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LMD. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 2011; 50(6): 1035-43.
[http://dx.doi.org/10.1016/j.yjmcc.2011.03.002] [PMID: 21385586]
[47]
Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol 2015; 224(1): R15-30.
[http://dx.doi.org/10.1530/JOE-14-0437] [PMID: 25349246]
[48]
Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012; 8(7): 1009-31.
[http://dx.doi.org/10.4161/auto.19821] [PMID: 22692002]
[49]
Piano I, Novelli E, Della Santina L, Strettoi E, Cervetto L, Gargini C. Involvement of autophagic pathway in the progression of retinal degeneration in a mouse model of diabetes. Front Cell Neurosci 2016; 10: 42.
[http://dx.doi.org/10.3389/fncel.2016.00042] [PMID: 26924963]
[50]
Li Y, Zhang Y, Wang L, et al. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy 2017; 13(7): 1145-60.
[http://dx.doi.org/10.1080/15548627.2017.1320467] [PMID: 28633005]
[51]
Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2018; 95: 93-9.
[http://dx.doi.org/10.1016/j.biocel.2017.12.019] [PMID: 29288054]
[52]
Park KS, Nam KJ, Kim JW, et al. Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells. Am J Physiol Endocrinol Metab 2001; 280(6): E1007-14.
[http://dx.doi.org/10.1152/ajpendo.2001.280.6.E1007] [PMID: 11350783]
[53]
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(39): 14205-18.
[http://dx.doi.org/10.3748/wjg.v20.i39.14205] [PMID: 25339807]
[54]
Peng KY, Watt MJ, Rensen S, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018; 59(10): 1977-86.
[http://dx.doi.org/10.1194/jlr.M085613] [PMID: 30042157]
[55]
Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen Signals through peroxisome proliferator-activated receptor−γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology 2017; 152(1): 243-56.
[http://dx.doi.org/10.1053/j.gastro.2016.09.017] [PMID: 27658772]
[56]
Cusi K. Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2009; 16(2): 141-9.
[http://dx.doi.org/10.1097/MED.0b013e3283293015] [PMID: 19262374]
[57]
Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 2010; 31(3): 364-95.
[http://dx.doi.org/10.1210/er.2009-0027] [PMID: 20156986]
[58]
Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 2008; 134(2): 568-76.
[http://dx.doi.org/10.1053/j.gastro.2007.10.039] [PMID: 18082745]
[59]
Perla F, Prelati M, Lavorato M, Visicchio D, Anania C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children 2017; 4(6): 46.
[http://dx.doi.org/10.3390/children4060046] [PMID: 28587303]
[60]
Schattenberg JM, Singh R, Wang Y, et al. Jnk1 but not jnk2 promotes the development of steatohepatitis in mice. Hepatology 2006; 43(1): 163-72.
[http://dx.doi.org/10.1002/hep.20999] [PMID: 16374858]
[61]
Lebeaupin C, Proics E, de Bieville CHD, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 2015; 6(9): e1879.
[http://dx.doi.org/10.1038/cddis.2015.248] [PMID: 26355342]
[62]
Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006; 147(2): 943-51.
[http://dx.doi.org/10.1210/en.2005-0570] [PMID: 16269465]
[63]
Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012; 81(1): 767-93.
[http://dx.doi.org/10.1146/annurev-biochem-072909-095555] [PMID: 22443930]
[64]
Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008; 29(1): 42-61.
[http://dx.doi.org/10.1210/er.2007-0015] [PMID: 18048764]
[65]
Özcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306(5695): 457-61.
[http://dx.doi.org/10.1126/science.1103160] [PMID: 15486293]
[66]
Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009; 58(3): 693-700.
[http://dx.doi.org/10.2337/db08-1220] [PMID: 19066313]
[67]
Gao X, Guo S, Zhang S, Liu A, Shi L, Zhang Y. Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway. J Transl Med 2018; 16(1): 319.
[http://dx.doi.org/10.1186/s12967-018-1685-2] [PMID: 30458883]
[68]
Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 2005; 11(2): 183-90.
[http://dx.doi.org/10.1038/nm1166] [PMID: 15685173]
[69]
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95(5): 2409-15.
[http://dx.doi.org/10.1172/JCI117936] [PMID: 7738205]
[70]
Wullaert A, van Loo G, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev 2007; 28(4): 365-86.
[http://dx.doi.org/10.1210/er.2006-0031] [PMID: 17431229]
[71]
Meyerovich K, Ortis F, Cardozo AK. The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. J Mol Endocrinol 2018; 61(2): F1-6.
[http://dx.doi.org/10.1530/JME-16-0183] [PMID: 29728424]
[72]
Ribeiro PS, Cortez-Pinto H, Solá S, et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 2004; 99(9): 1708-17.
[http://dx.doi.org/10.1111/j.1572-0241.2004.40009.x] [PMID: 15330907]
[73]
Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55(3): 415-24.
[http://dx.doi.org/10.1136/gut.2005.071118] [PMID: 16174657]
[74]
Guerrero AR, Uchida K, Nakajima H, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 2012; 9(1): 40.
[http://dx.doi.org/10.1186/1742-2094-9-40] [PMID: 22369693]
[75]
Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One 2009; 4(11): e7929.
[http://dx.doi.org/10.1371/journal.pone.0007929] [PMID: 19936233]
[76]
Haukeland JW, Damås JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006; 44(6): 1167-74.
[http://dx.doi.org/10.1016/j.jhep.2006.02.011] [PMID: 16618517]
[77]
Mehal WZ. The inflammasome in liver injury and non-alcoholic fatty liver disease. Dig Dis 2014; 32(5): 507-15.
[http://dx.doi.org/10.1159/000360495] [PMID: 25034283]
[78]
Watanabe A, Sohail MA, Gomes DA, et al. Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2009; 296(6): G1248-57.
[http://dx.doi.org/10.1152/ajpgi.90223.2008] [PMID: 19359429]
[79]
Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010; 139(1): 323-334.e7.
[http://dx.doi.org/10.1053/j.gastro.2010.03.052] [PMID: 20347818]
[80]
Yu JH. Limited expression of toll-like receptor 9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease. Clin Mol Hepatol 2020; 26(2): 240-1.
[http://dx.doi.org/10.3350/cmh.2020.0048] [PMID: 32192316]
[81]
Sharifnia T, Antoun J, Verriere TGC, et al. Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 2015; 309(4): G270-8.
[http://dx.doi.org/10.1152/ajpgi.00304.2014] [PMID: 26113297]
[82]
Kim S, Park S, Kim B, Kwon J. Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease. Sci Rep 2016; 6(1): 27849.
[http://dx.doi.org/10.1038/srep27849] [PMID: 27279075]
[83]
Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011; 54(1): 133-44.
[http://dx.doi.org/10.1002/hep.24341] [PMID: 21488066]
[84]
Wan X, Xu C, Yu C, Li Y. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/6489012] [PMID: 27446858]
[85]
Wree A, McGeough MD, Peña CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med 2014; 92(10): 1069-82.
[http://dx.doi.org/10.1007/s00109-014-1170-1] [PMID: 24861026]
[86]
Wen H, Gris D, Lei Y, et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011; 12(5): 408-15.
[http://dx.doi.org/10.1038/ni.2022] [PMID: 21478880]
[87]
Dixit VD. Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant? Diabetes 2013; 62(1): 22-4.
[http://dx.doi.org/10.2337/db12-1115] [PMID: 23258906]
[88]
Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62(1): 194-204.
[http://dx.doi.org/10.2337/db12-0420] [PMID: 23086037]
[89]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[90]
Masters SL, Latz E, O’Neill LAJ. The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med 2011; 3(81): 81ps17.
[http://dx.doi.org/10.1126/scitranslmed.3001902] [PMID: 21543720]
[91]
Tsochatzis EA, Papatheodoridis GV, Archimandritis AJ. Adipokines in nonalcoholic steatohepatitis: from pathogenesis to implications in diagnosis and therapy. Mediators Inflamm 2009; 2009: 1-8.
[http://dx.doi.org/10.1155/2009/831670] [PMID: 19753129]
[92]
Mohammadi M, Gozashti MH, Aghadavood M, Mehdizadeh MR, Hayatbakhsh MM. Clinical significance of serum IL-6 and TNF-α levels in patients with metabolic syndrome. Rep Biochem Mol Biol 2017; 6(1): 74-9.
[PMID: 29090232]
[93]
du Plessis J, van Pelt J, Korf H, et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 2015; 149(3): 635-648.e14.
[http://dx.doi.org/10.1053/j.gastro.2015.05.044] [PMID: 26028579]
[94]
Kakuma T, Lee Y, Higa M, et al. Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc Natl Acad Sci USA 2000; 97(15): 8536-41.
[http://dx.doi.org/10.1073/pnas.97.15.8536] [PMID: 10900012]
[95]
Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism 2015; 64(1): 60-78.
[http://dx.doi.org/10.1016/j.metabol.2014.10.012] [PMID: 25456097]
[96]
Metlakunta A, Huang W, Stefanovic-Racic M, Dedousis N, Sipula I, O’Doherty RM. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism. Am J Physiol Endocrinol Metab 2017; 312(1): E11-8.
[http://dx.doi.org/10.1152/ajpendo.00250.2016] [PMID: 27827807]
[97]
Canbakan B, Tahan V, Balci H, et al. Leptin in nonalcoholic fatty liver disease. Ann Hepatol 2008; 7(3): 249-54.
[http://dx.doi.org/10.1016/S1665-2681(19)31856-3] [PMID: 18753993]
[98]
Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology 2009; 137(2): 713-723.e1.
[http://dx.doi.org/10.1053/j.gastro.2009.04.011] [PMID: 19375424]
[99]
Ikejima K, Okumura K, Lang T, et al. The role of leptin in progression of non-alcoholic fatty liver disease. Hepatology research 2005; 33(2): 151-4.
[http://dx.doi.org/10.1016/j.hepres.2005.09.024]
[100]
Fazolini NPB, Cruz ALS, Werneck MBF, Viola JPB, Maya-Monteiro CM, Bozza PT. Leptin activation of mTOR pathway in intestinal epithelial cell triggers lipid droplet formation, cytokine production and increased cell proliferation. Cell Cycle 2015; 14(16): 2667-76.
[http://dx.doi.org/10.1080/15384101.2015.1041684] [PMID: 26017929]
[101]
Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF, Mantzoros CS. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia 2016; 59(1): 30-43.
[http://dx.doi.org/10.1007/s00125-015-3769-3] [PMID: 26407715]
[102]
Dubuc PU. The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism 1976; 25(12): 1567-74.
[http://dx.doi.org/10.1016/0026-0495(76)90109-8] [PMID: 994838]
[103]
Wyse BM, Dulin WE. The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 1970; 6(3): 268-73.
[http://dx.doi.org/10.1007/BF01212237] [PMID: 4914664]
[104]
Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269(5223): 540-3.
[http://dx.doi.org/10.1126/science.7624776] [PMID: 7624776]
[105]
Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia 2016; 59(5): 928-32.
[http://dx.doi.org/10.1007/s00125-016-3898-3] [PMID: 26969486]
[106]
Gavrilova O, Marcus-Samuels B, Leon LR, Vinson C, Reitman ML. Leptin and diabetes in lipoatrophic mice. Nature 2000; 403(6772): 850.
[http://dx.doi.org/10.1038/35002663]
[107]
Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401(6748): 73-6.
[http://dx.doi.org/10.1038/43448] [PMID: 10485707]
[108]
Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109(10): 1345-50.
[http://dx.doi.org/10.1172/JCI0215001] [PMID: 12021250]
[109]
Ouchi N, Ohashi K, Shibata R, Murohara T. Adipocytokines and obesity-linked disorders. Nagoya J Med Sci 2012; 74(1-2): 19-30.
[PMID: 22515108]
[110]
Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 2004; 316(3): 924-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.130] [PMID: 15033490]
[111]
Yamaguchi N, Argueta JGM, Masuhiro Y, et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett 2005; 579(30): 6821-6.
[http://dx.doi.org/10.1016/j.febslet.2005.11.019] [PMID: 16325814]
[112]
Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta 2013; 417: 80-4.
[http://dx.doi.org/10.1016/j.cca.2012.12.007]
[113]
Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20(6): 1595-9.
[http://dx.doi.org/10.1161/01.ATV.20.6.1595] [PMID: 10845877]
[114]
Spranger J, Kroke A, Möhlig M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361(9353): 226-8.
[http://dx.doi.org/10.1016/S0140-6736(03)12255-6] [PMID: 12547549]
[115]
Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003; 23(1): 85-9.
[http://dx.doi.org/10.1161/01.ATV.0000048856.22331.50] [PMID: 12524229]
[116]
Kato K, Osawa H, Ochi M, et al. Serum total and high molecular weight adiponectin levels are correlated with the severity of diabetic retinopathy and nephropathy. Clin Endocrinol (Oxf) 2008; 68(3): 442-9.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03063.x] [PMID: 17970779]
[117]
Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005; 6(1): 13-21.
[http://dx.doi.org/10.1111/j.1467-789X.2005.00159.x] [PMID: 15655035]
[118]
Adachi M, Brenner DA. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 2008; 47(2): 677-85.
[http://dx.doi.org/10.1002/hep.21991] [PMID: 18220291]
[119]
Handy JA, Saxena NK, Fu P, et al. Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J Cell Biochem 2010; 110(5): 1195-207.
[http://dx.doi.org/10.1002/jcb.22634] [PMID: 20564215]
[120]
Larter CZ, Chitturi S, Heydet D, Farrell GC. A fresh look at NASH pathogenesis. Part 1: The metabolic movers. J Gastroenterol Hepatol 2010; 25(4): 672-90.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06253.x] [PMID: 20492324]
[121]
Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445(7130): 881-5.
[http://dx.doi.org/10.1038/nature05616] [PMID: 17293876]
[122]
Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53(6): 1883-94.
[http://dx.doi.org/10.1002/hep.24283] [PMID: 21381068]
[123]
BasuRay S. Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA 2019; 116(19): 9521-6.
[http://dx.doi.org/10.1073/pnas.1901974116] [PMID: 31019090]
[124]
BasuRay S. Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017; 66(4): 1111-24.
[http://dx.doi.org/10.1002/hep.29273] [PMID: 28520213]
[125]
Mitsche MA, Hobbs HH, Cohen JC. Patatin-like phospholipase domain–containing protein 3 promotes transfers of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 2018; 293(18): 6958-68.
[http://dx.doi.org/10.1074/jbc.RA118.002333] [PMID: 29555681]
[126]
Mancina RM, Matikainen N, Maglio C, et al. Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant. J Clin Endocrinol Metab 2015; 100(5): E821-5.
[http://dx.doi.org/10.1210/jc.2014-4464] [PMID: 25763607]
[127]
Pirazzi C, Adiels M, Burza MA, et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J Hepatol 2012; 57(6): 1276-82.
[http://dx.doi.org/10.1016/j.jhep.2012.07.030] [PMID: 22878467]
[128]
Luukkonen PK, Nick A, Hölttä-Vuori M, et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 2019; 4(16): e127902.
[http://dx.doi.org/10.1172/jci.insight.127902] [PMID: 31434800]
[129]
Franko A, Merkel D, Kovarova M, Hoene M. Dissociation of fatty liver and insulin resistance in I148M PNPLA3 carriers: Differences in Diacylglycerol (DAG) FA18:1 lipid species as a possible explanation. 2018; 10(9)
[130]
Mondul A, Mancina RM, Merlo A, et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr 2015; 145(8): 1687-91.
[http://dx.doi.org/10.3945/jn.115.210633] [PMID: 26136587]
[131]
Petit JM, Guiu B, Masson D, et al. PNPLA3 polymorphism influences liver fibrosis in unselected patients with type 2 diabetes. Liver Internat 2011; 31(9): 1332-6.
[http://dx.doi.org/10.1210/endo-meetings.2011.PART3.P7.P2-551]
[132]
Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46(4): 352-6.
[http://dx.doi.org/10.1038/ng.2901] [PMID: 24531328]
[133]
Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5(1): 4309.
[http://dx.doi.org/10.1038/ncomms5309] [PMID: 24978903]
[134]
Kim DS, Jackson AU, Li YK, et al. Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns. J Lipid Res 2017; 58(7): 1471-81.
[http://dx.doi.org/10.1194/jlr.P076034] [PMID: 28539357]
[135]
Li Y, Liu S, Gao Y, et al. Association of TM6SF2 rs58542926 gene polymorphism with the risk of non-alcoholic fatty liver disease and colorectal adenoma in Chinese Han population. BMC Biochem 2019; 20(1): 3.
[http://dx.doi.org/10.1186/s12858-019-0106-3]
[136]
Luukkonen PK, Zhou Y, Nidhina Haridas PA, et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol 2017; 67(1): 128-36.
[http://dx.doi.org/10.1016/j.jhep.2017.02.014] [PMID: 28235613]
[137]
Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61(2): 506-14.
[http://dx.doi.org/10.1002/hep.27490] [PMID: 25251399]
[138]
Ma Y, Belyaeva OV, Brown PM, et al. 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. 2019; 69(4): 1504-9.
[139]
Taliento AE, Dallio M, Federico A, Prati D, Valenti L. Novel insights into the genetic landscape of nonalcoholic fatty liver disease. Int J Environ Res Public Health 2019; 16(15): 2755.
[http://dx.doi.org/10.3390/ijerph16152755] [PMID: 31375010]
[140]
Al-Serri A, Anstee QM, Valenti L, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: Evidence from case-control and intra-familial allele association studies. J Hepatol 2012; 56(2): 448-54.
[http://dx.doi.org/10.1016/j.jhep.2011.05.029] [PMID: 21756849]
[141]
Namikawa C, Shu-Ping Z, Vyselaar JR, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol 2004; 40(5): 781-6.
[http://dx.doi.org/10.1016/j.jhep.2004.01.028] [PMID: 15094225]
[142]
Rubin D, Helwig U, Pfeuffer M, et al. A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J Hum Genet 2006; 51(6): 567-74.
[http://dx.doi.org/10.1007/s10038-006-0400-y] [PMID: 16721486]
[143]
Musso G, Gambino R, Cassader M. Lipoprotein metabolism mediates the association of MTP polymorphism with β-cell dysfunction in healthy subjects and in nondiabetic normolipidemic patients with nonalcoholic steatohepatitis. J Nutr Biochem 2010; 21(9): 834-40.
[http://dx.doi.org/10.1016/j.jnutbio.2009.06.007] [PMID: 19733470]
[144]
Petrovič MG, Cilenšek I, Petrovič D. Manganese superoxide dismutase gene polymorphism (V16A) is associated with diabetic retinopathy in Slovene (Caucasians) type 2 diabetes patients. Dis Markers 2008; 24(1): 59-64.
[http://dx.doi.org/10.1155/2008/940703] [PMID: 18057537]
[145]
Tian C, Fang S, Du X, Jia C. Association of the C47T polymorphism in SOD2 with diabetes mellitus and diabetic microvascular complications: a meta-analysis. Diabetologia 2011; 54(4): 803-11.
[http://dx.doi.org/10.1007/s00125-010-2004-5] [PMID: 21181397]
[146]
Mancina RM, Dongiovanni P, Petta S, et al. The MBOAT7-TMC4 Variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology 2016; 150(5): 1219-1230.e6.
[http://dx.doi.org/10.1053/j.gastro.2016.01.032] [PMID: 26850495]
[147]
Luukkonen PK, Zhou Y, Hyötyläinen T, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 2016; 65(6): 1263-5.
[http://dx.doi.org/10.1016/j.jhep.2016.07.045] [PMID: 27520876]
[148]
Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017; 7(1): 4492.
[149]
Lin YC, Chang PF, Chang MH, Ni YH. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr 2014; 99(4): 869-74.
[http://dx.doi.org/10.3945/ajcn.113.079749] [PMID: 24477042]
[150]
Sliz E, Sebert S, Würtz P, et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum Mol Genet 2018; 27(12): 2214-23.
[http://dx.doi.org/10.1093/hmg/ddy124] [PMID: 29648650]
[151]
Del Campo J, Gallego-Durán R, Gallego P, Grande L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int J Mol Sci 2018; 19(3): 911.
[http://dx.doi.org/10.3390/ijms19030911] [PMID: 29562725]
[152]
Pooya S, Blaise S, Moreno Garcia M, et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α ERR-α and HNF-4α in the rat liver. J Hepatol 2012; 57(2): 344-51.
[http://dx.doi.org/10.1016/j.jhep.2012.03.028] [PMID: 22521344]
[153]
Wang L, Zhang H, Zhou J, et al. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 2014; 25(3): 329-36.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.007] [PMID: 24456734]
[154]
Kim SH, Lim Y, Park JB, et al. Comparative study of fatty liver induced by methionine and choline-deficiency in C57BL/6N mice originating from three different sources. Lab Anim Res 2017; 33(2): 157-64.
[http://dx.doi.org/10.5625/lar.2017.33.2.157] [PMID: 28747982]
[155]
Caballero F, Fernández A, Matías N, et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 2010; 285(24): 18528-36.
[http://dx.doi.org/10.1074/jbc.M109.099333] [PMID: 20395294]
[156]
Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, Martinez JA. Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 2013; 8(1): 105-13.
[http://dx.doi.org/10.1007/s12263-012-0300-z] [PMID: 22648174]
[157]
Kim M. DNA methylation: a cause and consequence of type 2 diabetes. Genomics Inform 2019; 17(4): e38.
[http://dx.doi.org/10.5808/GI.2019.17.4.e38] [PMID: 31896238]
[158]
Dayeh T, Volkov P, Salö S, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014; 10(3): e1004160.
[http://dx.doi.org/10.1371/journal.pgen.1004160] [PMID: 24603685]
[159]
Olsson AH, Volkov P, Bacos K, et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10(11): e1004735.
[http://dx.doi.org/10.1371/journal.pgen.1004735] [PMID: 25375650]
[160]
Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 2012; 7(12): e51302.
[http://dx.doi.org/10.1371/journal.pone.0051302] [PMID: 23251491]
[161]
Nilsson E, Matte A, Perfilyev A, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 2015; 100(11): E1491-501.
[http://dx.doi.org/10.1210/jc.2015-3204] [PMID: 26418287]
[162]
Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 2013; 3(4): 1020-7.
[http://dx.doi.org/10.1016/j.celrep.2013.03.018] [PMID: 23583180]
[163]
Nitert MD, Dayeh T, Volkov P, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61(12): 3322-32.
[http://dx.doi.org/10.2337/db11-1653] [PMID: 23028138]
[164]
Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017; 13(7): 852-67.
[http://dx.doi.org/10.7150/ijbs.19370] [PMID: 28808418]
[165]
Xu F, Gao Z, Zhang J, et al. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 2010; 151(6): 2504-14.
[http://dx.doi.org/10.1210/en.2009-1013] [PMID: 20339025]
[166]
Niu B, He K, Li P, et al. SIRT1 upregulation protects against liver injury induced by a HFD through inhibiting CD36 and the NF κB pathway in mouse kupffer cells. Mol Med Rep 2018; 18(2): 1609-15.
[http://dx.doi.org/10.3892/mmr.2018.9088] [PMID: 29845302]
[167]
Moschen AR, Wieser V, Gerner RR, et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J Hepatol 2013; 59(6): 1315-22.
[http://dx.doi.org/10.1016/j.jhep.2013.07.027] [PMID: 23928404]
[168]
de Kreutzenberg SV, Ceolotto G, Papparella I, et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 2010; 59(4): 1006-15.
[http://dx.doi.org/10.2337/db09-1187] [PMID: 20068143]
[169]
Fröjdö S, Durand C, Molin L, et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011; 335(2): 166-76.
[http://dx.doi.org/10.1016/j.mce.2011.01.008] [PMID: 21241768]
[170]
Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009; 58(2): 344-51.
[http://dx.doi.org/10.2337/db07-1795] [PMID: 19008341]
[171]
Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 2001; 98(7): 3820-5.
[http://dx.doi.org/10.1073/pnas.061035098] [PMID: 11274399]
[172]
Kitada M, Ogura Y, Monno I, Koya D. Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol (Lausanne) 2019; 10: 187.
[http://dx.doi.org/10.3389/fendo.2019.00187] [PMID: 30972029]
[173]
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 2011; 108(35): 14608-13.
[http://dx.doi.org/10.1073/pnas.1111308108] [PMID: 21873205]
[174]
Zhou Y, Chung ACK, Fan R, et al. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxid Redox Signal 2017; 27(13): 962-76.
[http://dx.doi.org/10.1089/ars.2016.6859] [PMID: 28375738]
[175]
Caton PW, Richardson SJ, Kieswich J, et al. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013; 56(5): 1068-77.
[http://dx.doi.org/10.1007/s00125-013-2851-y] [PMID: 23397292]
[176]
Xiong X, Wang G, Tao R, et al. Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia 2016; 59(1): 151-60.
[http://dx.doi.org/10.1007/s00125-015-3778-2] [PMID: 26471901]
[177]
Xiong X, Sun X, Wang Q, et al. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. J Endocrinol 2016; 231(2): 159-65.
[http://dx.doi.org/10.1530/JOE-16-0317] [PMID: 27601447]
[178]
Dongiovanni P, Meroni M. miRNA Signature in NAFLD: A turning point for a non-invasive diagnosis. Int J Mol Sci 2018; 19(12)
[179]
Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48(6): 1810-20.
[http://dx.doi.org/10.1002/hep.22569] [PMID: 19030170]
[180]
Long JK, Dai W, Zheng YW, Zhao SP. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med 2019; 25(1): 26.
[181]
Liu XL, Cao HX, Wang BC, et al. miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol 2017; 23(46): 8140-51.
[http://dx.doi.org/10.3748/wjg.v23.i46.8140] [PMID: 29290651]
[182]
Lei L, Zhou C, Yang X, Li L. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2018; 45(8): 819-31.
[http://dx.doi.org/10.1111/1440-1681.12940]
[183]
Jiménez-Lucena R, Rangel-Zúñiga OA, Alcalá-Díaz JF, et al. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol Ther Nucleic Acids 2018; 12: 146-57.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[184]
Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 2011; 351(1-2): 197-205.
[http://dx.doi.org/10.1007/s11010-011-0727-3] [PMID: 21249428]
[185]
Luo M, Li R, Deng X, et al. Platelet-derived miR-103b as a novel biomarker for the early diagnosis of type 2 diabetes. Acta Diabetol 2015; 52(5): 943-9.
[http://dx.doi.org/10.1007/s00592-015-0733-0] [PMID: 25820527]
[186]
Mahdi T, Hänzelmann S, Salehi A, et al. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 2012; 16(5): 625-33.
[http://dx.doi.org/10.1016/j.cmet.2012.10.009] [PMID: 23140642]
[187]
Olivieri F, Spazzafumo L, Bonafè M, et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget 2015; 6(34): 35372-82.
[http://dx.doi.org/10.18632/oncotarget.6164] [PMID: 26498351]
[188]
Witkowski M, Weithauser A, Tabaraie T, et al. Micro–RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol 2016; 36(6): 1263-71.
[http://dx.doi.org/10.1161/ATVBAHA.115.306094] [PMID: 27127202]
[189]
Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH. Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One 2011; 6(7): e21662.
[http://dx.doi.org/10.1371/journal.pone.0021662] [PMID: 21779332]
[190]
Pham T, Lee J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients 2012; 4(12): 1868-86.
[http://dx.doi.org/10.3390/nu4121868] [PMID: 23363995]
[191]
Abdelmegeed MA, Choi Y, Godlewski G, et al. Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep 2017; 7(1): 39764.
[http://dx.doi.org/10.1038/srep39764] [PMID: 28051126]
[192]
Velázquez KT, Enos RT, Bader JE, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol 2019; 11(8): 619-37.
[http://dx.doi.org/10.4254/wjh.v11.i8.619] [PMID: 31528245]
[193]
Moore J, Gunn P, Fielding B. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 2014; 6(12): 5679-703.
[http://dx.doi.org/10.3390/nu6125679] [PMID: 25514388]
[194]
Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009; 50(4): 1094-104.
[http://dx.doi.org/10.1002/hep.23122] [PMID: 19637282]
[195]
Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1–mediated oxidative and nitrative stress. Hepatology 2021; 73(6): 2180-95.
[http://dx.doi.org/10.1002/hep.30652] [PMID: 30959577]
[196]
Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51(6): 1961-71.
[http://dx.doi.org/10.1002/hep.23535] [PMID: 20301112]
[197]
Song M, Schuschke DA, Zhou Z, et al. High fructose feeding induces copper deficiency in Sprague–Dawley rats: A novel mechanism for obesity related fatty liver. J Hepatol 2012; 56(2): 433-40.
[http://dx.doi.org/10.1016/j.jhep.2011.05.030] [PMID: 21781943]
[198]
Song M, Vos M, McClain C. Copper-fructose interactions: A novel mechanism in the pathogenesis of NAFLD. Nutrients 2018; 10(11): 1815.
[http://dx.doi.org/10.3390/nu10111815] [PMID: 30469339]
[199]
Chen X, Zhang Z, Li H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease 2020; 35(11): 2009-19.
[http://dx.doi.org/10.1111/jgh.15027]
[200]
Asgari-Taee F, Zerafati-Shoae N, Dehghani M, Sadeghi M, Baradaran HR, Jazayeri S. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58(5): 1759-69.
[http://dx.doi.org/10.1007/s00394-018-1711-4] [PMID: 29761318]
[201]
Chen S, Teoh NC, Chitturi S, Farrell GC. Coffee and non-alcoholic fatty liver disease: Brewing evidence for hepatoprotection? J Gastroenterol Hepatol 2014; 29(3): 435-41.
[http://dx.doi.org/10.1111/jgh.12422] [PMID: 24199670]
[202]
Vitaglione P, Morisco F, Mazzone G, et al. Coffee reduces liver damage in a rat model of steatohepatitis: The underlying mechanisms and the role of polyphenols and melanoidins. Hepatology 2010; 52(5): 1652-61.
[http://dx.doi.org/10.1002/hep.23902] [PMID: 21038411]
[203]
Gressner OA, Lahme B, Rehbein K, Siluschek M, Weiskirchen R, Gressner AM. Pharmacological application of caffeine inhibits TGF-β-stimulated connective tissue growth factor expression in hepatocytes via PPARγ and SMAD2/3-dependent pathways. J Hepatol 2008; 49(5): 758-67.
[http://dx.doi.org/10.1016/j.jhep.2008.03.029] [PMID: 18486259]
[204]
Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol 2018; 24(19): 2083-94.
[http://dx.doi.org/10.3748/wjg.v24.i19.2083] [PMID: 29785077]
[205]
Baratta F, Pastori D, Polimeni L, et al. Adherence to mediterranean diet and non-alcoholic fatty liver disease: effect on insulin resistance. Am J Gastroenterol 2017; 112(12): 1832-9.
[http://dx.doi.org/10.1038/ajg.2017.371] [PMID: 29063908]
[206]
Aller R, Izaola O, de la Fuente B, De Luis Román DA. Mediterranean diet is associated with liver histology in patients with non alcoholic fatty liver disease. Nutr Hosp 2015; 32(6): 2518-24.
[PMID: 26667698]
[207]
Sookoian S, Castaño GO, Pirola CJ. Modest alcohol consumption decreases the risk of non-alcoholic fatty liver disease: a meta-analysis of 43 175 individuals. Gut 2014; 63(3): 530-2.
[http://dx.doi.org/10.1136/gutjnl-2013-305718] [PMID: 24026352]
[208]
Dunn W, Sanyal AJ, Brunt EM, et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J Hepatol 2012; 57(2): 384-91.
[http://dx.doi.org/10.1016/j.jhep.2012.03.024] [PMID: 22521357]
[209]
Ajmera V, Belt P, Wilson LA, et al. Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clinical gastroenterology and hepatology 2018; 16(9): 1511-20.e5.
[210]
Long MT, Massaro JM, Hoffmann U, Benjamin EJ, Naimi TS. alcohol use is associated with hepatic steatosis among persons with presumed nonalcoholic fatty liver disease.Clinical gastroenterology and hepatology 2020; 18(8): 1831.: 41.e5.
[http://dx.doi.org/10.1016/j.cgh.2019.11.022]
[211]
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017; 11(2): 65-71.
[PMID: 28539866]
[212]
Marshall JA, Hamman RF, Baxter J. High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: the San Luis Valley Diabetes Study. Am J Epidemiol 1991; 134(6): 590-603.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116132] [PMID: 1951264]
[213]
Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr 1992; 55(5): 1018-23.
[http://dx.doi.org/10.1093/ajcn/55.5.1018] [PMID: 1315120]
[214]
Nseir W, Nassar F, Assy N. Soft drinks consumption and nonalcoholic fatty liver disease. World J Gastroenterol 2010; 16(21): 2579-88.
[http://dx.doi.org/10.3748/wjg.v16.i21.2579] [PMID: 20518077]
[215]
Panagiotakos DB, Tzima N, Pitsavos C, et al. The relationship between dietary habits, blood glucose and insulin levels among people without cardiovascular disease and type 2 diabetes; the ATTICA study. Rev Diabet Stud 2005; 2(4): 208-15.
[http://dx.doi.org/10.1900/RDS.2005.2.208] [PMID: 17491696]
[216]
Villegas R, Shu XO, Gao YT, et al. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J Nutr 2008; 138(3): 574-80.
[http://dx.doi.org/10.1093/jn/138.3.574] [PMID: 18287369]
[217]
Nanri A, Mizoue T, Noda M, et al. Rice intake and type 2 diabetes in Japanese men and women: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr 2010; 92(6): 1468-77.
[http://dx.doi.org/10.3945/ajcn.2010.29512] [PMID: 20980490]
[218]
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174-80.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[219]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[220]
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718-23.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[221]
Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis Journal of gastroenterology and hepatology 2013; 28 Suppl 1(01): 38-42.
[http://dx.doi.org/10.1111/jgh.12019]
[222]
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47(4): 571-9.
[http://dx.doi.org/10.1016/j.jhep.2007.04.019] [PMID: 17644211]
[223]
Mridha AR, Haczeyni F, Yeh MM, et al. TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival Clinical Science (London, England : 1979) 2017; 131(16): 2145-59.
[http://dx.doi.org/10.1042/CS20160838]
[224]
Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 2011; 140(3): 976-86.
[http://dx.doi.org/10.1053/j.gastro.2010.11.049] [PMID: 21129376]
[225]
Yu D, Shu XO, Xiang YB, et al. Higher dietary choline intake is associated with lower risk of nonalcoholic fatty liver in normal-weight Chinese women. J Nutr 2014; 144(12): 2034-40.
[http://dx.doi.org/10.3945/jn.114.197533] [PMID: 25320186]
[226]
Fitriakusumah Y, Lesmana CRA. The role of Small Intestinal Bacterial Overgrowth (SIBO) in Non-alcoholic Fatty Liver Disease (NAFLD) patients evaluated using Controlled Attenuation Parameter (CAP) Transient Elastography (TE): a tertiary referral center experience. BMC Gastroenterol 2019; 19(1): 43.
[227]
Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49(6): 1877-87.
[http://dx.doi.org/10.1002/hep.22848] [PMID: 19291785]
[228]
Zhu L, Baker RD, Zhu R, Baker SS. Gut microbiota produce alcohol and contribute to NAFLD. Gut 2016; 65(7): 1232.
[http://dx.doi.org/10.1136/gutjnl-2016-311571] [PMID: 26984853]
[229]
Volynets V, Küper MA, Strahl S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 2012; 57(7): 1932-41.
[http://dx.doi.org/10.1007/s10620-012-2112-9] [PMID: 22427130]
[230]
Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab 2019; 30(4): 675-688.e7.
[http://dx.doi.org/10.1016/j.cmet.2019.08.018] [PMID: 31543403]
[231]
Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr 2017; 8(2): 240-52.
[http://dx.doi.org/10.3945/an.116.013151]
[232]
Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179-85.
[http://dx.doi.org/10.1038/nature10809] [PMID: 22297845]
[233]
Pierantonelli I, Rychlicki C, Agostinelli L, et al. Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Sci Reports 2017; 7(1): 12200.
[http://dx.doi.org/10.1038/s41598-017-11744-6]
[234]
Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51: 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[235]
Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018; 9(1): 5-12.
[http://dx.doi.org/10.1111/jdi.12673] [PMID: 28390093]
[236]
Chen P, Zhang Q, Dang H, et al. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition 2014; 30(9): 1061-8.
[http://dx.doi.org/10.1016/j.nut.2014.03.022] [PMID: 25102821]
[237]
Dagdeviren S, Young JD, Friedline RH, et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J 2017; 31(2): 701-10.
[http://dx.doi.org/10.1096/fj.201600832R] [PMID: 27811060]
[238]
Zhu C, Song K, Shen Z, et al. Roseburia intestinalis inhibits interleukin 17 excretion and promotes regulatory T cells differentiation in colitis. Mol Med Rep 2018; 17(6): 7567-74.
[http://dx.doi.org/10.3892/mmr.2018.8833] [PMID: 29620246]
[239]
Wang X, Ota N, Manzanillo P, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014; 514(7521): 237-41.
[http://dx.doi.org/10.1038/nature13564] [PMID: 25119041]
[240]
Liu WC, Yang MC, Wu YY, Chen PH, Hsu CM, Chen LW. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways 2018; 13(5): e0196511.
[http://dx.doi.org/10.1371/journal.pone.0196511]
[241]
Tian P, Li B, He C, et al. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct 2016; 7(9): 3789-97.
[http://dx.doi.org/10.1039/C6FO00831C] [PMID: 27713957]
[242]
Sun KY, Xu DH, Xie C, et al. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine 2017; 92: 1-11.
[http://dx.doi.org/10.1016/j.cyto.2017.01.003] [PMID: 28088611]
[243]
Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct 2017; 8(9): 3155-64.
[http://dx.doi.org/10.1039/C7FO00593H] [PMID: 28782784]
[244]
Matsuzaki T, Nagata Y, Kado S, et al. Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 1997; 105(8): 643-9.
[245]
Hoffmann TW, Pham HP. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J 2016; 10(2): 460-77.
[http://dx.doi.org/10.1038/ismej.2015.127]
[246]
Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018; 138(22): 2486-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033714] [PMID: 30571343]
[247]
Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50(2): e450.
[http://dx.doi.org/10.1038/emm.2017.282]
[248]
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23(1): 107-3.
[http://dx.doi.org/10.1038/nm.4236]
[249]
Kinoshita M, Suzuki Y, Saito Y. Butyrate reduces colonic paracellular permeability by enhancing PPARγ activation. Biochem Biophys Res Commun 2002; 293(2): 827-31.
[http://dx.doi.org/10.1016/S0006-291X(02)00294-2] [PMID: 12054544]
[250]
Kim SH, Huh CS, Choi ID, et al. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol 2014; 117(3): 834-45.
[http://dx.doi.org/10.1111/jam.12573] [PMID: 24925305]
[251]
Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 2013; 8(1): e54617.
[http://dx.doi.org/10.1371/journal.pone.0054617] [PMID: 23382926]
[252]
Li X, Wang E, Yin B, et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes 2017; 8(3): 421-32.
[http://dx.doi.org/10.3920/BM2016.0167] [PMID: 28504567]
[253]
Miao J, Ling AV, Manthena PV, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6(1): 6498.
[http://dx.doi.org/10.1038/ncomms7498] [PMID: 25849138]
[254]
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110(22): 9066-71.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[255]
Yang J-Y, Lee Y-S, Kim Y, et al. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 2017; 10(1): 104-16.
[http://dx.doi.org/10.1038/mi.2016.42] [PMID: 27118489]
[256]
Zhang L, Qin Q, Liu M, Zhang X, He F, Wang G. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis 2018; 76(4): fty028.
[http://dx.doi.org/10.1093/femspd/fty028] [PMID: 29668928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy