Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Hyperbranched Nanostructure Drug Delivery Carrier: Dendrimer

Author(s): Sudhanshu Mishra*

Volume 13, Issue 1, 2023

Published on: 16 March, 2023

Article ID: e140223213668 Pages: 6

DOI: 10.2174/2210681213666230214103113

Price: $65

conference banner
Abstract

Dendrimers are nanosized macromolecules with a hyperbranched globular shape that are commonly employed for drug delivery. They have shown to be both complex and valuable due to their high level of surface functioning, adaptability, and unique features. Furthermore, dendrimers have a wide range of applications in supramolecular chemistry, mainly in self-assembly processes. The potential of this macromolecule to construct a definite architectural design in terms of size, shape, branching length, density, and its well-defined molecular structure and segmented spherical construction has sparked a wide range of research on the interactions that occur between biological organisms. Dendrimers are "grown" from a central core in a repetitive divergent manufacturing process, with each succeeding step representing a new "generation" of the dendrimer. In comparison to linear polymers, dendrimers have more precisely controlled structures, globular in shape, and have a specific molecular weight rather than a range of molecular weights. The divergence in dendritic structure customization provides a one-of-a-kind framework for drug delivery to acute and chronic diseases. The development of efficient drug delivery systems based on dendrimers has attracted much interest in recent years. This review aims to discuss some important perspectives and recent patents regarding dendrimers.

Graphical Abstract

[1]
Nikzamir, M.; Hanifehpour, Y.; Akbarzadeh, A.; Panahi, Y. Applications of dendrimers in nanomedicine and drug delivery: A review. J. Inorg. Organomet. Polym. Mater., 2021, 31(6), 2246-2261.
[http://dx.doi.org/10.1007/s10904-021-01925-2]
[2]
Kumar, K.; Singh, A.; Gupta, A. A role of dendrimers in drug delivery for cancer therapy. Int. J. Indigenous Herbs Drugs, 2021, pp. 09-16.
[3]
Öztürk, K. Eroğlu, H.; Çalış S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[4]
Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng., 2022, 16(1), 18.
[http://dx.doi.org/10.1186/s13036-022-00298-5] [PMID: 35879774]
[5]
Dubey, S.K.; Salunkhe, S.; Agrawal, M.; Kali, M.; Singhvi, G.; Tiwari, S.; Saraf, S.; Saraf, S.; Alexander, A. Understanding the pharmaceutical aspects of dendrimers for the delivery of anticancer drugs. Curr. Drug Targets, 2020, 21(6), 528-540.
[http://dx.doi.org/10.2174/1389450120666191031092259] [PMID: 31670619]
[6]
Corrales, D.G.; Rojas, N.F.; Vindas, G.S.; Muñoz, M.S.; Rojas, M.C.; Brenes, D.M.; Salas, M.F.; Redondo, G.M. Dendrimers and their applications. J. Drug Deliv. Ther., 2022, 12(1-S), 151-158.
[http://dx.doi.org/10.22270/jddt.v12i1-S.5307]
[7]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[8]
Rai, A.K.; Tiwari, R.; Maurya, P.; Yadav, P. Dendrimers: A potential carrier for targeted drug delivery system. Pharm. Biol. Eval., 2016, 3(3), 275-287.
[9]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Corrigendum to “Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection”. J. Nanomater., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/3020287]
[10]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials, 2019, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[11]
Augustus, E.N.; Allen, E.T.; Nimibofa, A.; Donbebe, W. A review of synthesis, characterization and applications of functionalized dendrimers. Am. J. Pol. Sci., 2017, 7(1), 8-14.
[12]
Caminade, A.M.; Hameau, A.; Majoral, J.P. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans., 2016, 45(5), 1810-1822.
[http://dx.doi.org/10.1039/C5DT03047A] [PMID: 26525036]
[13]
Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 146.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[14]
Shao, N.; Su, Y.; Hu, J.; Zhang, J.; Zhang, H.; Cheng, Y. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int. J. Nanomedicine, 2011, 6, 3361-3372.
[PMID: 22267921]
[15]
Cao, Y.; Nguyen, G.K.T.; Chuah, S.; Tam, J.P.; Liu, C.F. Butelase-mediated ligation is an efficient bioconjugation method for the synthesis of peptide dendrimers. Bioconjug. Chem., 2016, 27(11), 2592-2596.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00538] [PMID: 27723303]
[16]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[17]
Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138.
[http://dx.doi.org/10.1039/C9TB02289A] [PMID: 31971528]
[18]
Wu, L.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031] [PMID: 25654320]
[19]
Labieniec-Watala, M.; Watala, C. PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J. Pharm. Sci., 2015, 104(1), 2-14.
[http://dx.doi.org/10.1002/jps.24222] [PMID: 25363074]
[20]
Sun, W.; Mignani, S.; Shen, M.; Shi, X. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov. Today, 2016, 21(12), 1873-1885.
[http://dx.doi.org/10.1016/j.drudis.2016.06.028] [PMID: 27388223]
[21]
Khanam, S.; Rai, S.K.; Tewari, A.K. Advancement in the sulfone-based dendrimers: From synthesis to application. Adv. Mater. Lett., 2017, 8, 1005-1019.
[http://dx.doi.org/10.5185/amlett.2017.1609]
[22]
Sharma, R.; Sharma, A.; Kambhampati, S.P.; Reddy, R.R.; Zhang, Z.; Cleland, J.L.; Kannan, S.; Kannan, R.M. Scalable synthesis and validation of PAMAM dendrimer- N -acetyl cysteine conjugate for potential translation. Bioeng. Transl. Med., 2018, 3(2), 87-101.
[http://dx.doi.org/10.1002/btm2.10094] [PMID: 30065965]
[23]
Palmerston Mendes, L.; Pan, J.; Torchilin, V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[24]
Wang, T.; Zhang, Y.; Wei, L.; Teng, Y.G.; Honda, T.; Ojima, I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega, 2018, 3(4), 3717-3736.
[http://dx.doi.org/10.1021/acsomega.8b00409] [PMID: 29732446]
[25]
Leiro, V.; Garcia, J.P.; Tomás, H.; Pêgo, A.P. The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug. Chem., 2015, 26(7), 1182-1197.
[http://dx.doi.org/10.1021/bc5006224] [PMID: 25826129]
[26]
Barman, S.R.; Nain, A.; Jain, S.; Punjabi, N.; Mukherji, S.; Satija, J. Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(16), 2368-2384.
[http://dx.doi.org/10.1039/C7TB03344C] [PMID: 32254455]
[27]
Baig, T.; Nayak, J.; Dwivedi, V.; Singh, A.; Srivastava, A.; Tripathi, P.K. A review about dendrimers: synthesis, types, characterization, and applications. Int. J. Adv. Pharm. Biol. Chem., 2015, 4(1), 44-59.
[28]
Chauhan, A. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy