Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Impact of Thread-based Microfluidic Devices in Modern Analysis: An Update on Recent Trends and Applications

Author(s): Sanskar Ahlawat, Rohit Bhatia and Bhupinder Kumar*

Volume 19, Issue 4, 2023

Published on: 22 March, 2023

Page: [281 - 297] Pages: 17

DOI: 10.2174/1573411019666230214112818

Price: $65

conference banner
Abstract

Background: Inexpensive and disposable microfluidic sensing equipment is in strong demand which can detect biomarkers of diseases found in urine or blood. From recent studies, it has been found that multifilament threads can be used for producing low-cost microfluidic devices hence these multifilament threads act as an inexpensive alternative. Thread has various advantages to make it appropriate to be used in microfluidics-based technologies which include its low price, lightweight, easy availability, and hydrophilic nature. The use of any external pumping system is avoided by the presence of capillary channels in threads which allows the easy flow of fluid. Since thread offers more choices of materials over paper and also paper-based microfluidics preparation is expensive therefore thread-based microfluidic sensor has been considered more advantageous over paper-based microfluidic sensors.

Methods: Various research reports were collected from search engines like ScienceDirect, Pub-med, ResearchGate, and Google Scholar. Further important outcomes from these reports along with basic experimental setup details have been compiled under different sections of this manuscript.

Conclusion: Non-invasive or blood-free diagnosis can reduce the pain and several risk factors compared with the traditional invasive diagnosis so it is gaining more attention regarding health status monitoring. The various applications regarding thread-based devices include the detection of glucose and its determination, diagnosis of diabetes and kidney failure simultaneously, food dyes separation, sweat pH and lactate determination, selective potassium analysis, multiple antibodies detections, an assay of microbes, for acid-base titrations, as ELISA’s platform, diagnosis of infectious diseases, ion sensing, identification of blood types and detection of bio-samples, etc.

Next »
Graphical Abstract

[1]
Weigl, B.; Domingo, G.; LaBarre, P.; Gerlach, J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip, 2008, 8(12), 1999-2014.
[http://dx.doi.org/10.1039/b811314a] [PMID: 19023463]
[2]
Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed., 2007, 46(8), 1318-1320.
[http://dx.doi.org/10.1002/anie.200603817] [PMID: 17211899]
[3]
Abe, K.; Suzuki, K.; Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem., 2008, 80(18), 6928-6934.
[http://dx.doi.org/10.1021/ac800604v] [PMID: 18698798]
[4]
Leenen, F.H.H.; Klement, G. Dietary sodium restriction and blood pressure response to sympathetic blockade in young versus adolescent spontaneously hypertensive rats. Can. J. Physiol. Pharmacol., 1990, 68(1), 46-50.
[http://dx.doi.org/10.1139/y90-006] [PMID: 1970273]
[5]
Xia, J.; Khaliliazar, S.; Hamedi, M.M.; Sonkusale, S. Thread-based wearable devices. MRS Bull., 2021, 46(6), 502-511.
[http://dx.doi.org/10.1557/s43577-021-00116-1]
[6]
Yang, Y-A.; Wei, Y-C.; Lin, C-H. High performance thread-based CE-EC system with variable volume injection capability and 3D detection electrodes.the 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA; , 2014, pp. 494-497.
[http://dx.doi.org/10.1109/NEMS.2014.6908857]
[7]
Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700), 1358-1361.
[http://dx.doi.org/10.1126/science.1104276] [PMID: 15550667]
[8]
Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N.A. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett., 2008, 8(12), 4151-4157.
[http://dx.doi.org/10.1021/nl801495p] [PMID: 19367926]
[9]
Paradiso, R.; Loriga, G.; Taccini, N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed., 2005, 9(3), 337-344.
[http://dx.doi.org/10.1109/TITB.2005.854512] [PMID: 16167687]
[10]
Fenton, E.M.; Mascarenas, M.R.; López, G.P.; Sibbett, S.S. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl. Mater. Interfaces, 2009, 1(1), 124-129.
[http://dx.doi.org/10.1021/am800043z] [PMID: 20355763]
[11]
Snyder, W. Youn-Sik Han; Bilbro, G.; Whitaker, R.; Pizer, S. Image relaxation: restoration and feature extraction. IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17(6), 620-624.
[http://dx.doi.org/10.1109/34.387509]
[12]
Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem., 1998, 70(23), 4974-4984.
[http://dx.doi.org/10.1021/ac980656z] [PMID: 21644679]
[13]
Nath, P.; Fung, D.; Kunde, Y.A.; Zeytun, A.; Branch, B.; Goddard, G. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip, 2010, 10(17), 2286-2291.
[http://dx.doi.org/10.1039/c002457k] [PMID: 20593077]
[14]
Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip, 2016, 16(10), 1720-1742.
[http://dx.doi.org/10.1039/C6LC00163G] [PMID: 27101171]
[15]
Coltro, W.K.T.; de Jesus, D.P.; da Silva, J.A.F.; do Lago, C.L.; Carrilho, E. Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis, 2010, 31(15), 2487-2498.
[http://dx.doi.org/10.1002/elps.201000063] [PMID: 20665911]
[16]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices; ACS Publications: FL, USA, 2010.
[17]
Yamada, K.; Henares, T.G.; Suzuki, K.; Citterio, D. Paper-based inkjet-printed microfluidic analytical devices. Angew. Chem. Int. Ed., 2015, 54(18), 5294-5310.
[http://dx.doi.org/10.1002/anie.201411508] [PMID: 25864471]
[18]
Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem., 2009, 81(16), 7091-7095.
[http://dx.doi.org/10.1021/ac901071p] [PMID: 20337388]
[19]
Nie, J.; Zhang, Y.; Lin, L.; Zhou, C.; Li, S.; Zhang, L.; Li, J. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal. Chem., 2012, 84(15), 6331-6335.
[http://dx.doi.org/10.1021/ac203496c] [PMID: 22881397]
[20]
Xia, Y.; Si, J.; Li, Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron., 2016, 77, 774-789.
[http://dx.doi.org/10.1016/j.bios.2015.10.032] [PMID: 26513284]
[21]
Santhiago, M.; Kubota, L.T. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B Chem., 2013, 177, 224-230.
[http://dx.doi.org/10.1016/j.snb.2012.11.002]
[22]
Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.H.; Brooks, G.A.; Davis, R.W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587), 509-514.
[http://dx.doi.org/10.1038/nature16521] [PMID: 26819044]
[23]
Gonzalez, A.; Estala, L.; Gaines, M.; Gomez, F.A. Mixed thread/paper-based microfluidic chips as a platform for glucose assays. Electrophoresis, 2016, 37(12), 1685-1690.
[http://dx.doi.org/10.1002/elps.201600029] [PMID: 27060975]
[24]
Mao, X.; Du, T.E.; Wang, Y.; Meng, L. Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test. Biosens. Bioelectron., 2015, 65, 390-396.
[http://dx.doi.org/10.1016/j.bios.2014.10.053] [PMID: 25461186]
[25]
Sateanchok, S.; Wangkarn, S.; Saenjum, C.; Grudpan, K. A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection. Talanta, 2018, 177, 171-175.
[http://dx.doi.org/10.1016/j.talanta.2017.08.073] [PMID: 29108572]
[26]
Cabot, J.M.; Breadmore, M.C.; Paull, B. Thread based electrofluidic platform for direct metabolite analysis in complex samples. Anal. Chim. Acta, 2018, 1000, 283-292.
[http://dx.doi.org/10.1016/j.aca.2017.10.029] [PMID: 29289321]
[27]
Gaines, M.; Gonzalez-Guerrero, M.J.; Uchida, K.; Gomez, F.A. Microfluidic thread-based electrode system to detect glucose and acetylthiocholine. Electrophoresis, 2018, 39(24), 3082-3086.
[http://dx.doi.org/10.1002/elps.201800348] [PMID: 30232815]
[28]
Nilghaz, A.; Ballerini, D.R.; Shen, W. Exploration of microfluidic devices based on multi-filament threads and textiles: A review. Biomicrofluidics, 2013, 7(5), 051501.
[http://dx.doi.org/10.1063/1.4820413] [PMID: 24086179]
[29]
Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012, 6(1), 011301.
[http://dx.doi.org/10.1063/1.3687398] [PMID: 22662067]
[30]
Nilghaz, A.; Ballerini, D.R.; Fang, X.Y.; Shen, W. Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sens. Actuators B Chem., 2014, 191, 586-594.
[http://dx.doi.org/10.1016/j.snb.2013.10.023]
[31]
Promphet, N.; Hinestroza, J.P.; Rattanawaleedirojn, P.; Soatthiyanon, N.; Siralertmukul, K.; Potiyaraj, P.; Rodthongkum, N. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B Chem., 2020, 321, 128549.
[http://dx.doi.org/10.1016/j.snb.2020.128549]
[32]
Jing, X.; Wang, H.; Huang, X.; Chen, Z.; Zhu, J.; Wang, X. Digital image colorimetry detection of carbaryl in food samples based on liquid phase microextraction coupled with a microfluidic thread-based analytical device. Food Chem., 2021, 337, 127971.
[http://dx.doi.org/10.1016/j.foodchem.2020.127971] [PMID: 32916534]
[33]
Xu, C.; Jiang, D.; Lin, J.; Cai, L. Cross channel thread-based microfluidic device for separation of food dyes. J. Chem. Educ., 2018, 95(6), 1000-1003.
[http://dx.doi.org/10.1021/acs.jchemed.7b00784]
[34]
Song, J.; Ouyang, Z.; Lu, W.; Cai, L. Instrument-free detection of polyphenols with a thread-based analytical device. R. Soc. Open Sci., 2020, 7(3), 192130.
[http://dx.doi.org/10.1098/rsos.192130] [PMID: 32269816]
[35]
Ballerini, D.R.; Li, X.; Shen, W. Flow control concepts for thread-based microfluidic devices. Biomicrofluidics, 2011, 5(1), 014105.
[http://dx.doi.org/10.1063/1.3567094] [PMID: 21483659]
[36]
Vishinkin, R.; Haick, H. Nanoscale sensor technologies for disease detection via volatolomics. Small, 2015, 11(46), 6142-6164.
[http://dx.doi.org/10.1002/smll.201501904] [PMID: 26448487]
[37]
Xiao, G.; He, J.; Chen, X.; Qiao, Y.; Wang, F.; Xia, Q.; Yu, L.; Lu, Z. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose, 2019, 26(7), 4553-4562.
[http://dx.doi.org/10.1007/s10570-019-02396-y]
[38]
Khor, S.M.; Choi, J.; Won, P.; Ko, S.H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II diabetes. Nanomaterials (Basel), 2022, 12(2), 221.
[http://dx.doi.org/10.3390/nano12020221] [PMID: 35055239]
[39]
Alhaddad, A.Y.; Aly, H.; Gad, H.; Al-Ali, A.; Sadasivuni, K.K.; Cabibihan, J.J.; Malik, R.A. Sense and learn: Recent advances in wearable sensing and machine learning for blood glucose monitoring and trend-detection. Front. Bioeng. Biotechnol., 2022, 10, 876672.
[http://dx.doi.org/10.3389/fbioe.2022.876672] [PMID: 35646863]
[40]
Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives. Adv. Mater. Technol., 2022, 7(3), 2100773.
[http://dx.doi.org/10.1002/admt.202100773]
[41]
Promphet, N.; Rattanawaleedirojn, P.; Siralertmukul, K.; Soatthiyanon, N.; Potiyaraj, P.; Thanawattano, C.; Hinestroza, J.P.; Rodthongkum, N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta, 2019, 192, 424-430.
[http://dx.doi.org/10.1016/j.talanta.2018.09.086] [PMID: 30348413]
[42]
Li, X.; Tian, J.; Shen, W. Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl. Mater. Interfaces, 2010, 2(1), 1-6.
[http://dx.doi.org/10.1021/am9006148] [PMID: 20356211]
[43]
Selvakumar, B.; Kathiravan, A. Sensory materials for microfluidic paper based analytical devices - A review. Talanta, 2021, 235, 122733.
[http://dx.doi.org/10.1016/j.talanta.2021.122733] [PMID: 34517601]
[44]
Ballerini, D.R.; Li, X.; Shen, W. Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid. Nanofluidics, 2012, 13(5), 769-787.
[http://dx.doi.org/10.1007/s10404-012-0999-2]
[45]
Zhou, W.; Dou, M.; Timilsina, S.S.; Xu, F.; Li, X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip, 2021, 21(14), 2658-2683.
[http://dx.doi.org/10.1039/D1LC00414J] [PMID: 34180494]
[46]
Wu, M.Y.C.; Hsu, M.Y.; Chen, S.J.; Hwang, D.K.; Yen, T.H.; Cheng, C.M. Point-of-care detection devices for food safety monitoring: proactive disease prevention. Trends Biotechnol., 2017, 35(4), 288-300.
[http://dx.doi.org/10.1016/j.tibtech.2016.12.005] [PMID: 28089198]
[47]
Reches, M. Thread based devices for low-cost diagnostics. In: Microfluidic Diagnostics; Springer, 2013; pp. 197-205.
[http://dx.doi.org/10.1007/978-1-62703-134-9_14]
[48]
Mostafalu, P.; Akbari, M.; Alberti, K.A.; Xu, Q.; Khademhosseini, A.; Sonkusale, S.R. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng., 2016, 2(1), 16039.
[http://dx.doi.org/10.1038/micronano.2016.39] [PMID: 31057832]
[49]
Sun, T.; Hui, J.; Zhou, L.; Lin, B.; Sun, H.; Bai, Y.; Zhao, J.; Mao, H. A low-cost and simple-fabricated epidermal sweat patch based on “cut-and-paste” manufacture. Sens. Actuators B Chem., 2022, 368, 132184.
[http://dx.doi.org/10.1016/j.snb.2022.132184]
[50]
Kojic, T.; Kovacevic, B.; Sinha, A. Simić, M.; Stojanović, G.M. Silver thread-based microfluidic platform for detection of essential oils using impedance spectroscopy. Appl. Sci., 2022, 12(7), 3596.
[http://dx.doi.org/10.3390/app12073596]
[51]
Oliveira, A.C.M.; Araújo, D.A.G.; Pradela-Filho, L.A.; Takeuchi, R.M.; Trindade, M.A.G.; dos Santos, A.L. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip, 2022, 22(16), 3045-3054.
[http://dx.doi.org/10.1039/D2LC00387B] [PMID: 35833547]
[52]
Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn., 2017, 17(4), 351-366.
[http://dx.doi.org/10.1080/14737159.2017.1285228] [PMID: 28103450]
[53]
Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip, 2017, 17(7), 1206-1249.
[http://dx.doi.org/10.1039/C6LC01577H] [PMID: 28251200]
[54]
Jalal, U.M.; Jin, G.J.; Shim, J.S. Paper-plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal. Chem., 2017, 89(24), 13160-13166.
[http://dx.doi.org/10.1021/acs.analchem.7b02612] [PMID: 29131592]
[55]
Qiu, Z.; Shu, J.; Tang, D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem., 2017, 89(9), 5152-5160.
[http://dx.doi.org/10.1021/acs.analchem.7b00989] [PMID: 28376620]
[56]
Ren, R.; Cai, G.; Yu, Z.; Tang, D. Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron(II) chelation reaction with phenanthroline. Sens. Actuators B Chem., 2018, 265, 174-181.
[http://dx.doi.org/10.1016/j.snb.2018.03.049]
[57]
Luo, Z.; Zhang, L.; Zeng, R.; Su, L.; Tang, D. Near-infrared light-excited core-core-shell UCNP@ Au@ CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal. Chem., 2018, 90(15), 9568-9575.
[http://dx.doi.org/10.1021/acs.analchem.8b02421] [PMID: 29938508]
[58]
Gaines, M.; Gonzalez-Guerrero, M.J.; Uchida, K.; Gomez, F.A. A microfluidic glucose sensor incorporating a novel thread-based electrode system. Electrophoresis, 2018, 39(16), 2131-2135.
[http://dx.doi.org/10.1002/elps.201800010] [PMID: 29714041]
[59]
Fosdick, S.E.; Anderson, M.J.; Renault, C.; DeGregory, P.R.; Loussaert, J.A.; Crooks, R.M. Wire, mesh, and fiber electrodes for paper-based electroanalytical devices. Anal. Chem., 2014, 86(7), 3659-3666.
[http://dx.doi.org/10.1021/ac5004294] [PMID: 24625315]
[60]
Tang, C.K.; Vaze, A.; Rusling, J.F. Paper-based electrochemical immunoassay for rapid, inexpensive cancer biomarker protein detection. Anal. Methods, 2014, 6(22), 8878-8881.
[http://dx.doi.org/10.1039/C4AY01962H] [PMID: 25431626]
[61]
Santhiago, M.; Henry, C.S.; Kubota, L.T. Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim. Acta, 2014, 130, 771-777.
[http://dx.doi.org/10.1016/j.electacta.2014.03.109]
[62]
Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip, 2010, 10(4), 477-483.
[http://dx.doi.org/10.1039/B917150A] [PMID: 20126688]
[63]
Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem., 2015, 87(1), 19-41.
[http://dx.doi.org/10.1021/ac503968p] [PMID: 25375292]
[64]
Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater., 2011, 23(17), 1935-1961.
[http://dx.doi.org/10.1002/adma.201004692] [PMID: 21433116]
[65]
Avoundjian, A.; Jalali-Heravi, M.; Gomez, F.A. Use of chemometrics to optimize a glucose assay on a paper microfluidic platform. Anal. Bioanal. Chem., 2017, 409(10), 2697-2703.
[http://dx.doi.org/10.1007/s00216-017-0214-0] [PMID: 28150019]
[66]
Elomaa, J.; Gallegos, L.; Gomez, F.A. Cord-based microfluidic chips as a platform for ELISA and glucose assays. Micromachines (Basel), 2019, 10(9), 614.
[http://dx.doi.org/10.3390/mi10090614] [PMID: 31540182]
[67]
Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem., 1990, 1(1-6), 244-248.
[http://dx.doi.org/10.1016/0925-4005(90)80209-I]
[68]
Safavieh, R.; Zhou, G.Z.; Juncker, D. Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip, 2011, 11(15), 2618-2624.
[http://dx.doi.org/10.1039/c1lc20336c] [PMID: 21677945]
[69]
Reches, M.; Mirica, K.A.; Dasgupta, R.; Dickey, M.D.; Butte, M.J.; Whitesides, G.M. Thread as a matrix for biomedical assays. ACS Appl. Mater. Interfaces, 2010, 2(6), 1722-1728.
[http://dx.doi.org/10.1021/am1002266] [PMID: 20496913]
[70]
Zhou, G.; Mao, X.; Juncker, D. Immunochromatographic assay on thread. Anal. Chem., 2012, 84(18), 7736-7743.
[http://dx.doi.org/10.1021/ac301082d] [PMID: 22889381]
[71]
Promphet, N.; Thanawattano, C.; Buekban, C.; Laochai, T.; Rattanawaleedirojn, P.; Siralertmukul, K.; Potiyaraj, P.; Hinestroza, J.P.; Rodthongkum, N. Thread-based wristwatch sensing device for noninvasive and simultaneous detection of glucose and lactate. Adv. Mater. Technol., 2022, 7(6), 2101684.
[http://dx.doi.org/10.1002/admt.202101684]
[72]
Kim, J.; Kim, M.; Lee, M.S.; Kim, K.; Ji, S.; Kim, Y.T.; Park, J.; Na, K.; Bae, K.H.; Kyun Kim, H.; Bien, F.; Young Lee, C.; Park, J.U. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun., 2017, 8(1), 14997.
[http://dx.doi.org/10.1038/ncomms14997] [PMID: 28447604]
[73]
Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron., 2018, 1(3), 160-171.
[http://dx.doi.org/10.1038/s41928-018-0043-y]
[74]
Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 2019, 48(6), 1465-1491.
[http://dx.doi.org/10.1039/C7CS00730B] [PMID: 29611861]
[75]
Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.S.; Ha, J.S. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces, 2018, 10(16), 13729-13740.
[http://dx.doi.org/10.1021/acsami.8b03342] [PMID: 29624049]
[76]
Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.H. Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater., 2018, 7(8), 1701150.
[http://dx.doi.org/10.1002/adhm.201701150] [PMID: 29334198]
[77]
Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther., 2012, 14(5), 398-402.
[http://dx.doi.org/10.1089/dia.2011.0262] [PMID: 22376082]
[78]
Zhao, Z.; Li, Q.; Dong, Y.; Gong, J.; Li, Z.; Zhang, J. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat. Sens. Actuators B Chem., 2022, 353, 131154.
[http://dx.doi.org/10.1016/j.snb.2021.131154]
[79]
Wang, D.; Xu, G.; Zhang, X.; Gong, H.; Jiang, L.; Sun, G.; Li, Y.; Liu, G.; Li, Y.; Yang, S.; Liang, X. Dual-functional ultrathin wearable 3D particle-in-cavity SF-AAO-Au SERS sensors for effective sweat glucose and lab-on-glove pesticide detection. Sens. Actuators B Chem., 2022, 359, 131512.
[http://dx.doi.org/10.1016/j.snb.2022.131512]
[80]
Ochiai, L.M.; Agustini, D.; Figueiredo-Filho, L.C.S.; Banks, C.E.; Marcolino-Junior, L.H.; Bergamini, M.F. Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sens. Actuators B Chem., 2017, 241, 978-984.
[http://dx.doi.org/10.1016/j.snb.2016.10.150]
[81]
Agustini, D.; Bergamini, M.F.; Marcolino-Junior, L.H. Low cost microfluidic device based on cotton threads for electroanalytical application. Lab Chip, 2016, 16(2), 345-352.
[http://dx.doi.org/10.1039/C5LC01348H] [PMID: 26659997]
[82]
Agustini, D.; Bergamini, M.F.; Marcolino-Junior, L.H. Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis. Anal. Chim. Acta, 2017, 951, 108-115.
[http://dx.doi.org/10.1016/j.aca.2016.11.046] [PMID: 27998478]
[83]
Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinski, O.J.; Birch, D.J.S. Fluorescence-based glucose sensors. Biosens. Bioelectron., 2005, 20(12), 2555-2565.
[http://dx.doi.org/10.1016/j.bios.2004.10.002] [PMID: 15854825]
[84]
Lai, J.; Yi, Y.; Zhu, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem. (Lausanne), 2016, 782, 138-153.
[http://dx.doi.org/10.1016/j.jelechem.2016.10.033]
[85]
Scognamiglio, V. Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens. Bioelectron., 2013, 47, 12-25.
[http://dx.doi.org/10.1016/j.bios.2013.02.043] [PMID: 23542065]
[86]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[87]
Hui, N.; Wang, S.; Xie, H.; Xu, S.; Niu, S.; Luo, X. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sens. Actuators B Chem., 2015, 221, 606-613.
[http://dx.doi.org/10.1016/j.snb.2015.07.011]
[88]
Van der Zee, F.P.; Cervantes, F.J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnol. Adv., 2009, 27(3), 256-277.
[http://dx.doi.org/10.1016/j.biotechadv.2009.01.004] [PMID: 19500549]
[89]
Li, S.J.; Xia, N.; Lv, X.L.; Zhao, M.M.; Yuan, B.Q.; Pang, H. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens. Actuators B Chem., 2014, 190, 809-817.
[http://dx.doi.org/10.1016/j.snb.2013.09.047]
[90]
Mu, Y.; Jia, D.; He, Y.; Miao, Y.; Wu, H.L. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron., 2011, 26(6), 2948-2952.
[http://dx.doi.org/10.1016/j.bios.2010.11.042] [PMID: 21167705]
[91]
Oliveira, M.C.; Watanabe, E.Y.; Agustini, D.; Banks, C.E.; Marcolino-Júnior, L.H.; Bergamini, M.F. Nonenzymatic sensor for determination of glucose in blood plasma based on nickel oxyhydroxide in a microfluidic system of cotton thread. J. Electroanal. Chem. (Lausanne), 2019, 840, 153-159.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.038]
[92]
Erenas, M.M.; de Orbe-Payá, I.; Capitan-Vallvey, L.F. Surface modified thread-based microfluidic analytical device for selective potassium analysis. Anal. Chem., 2016, 88(10), 5331-5337.
[http://dx.doi.org/10.1021/acs.analchem.6b00633] [PMID: 27077212]
[93]
Ulum, M.F.; Maylina, L.; Noviana, D.; Wicaksono, D.H.B. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. Lab Chip, 2016, 16(8), 1492-1504.
[http://dx.doi.org/10.1039/C6LC00175K] [PMID: 27021631]
[94]
Nilghaz, A.; Zhang, L.; Li, M.; Ballerini, D.R.; Shen, W. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing. ACS Appl. Mater. Interfaces, 2014, 6(24), 22209-22215.
[http://dx.doi.org/10.1021/am505849e] [PMID: 25399507]
[95]
Wang, X.; Bhadra, C.M.; Yen Dang, T.H.; Buividas, R.; Wang, J.; Crawford, R.J.; Ivanova, E.P.; Juodkazis, S. A bactericidal microfluidic device constructed using nano-textured black silicon. RSC Advances, 2016, 6(31), 26300-26306.
[http://dx.doi.org/10.1039/C6RA03864F]
[96]
Kunstmann-Olsen, C.; Hanczyc, M.M.; Hoyland, J.; Rasmussen, S.; Rubahn, H.G. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device. Sens. Actuators B Chem., 2016, 229, 7-13.
[http://dx.doi.org/10.1016/j.snb.2016.01.120]
[97]
Sugioka, K.; Xu, J.; Wu, D.; Hanada, Y.; Wang, Z.; Cheng, Y.; Midorikawa, K. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip, 2014, 14(18), 3447-3458.
[http://dx.doi.org/10.1039/C4LC00548A] [PMID: 25012238]
[98]
Ogończyk, D.; Węgrzyn, J.; Jankowski, P.; Dąbrowski, B.; Garstecki, P. Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip, 2010, 10(10), 1324-1327.
[http://dx.doi.org/10.1039/b924439e] [PMID: 20445888]
[99]
Wu, N.; Zhu, Y.; Brown, S.; Oakeshott, J.; Peat, T.S.; Surjadi, R.; Easton, C.; Leech, P.W.; Sexton, B.A. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip, 2009, 9(23), 3391-3398.
[http://dx.doi.org/10.1039/b911581a] [PMID: 19904406]
[100]
Young, E.W.K.; Berthier, E.; Guckenberger, D.J.; Sackmann, E.; Lamers, C.; Meyvantsson, I.; Huttenlocher, A.; Beebe, D.J. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal. Chem., 2011, 83(4), 1408-1417.
[http://dx.doi.org/10.1021/ac102897h] [PMID: 21261280]
[101]
Miró, M.; Hansen, E.H. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices. Anal. Chim. Acta, 2007, 600(1-2), 46-57.
[http://dx.doi.org/10.1016/j.aca.2007.02.035] [PMID: 17903463]
[102]
Trojanowicz, M. Kołacińska, K. Recent advances in flow injection analysis. Analyst (Lond.), 2016, 141(7), 2085-2139.
[http://dx.doi.org/10.1039/C5AN02522B] [PMID: 26906258]
[103]
Rapp, B.E.; Carneiro, L.; Länge, K.; Rapp, M. An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip, 2009, 9(2), 354-356.
[http://dx.doi.org/10.1039/B815690E] [PMID: 19107296]
[104]
Xu, L.; Lee, H.; Jetta, D.; Oh, K.W. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS). Lab Chip, 2015, 15(20), 3962-3979.
[http://dx.doi.org/10.1039/C5LC00716J] [PMID: 26329518]
[105]
Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W.K. Deep learning with microfluidics for biotechnology. Trends Biotechnol., 2019, 37(3), 310-324.
[http://dx.doi.org/10.1016/j.tibtech.2018.08.005] [PMID: 30301571]
[106]
Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med., 2016, 8(366), 366ra165-366ra165.
[http://dx.doi.org/10.1126/scitranslmed.aaf2593]
[107]
Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 2017, 11(10), 9614-9635.
[http://dx.doi.org/10.1021/acsnano.7b04898] [PMID: 28901746]
[108]
Weng, X.; Kang, Y.; Guo, Q.; Peng, B.; Jiang, H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens. Bioelectron., 2019, 132, 171-185.
[http://dx.doi.org/10.1016/j.bios.2019.03.009] [PMID: 30875629]
[109]
Xiao, G.; He, J.; Qiao, Y.; Wang, F.; Xia, Q.; Wang, X.; Yu, L.; Lu, Z.; Li, C.M. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and pH in human sweat. Adv. Fiber Mater., 2020, 2(5), 265-278.
[http://dx.doi.org/10.1007/s42765-020-00046-8]
[110]
Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(3), R502-R516.
[http://dx.doi.org/10.1152/ajpregu.00114.2004] [PMID: 15308499]
[111]
Snow, R.J.; Carey, M.F.; Stathis, C.G.; Febbraio, M.A.; Hargreaves, M. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J. Appl. Physiol., 2000, 88(5), 1576-1580.
[http://dx.doi.org/10.1152/jappl.2000.88.5.1576] [PMID: 10797115]
[112]
Terse-Thakoor, T.; Punjiya, M.; Matharu, Z.; Lyu, B.; Ahmad, M.; Giles, G.E.; Owyeung, R.; Alaimo, F.; Shojaei Baghini, M.; Brunyé, T.T.; Sonkusale, S. Thread-based multiplexed sensor patch for real-time sweat monitoring. NPJ Flexible Electron., 2020, 4(1), 18.
[113]
Erenas, M.M.; Carrillo-Aguilera, B.; Cantrell, K.; Gonzalez-Chocano, S.; Perez de Vargas-Sansalvador, I.M.; de Orbe-Payá, I.; Capitan-Vallvey, L.F. Real time monitoring of glucose in whole blood by smartphone. Biosens. Bioelectron., 2019, 136, 47-52.
[http://dx.doi.org/10.1016/j.bios.2019.04.024] [PMID: 31035026]
[114]
Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron., 2014, 54, 585-597.
[http://dx.doi.org/10.1016/j.bios.2013.10.075] [PMID: 24333570]
[115]
Oude Munnink, T.H.; Henstra, M.J.; Segerink, L.I.; Movig, K.L.L.; Brummelhuis-Visser, P. Therapeutic drug monitoring of monoclonal antibodies in inflammatory and malignant disease: Translating TNF-α experience to oncology. Clin. Pharmacol. Ther., 2016, 99(4), 419-431.
[http://dx.doi.org/10.1002/cpt.211] [PMID: 26265133]
[116]
Li, Y.; Yang, P.; Lei, N.; Ma, Y.; Ji, Y.; Zhu, C.; Wu, Y. Assembly of DNA-templated bioluminescent modules for amplified detection of protein biomarkers. Anal. Chem., 2018, 90(19), 11495-11502.
[http://dx.doi.org/10.1021/acs.analchem.8b02734] [PMID: 30188118]
[117]
Tomimuro, K.; Tenda, K.; Ni, Y.; Hiruta, Y.; Merkx, M.; Citterio, D. Thread-based bioluminescent sensor for detecting multiple antibodies in a single drop of whole blood. ACS Sens., 2020, 5(6), 1786-1794.
[http://dx.doi.org/10.1021/acssensors.0c00564] [PMID: 32441095]
[118]
Prabhu, A.; Singhal, H.; Giri Nandagopal, M.S.; Kulal, R.; Peralam Yegneswaran, P.; Mani, N.K. Knitting thread devices: Detecting Candida albicans using napkins and tampons. ACS Omega, 2021, 6(19), 12667-12675.
[http://dx.doi.org/10.1021/acsomega.1c00806] [PMID: 34056418]
[119]
Taheri, N.S.; Wang, Y.; Berean, K.; Chan, P.P.Y.; Kalantar-Zadeh, K. Lithium intercalated molybdenum disulfide-coated cotton thread as a viable nerve tissue scaffold candidate. ACS Appl. Nano Mater., 2019, 2(4), 2044-2053.
[http://dx.doi.org/10.1021/acsanm.9b00049]
[120]
Prabhu, A.; Nandagopal, M.S. G.; Peralam Yegneswaran, P.; Prabhu, V.; Verma, U.; Mani, N.K. Thread integrated smart-phone imaging facilitates early turning point colorimetric assay for microbes. RSC Advances, 2020, 10(45), 26853-26861.
[http://dx.doi.org/10.1039/D0RA05190J] [PMID: 35515782]
[121]
Jarujamrus, P.; Malahom, N.; Puchum, S.; Meelapsom, R.; Amatatongchai, M.; Siripinyanond, A.; Chairam, S.; Kulsing, C. Complexometric and argentometric titrations using thread-based analytical devices. Talanta, 2018, 183, 228-236.
[http://dx.doi.org/10.1016/j.talanta.2018.02.058] [PMID: 29567169]
[122]
Jarujamrus, P.; Prakobkij, A.; Puchum, S.; Chaisamdaeng, S.; Meelapsom, R.; Anutrasakda, W.; Amatatongchai, M.; Chairam, S.; Citterio, D. Acid-base titration using a microfluidic thread-based analytical device (µTAD). Analyst (Lond.), 2020, 145(13), 4457-4466.
[http://dx.doi.org/10.1039/D0AN00522C] [PMID: 32378683]
[123]
Rama, E.C.; Costa-García, A.; Fernández-Abedul, M.T. Pin-based electrochemical glucose sensor with multiplexing possibilities. Biosens. Bioelectron., 2017, 88, 34-40.
[http://dx.doi.org/10.1016/j.bios.2016.06.068] [PMID: 27396821]
[124]
Seth, M.; Mdetele, D.; Buza, J. Immunochromatographic thread-based test platform for diagnosis of infectious diseases. Microfluid. Nanofluidics, 2018, 22(4), 45.
[http://dx.doi.org/10.1007/s10404-018-2065-1]
[125]
Hanrahan, G.; Patil, D.G.; Wang, J. Electrochemical sensors for environmental monitoring: design, development and applications. J. Environ. Monit., 2004, 6(8), 657-664.
[http://dx.doi.org/10.1039/b403975k] [PMID: 15292947]
[126]
Mousavi, M.P.S.; Ainla, A.; Tan, E.K.W. K Abd El-Rahman, M.; Yoshida, Y.; Yuan, L.; Sigurslid, H.H.; Arkan, N.; Yip, M.C.; Abrahamsson, C.K.; Homer-Vanniasinkam, S.; Whitesides, G.M. Ion sensing with thread-based potentiometric electrodes. Lab Chip, 2018, 18(15), 2279-2290.
[http://dx.doi.org/10.1039/C8LC00352A] [PMID: 29987296]
[127]
Shimazu, R.; Tomimuro, K.; Ni, Y.; Malegori, C.; Hamedpour, V.; Hiruta, Y.; Oliveri, P.; Merkx, M.; Citterio, D. Microfluidic thread-based analytical devices for point-of-care detection of therapeutic antibody in blood. Sens. Actuators B Chem., 2022, 352, 131002.
[http://dx.doi.org/10.1016/j.snb.2021.131002]
[128]
Singhaphan, P.; Unob, F. Thread-based platform for nitrite detection based on a modified Griess assay. Sens. Actuators B Chem., 2021, 327, 128938.
[http://dx.doi.org/10.1016/j.snb.2020.128938]
[129]
Shafizadeh, M.; Abbasi-Moayed, S.; Hamzei, Z.; Keshavarz, A.; Yousefi, S.; Hormozi-Nezhad, M.R.; Golmohammadi, H. Chlorophyll-based wicking sensing bioplatform coupled with a smartphone-based sample-to-answer analytical device for on-site detection of picric acid. Biosens. Bioelectron., 2022, 2022, 11100150.
[130]
Seesaard, T.; Seaon, S.; Khunarak, C.; Lorwongtragool, P.; Kerdcharoen, T. A novel creation of thread-based ammonia gas sensors for wearable wireless security system. 2014 11th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), Nakhon Ratchasima, Thailand, 2014, pp. 1-4.
[http://dx.doi.org/10.1109/ECTICon.2014.6839727]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy