Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Enzyme-indole Pyrazole-capped SeNPs based Electrochemical Biosensor for Sensitive Detection of Adenosine Triphosphate

Author(s): Senzekile Majola, Myalowenkosi Sabela*, Robert Moonsamy Gengan and Talent Raymond Makhanya

Volume 19, Issue 4, 2023

Published on: 07 February, 2023

Page: [298 - 308] Pages: 11

DOI: 10.2174/1573411019666221227090358

Price: $65

conference banner
Abstract

In this study, an electrochemical biosensor for the indirect detection of Adenosine triphosphate (ATP) was developed, which was based on the immobilization of the multiwalled carbon nanotubes (MWCNTs) decorated with pyrazole-capped selenium nanoparticles (TRPIDC-CH3 SeNPs) and dual enzyme reaction (hexokinase and glucose oxidase) onto the surface of a bare glassy carbon electrode (GCE) as a working electrode. As confirmed byUltraviolet–visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) and High-resolution electron microscope (HRTEM), the TRPIDC-CH3 SeNPs successfully green synthesised using Allium sativum cloves and indole pyrazole ligand. The electrochemical study of ATP was performed using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques on a modified electrode for indirect detection of ATP where the required strong electroactive was [Fe(CN)6]3-/4-. The phosphate buffer solution (PBS; 0.1 M) was used as a supporting electrolyte at pH 7 containing 1 mM K4[Fe(CN)6]/K3[Fe(CN)6] as the redox probe operated at an average potential of 0.23 V. The electrochemical enzymic biosensor showed outstanding sensitivity, good stability, and satisfactory reproducibility with an average RSD of 2.30%. The ATP was quantifiable in spiked tablets with a limit of detection (LOD) of 0.015 mM and a limit of quantification (LOQ) of 0,050 mM.

Graphical Abstract

[1]
Manjubaashini, N.; Sephra, P.J.; Nehru, K.; Sivakumar, M.; Thangadurai, T.D. Electrochemical determination of ATP at rhodamine6G capped gold nanoparticles modified carbon felt electrode at pH 7.2. Sens. Actuators B Chem., 2019, 281, 1054-1062.
[http://dx.doi.org/10.1016/j.snb.2018.10.149]
[2]
Wang, P.; Cheng, Z.; Chen, Q.; Qu, L.; Miao, X.; Feng, Q. Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sens. Actuators B Chem., 2018, 256, 931-937.
[http://dx.doi.org/10.1016/j.snb.2017.10.024]
[3]
Freitas, M.C.; Cholewa, J.M.; Gerosa-Neto, J.; Gonçalves, D.C.; Caperuto, E.C.; Lira, F.S.; Rossi, F.E. A single dose of oral ATP supplementation improves performance and physiological response during lower body resistance exercise in recreational resistance-trained males. J. Strength Cond. Res., 2019, 33(12), 3345-3352.
[http://dx.doi.org/10.1519/JSC.0000000000002198] [PMID: 29045315]
[4]
Peteu, S.F.; Russell, S.A.; Galligan, J.J.; Swain, G.M. An electrochemical ATP biosensor with enzymes entrapped within a PEDOT Film. Electroanalysis, 2020, 33, 1-12.
[5]
Zhu, Q.; Cai, Y.; Fang, L.; Liang, X.; Ye, X.; Liang, B. 2018 IEEE SENSORS, New Delhi, India, October 28-31, 2018, IEEE, 2018, 1- 3 2018.
[6]
Lu, L.; Si, J.C.; Gao, Z.F.; Zhang, Y.; Lei, J.L.; Luo, H.Q.; Li, N.B. Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection. Biosens. Bioelectron., 2015, 63, 14-20.
[http://dx.doi.org/10.1016/j.bios.2014.07.007] [PMID: 25048448]
[7]
Chen, Y.; Zhao, J.; Du, J.; Xu, G.; Tang, C.; Geng, B. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca2+ uptake via KATP channel and PI3K/Akt pathway. Life Sci., 2012, 91(7-8), 271-278.
[http://dx.doi.org/10.1016/j.lfs.2012.07.026] [PMID: 22884808]
[8]
Feng, J.H.; Wei, K.Z.; Gao, J.P.; Xu, X. Determination of adenosine phosphates in mouse myocardium tissue by HPLC with UV detection and using porous graphite carbon column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1145, 122110.
[http://dx.doi.org/10.1016/j.jchromb.2020.122110] [PMID: 32315974]
[9]
Tian, Y.F.; Zhou, W.; Yin, B.C.; Ye, B.C. Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core–satellite assemblies. Anal. Methods, 2017, 9(42), 6038-6043.
[http://dx.doi.org/10.1039/C7AY02096A]
[10]
Liu, Z.; Zhong, Y.; Hu, Y.; Yuan, L.; Luo, R.; Chen, D.; Wu, M.; Huang, H.; Li, Y. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness. Food Chem., 2019, 270, 573-578.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.041] [PMID: 30174088]
[11]
Sang, F.; Zhang, X.; Liu, J.; Yin, S.; Zhang, Z. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 217, 122-127.
[http://dx.doi.org/10.1016/j.saa.2019.03.081] [PMID: 30928837]
[12]
Harshitha, B.T.; Manjunatha, J.G.; Pushpanjali, P.A.; Karthik, C.S.; Sandeep, S.; Mallu, P.; D’Souza, E.; Sreeharsha, N.; Asdaq, S.M.B.; Anwer, M.K. Efficient electrochemical determination of catechol with hydroquinone at poly (L‐Serine) layered carbon paste electrode. ChemistrySelect, 2021, 6(26), 6764-6772.
[http://dx.doi.org/10.1002/slct.202101809]
[13]
Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N.; Amrutha, B.M.; Raril, C. ALOthman, Z.A.; Alanazi, A.M.; Pandith, A. Fabrication of poly(ʟ-Aspartic acid) Layer on graphene nanoplatelets paste electrode for riboflavin sensing. Mater. Chem. Phys., 2022, 276, 125392.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125392]
[14]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Dolatabad, M. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[15]
Foroughi, M.M.; Jahani, S. Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem. J., 2022, 179, 107546.
[http://dx.doi.org/10.1016/j.microc.2022.107546]
[16]
Nia, N.A.; Foroughi, M.M.; Jahani, S.; Zandi, M.S.; Rastakhiz, N. Fabrication of a new electrochemical sensor for simultaneous determination of codeine and diclofenac using synergic effect of feather-Type La3+-ZnO nano-flower. J. Electrochem. Soc., 2019, 166(6), B489-B497.
[http://dx.doi.org/10.1149/2.1051906jes]
[17]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[18]
Chung, S.; Zhou, R.; Webster, T.J. Green synthesized BSA-Coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth. Int. J. Nanomedicine, 2020, 15, 115-124.
[http://dx.doi.org/10.2147/IJN.S193886] [PMID: 32021168]
[19]
Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. J. Cluster Sci., 2017, 28(1), 551-563.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[20]
Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C, 2020, 106, 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[21]
Dadiboyena, S.; Nefzi, A. Synthesis of functionalized tetrasubstituted pyrazolyl heterocycles – A review. Eur. J. Med. Chem., 2011, 46(11), 5258-5275.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.016] [PMID: 21978837]
[22]
Weber, C. The challenge of ATP biosensing-application, investigation and further development of ATP microbiosensors, Doctoral degree; Ulm University: Ulm, 2014.
[23]
Makhanya, T.R. Synthesis, characterisation and biological activity of selected pyrazoles and naphthyrides; Doctor of Philosophy in Chemistry Durban University of Technology: Durban, 2019.
[24]
Elnoby, R.M.; Mourad, M.H.; Elnaby, S.L.H.; Abou Kana, M.T.H. Monocrystalline solar cells performance coated by silver nanoparticles: Effect of NPs sizes from point of view Mie theory. Opt. Laser Technol., 2018, 101, 208-215.
[http://dx.doi.org/10.1016/j.optlastec.2017.11.019]
[25]
Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces, 2007, 58(1), 3-7.
[http://dx.doi.org/10.1016/j.colsurfb.2006.08.005] [PMID: 16997536]
[26]
Chen, C.; Liu, C.H.; Cai, J.; Zhang, W.; Qi, W.L.; Wang, Z.; Liu, Z.B.; Yang, Y. Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts. Food Control, 2018, 86, 117-125.
[http://dx.doi.org/10.1016/j.foodcont.2017.11.015]
[27]
Rose, P.; Moore, P.K.; Zhu, Y.Z. Garlic and gaseous mediators. Trends Pharmacol. Sci., 2018, 39(7), 624-634.
[http://dx.doi.org/10.1016/j.tips.2018.03.009] [PMID: 29706261]
[28]
Phan, A.; Netzel, G.; Chhim, P.; Netzel, M.; Sultanbawa, Y. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars. Foods, 2019, 8(9), 358.
[http://dx.doi.org/10.3390/foods8090358] [PMID: 31450776]
[29]
Yee, M.M. Investigation of Chemical Composition, Antimicrobial and Antioxidant Activities of Allium wallichii Kunth (Garlic). Bulb, 2019, 54, 30-41.
[30]
Maccelli, A.; Cesa, S.; Cairone, F.; Secci, D.; Menghini, L.; Chiavarino, B.; Fornarini, S.; Crestoni, M.E.; Locatelli, M. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis. J. Mass Spectrom., 2020, 55(11), e4525.
[http://dx.doi.org/10.1002/jms.4525] [PMID: 32368854]
[31]
Sut, S.; Maggi, F.; Bruno, S.; Badalamenti, N.; Quassinti, L.; Bramucci, M.; Beghelli, D.; Lupidi, G.; Dall’Acqua, S. Hairy garlic (Allium subhirsutum) from sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules, 2020, 25(12), 2837.
[http://dx.doi.org/10.3390/molecules25122837] [PMID: 32575531]
[32]
Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Proces. Synthes., 2019, 8(1), 399-407.
[http://dx.doi.org/10.1515/gps-2019-0007]
[33]
Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience, 2019, 9(1), 105-116.
[http://dx.doi.org/10.1007/s12668-018-0566-8]
[34]
Gunti, L.; Kanak, K.R.; Mahata, P.K.; Dass, R.S. Green synthesis of selenium nano-metalloid from the extract of cabbage (Brassica oleracea var. capitata) leaf and its antimicrobial activities. J. Nanosci. Nanoeng. Appl., 2019, 9, 12-20.
[35]
Chandramohan, S.; Sundar, K.; Muthukumaran, A. Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos. IET Nanobiotechnol., 2019, 13(3), 275-281.
[http://dx.doi.org/10.1049/iet-nbt.2018.5228] [PMID: 31053690]
[36]
Satgurunathan, T.; Bhavan, P.S.; Komathi, S. Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res. J. Chem. Environ., 2017, 21, 1-12.
[37]
Ezhuthupurakkal, P.B.; Polaki, L.R.; Suyavaran, A.; Subastri, A.; Sujatha, V.; Thirunavukkarasu, C. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater. Sci. Eng. C, 2017, 74, 597-608.
[http://dx.doi.org/10.1016/j.msec.2017.02.003] [PMID: 28254334]
[38]
Sabela, M.I.; Makhanya, T.; Kanchi, S.; Shahbaaz, M.; Idress, D.; Bisetty, K. One-pot biosynthesis of silver nanoparticles using Iboza riparia and Ilex mitis for cytotoxicity on human embryonic kidney cells. J. Photochem. Photobiol. B, 2018, 178, 560-567.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.010] [PMID: 29253815]
[39]
Sarpong, K.A.; Zhang, K.; Luan, Y.; Cao, Y.; Xu, W. Development and application of a novel electrochemical sensor based on AuNPS and difunctional monomer-MIPs for the selective determination of tetrabromobisphenol-S in water samples. Microchem. J., 2020, 154, 104526.
[http://dx.doi.org/10.1016/j.microc.2019.104526]
[40]
Dar, R.A.; Naikoo, G.A.; Hassan, I.U.; Shaikh, A.M.H. Electrochemical behavior of kaempferol and its determination in presence of quercetin employing multi-walled carbon nanotube modified carbon paste electrode. Anal. Chem. Res., 2016, 7, 1-8.
[http://dx.doi.org/10.1016/j.ancr.2015.11.002]
[41]
Sander, M.; Hofstetter, T.B.; Gorski, C.A. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches. Environ. Sci. Technol., 2015, 49(10), 5862-5878.
[http://dx.doi.org/10.1021/acs.est.5b00006] [PMID: 25856208]
[42]
Li, Z.; Yin, J.; Gao, C.; Sheng, L.; Meng, A. A glassy carbon electrode modified with graphene oxide, poly(3,4-ethylenedioxythiophene), an antifouling peptide and an aptamer for ultrasensitive detection of adenosine triphosphate. Mikrochim. Acta, 2019, 186(2), 90.
[http://dx.doi.org/10.1007/s00604-018-3211-x] [PMID: 30631940]
[43]
Liu, Y.; Cui, K.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. A self-powered origami paper analytical device with a pop-up structure for dual-mode electrochemical sensing of ATP assisted by glucose oxidase-triggered reaction. Biosens. Bioelectron., 2020, 148, 111839.
[http://dx.doi.org/10.1016/j.bios.2019.111839] [PMID: 31706177]
[44]
Han, L.J.; Kong, Y.J.; Zhang, X.M.; Hou, G.Z.; Chen, H.C.; Zheng, H.G. Fluorescence recognition of adenosine triphosphate and uric acid by two Eu-based metal–organic frameworks. J. Mater. Chem. Mater. Opt. Electron. Devices, 2021, 9(18), 6051-6061.
[http://dx.doi.org/10.1039/D1TC01204E]
[45]
Yan, X.; Jiang, M.; Jian, Y.; Luo, J.; Xue, X.; Chen, X.; Zheng, X.; Ai, F. Simultaneous aptasensor assay of ochratoxin A and adenosine triphosphate in beer based on Fe3O4 and SiO2 nanoparticle as carriers. Anal. Methods, 2020, 12(17), 2253-2259.
[http://dx.doi.org/10.1039/D0AY00311E]
[46]
Akhova, A.V.; Tkachenko, A.G. HPLC–UV method for simultaneous determination of adenosine triphosphate and its metabolites in Mycobacterium smegmatis. Acta Chromatogr., 2019, 31(1), 45-48.
[http://dx.doi.org/10.1556/1326.2017.00344]
[47]
Ren, L.; Wei, X.; Hang, X.; Zhang, P.; Zhang, J.; Zhang, Q.; Jiang, L. The 20th Annual Conference and 9th International Conference of Chinese Society of Micro-Nano Technology, Zhengzhou, China, October 19-22, 2018 Journal of Physics: Conference Series: IOP Publishing, 2019.
[48]
Kalaiyarasi, J.; Pandian, K. Selective and sensitive electrochemical detection of ATP in human serum samples at ZrO2 hallow spheres modified GCE. J. Electrochem. Soc., 2021, 168(5), 057524.
[http://dx.doi.org/10.1149/1945-7111/abef48]
[49]
Li, J.; Wang, X.; Liu, W.; Li, X.; Yang, L.; Ma, H.; Wu, R.; Wei, Q. Highly selective electrochemiluminescence aptasensor coupled with mesoporous Fe3O4@Cu@Cu2O as co-reaction accelerator for ATP assay based on target-triggered emitter release. Sens. Actuators B Chem., 2021, 346, 130581.
[http://dx.doi.org/10.1016/j.snb.2021.130581]
[50]
Nguyen Thi, D.; Nguyen Thi, N.; Vu, A.T.; Tran, T.Q.; Nguyen Ngoc, T.; Luong Xuan, D.; Ta Thi, T.; Nguyen Xuan, T. Pyridinedicarboxylate-Tb(III) complex-based luminescent probes for ATP monitoring. J. Anal. Methods Chem., 2021, 2021, 7030158.
[http://dx.doi.org/10.1155/2021/7030158]
[51]
Mpanza, T.; Sabela, M.I.; Mathenjwa, S.S.; Kanchi, S.; Bisetty, K. Electrochemical determination of capsaicin and silymarin using a glassy carbon electrode modified by gold nanoparticle decorated multiwalled carbon nanotubes. Anal. Lett., 2014, 47(17), 2813-2828.
[http://dx.doi.org/10.1080/00032719.2014.924010]
[52]
Owen, P.D. Limitations of the relative standard deviation of win percentages for measuring competitive balance in sports leagues. Econ. Lett., 2010, 109(1), 38-41.
[http://dx.doi.org/10.1016/j.econlet.2010.07.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy