Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Systematic Review Article

Medicinal Plants used Traditionally in Sudan to Treat Viral Infections Related to the Signs and Symptoms of COVID-19: A Systematic Review

Author(s): Sakina Yagi* and Ahmed Yagi

Volume 9, Issue 6, 2023

Published on: 20 February, 2023

Article ID: e060223213450 Pages: 16

DOI: 10.2174/2215083809666230206114117

Price: $65

Abstract

Background: The rapid global spread of the COVID-19 pandemic urged scientists to search for effective and safe anti-coronavirus drugs from natural resources. Through centuries, traditional medicinal plants have been providing cure for diseases and general health care worldwide.

Objective: The main aim of this review was to explore and summarize the research works on the different plants used traditionally in Sudan to treat signs and symptoms of COVID-19 and respiratory diseases, characterizing their antiviral activities and exploring the different phytochemicals present in these plants.

Methods: The current review was carried out in line with the recommendations of the PRISMA 2020 statement. Information on plants traditionally used in Sudan to treat the signs and symptoms of COVID-19 and respiratory diseases was obtained from traditional medicine books and published articles, as well as the daily practice by ordinary people.

Results: This article illustrated the use of 27 plant species belonging to 15 families in Sudanese traditional medicine to treat signs and symptoms of COVID-19 and respiratory diseases. Leguminosae/ Fabaceae was found to be the most represented family (7 species), followed by Combretaceae (3 species) and Capparidaceae and Malvaceae (2 species each). From these plants, about 11 plant species were studied for their antiviral activity against at least one virus, and 5 plants, namely Adansonia digitata, Boscia senegalensis, Hibiscus sabdariffa, Nigella sativa, and Mangifera indica, were tested for their antiviral activity against influenza viruses. The phytoconstituents of the listed plants were summarized, and the antiviral activity of their isolated bioactive compounds was highlighted.

Conclusion: The review could provide an in-depth theoretical basis and valuable data for designing future studies.

Graphical Abstract

[1]
Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol., 2015, 5(1), 27060.
[http://dx.doi.org/10.3402/iee.v5.27060] [PMID: 26112265]
[2]
Louten, J. Virus structure and classification. Essential Human Virology, 1st ed; Academic Press, 2016.
[3]
Dimitrov, D.S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol., 2004, 2(2), 109-122.
[http://dx.doi.org/10.1038/nrmicro817] [PMID: 15043007]
[4]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[5]
Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[6]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[7]
Zhang, D.; Wu, K.; Zhang, X.; Deng, S.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[8]
Ahn, J.Y.; Sohn, Y.; Lee, S.H.; Cho, Y.; Hyun, J.H.; Baek, Y.J.; Jeong, S.J.; Kim, J.H.; Ku, N.S.; Yeom, J.S.; Roh, J.; Ahn, M.Y.; Chin, B.S.; Kim, Y.S.; Lee, H.; Yong, D.; Kim, H.O.; Kim, S.; Choi, J.Y. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J. Korean Med. Sci., 2020, 35(14), e149.
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]
[9]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[10]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[11]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[12]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavireritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[13]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[14]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[15]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[16]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[17]
Schippmann, U.; Leaman, J.D.; Cunningham, A.B. Impact of cultivation and gathering of medicinal plants on biodiversity: Global trends and issues; Inter-Departmental Working Group on Biological Diversity for Food and Agriculture: Rome, 2002.
[18]
Langeder, J.; Grienke, U.; Chen, Y.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Natural products against acute respiratory infections: Strategies and lessons learned. J. Ethnopharmacol., 2020, 248, 112298.
[http://dx.doi.org/10.1016/j.jep.2019.112298] [PMID: 31610260]
[19]
Umar, H.I.; Josiah, S.S.; Saliu, T.P.; Jimoh, T.O.; Ajayi, A.; Danjuma, J.B. In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. J. Taibah Univ. Med. Sci., 2021, 16(2), 162-176.
[http://dx.doi.org/10.1016/j.jtumed.2020.12.005] [PMID: 33437230]
[20]
Visseaux, B.; Burdet, C.; Voiriot, G.; Lescure, F.X.; Chougar, T.; Brugière, O.; Crestani, B.; Casalino, E.; Charpentier, C.; Descamps, D.; Timsit, J.F.; Yazdanpanah, Y.; Houhou-Fidouh, N. Prevalence of respiratory viruses among adults, by season, age, respiratory tract region and type of medical unit in Paris, France, from 2011 to 2016. PLoS One, 2017, 12(7), e0180888.
[http://dx.doi.org/10.1371/journal.pone.0180888] [PMID: 28708843]
[21]
Omrani, M.; Keshavarz, M.; Nejad Ebrahimi, S.; Mehrabi, M.; McGaw, L.J.; Ali Abdalla, M.; Mehrbod, P. Potential natural products against respiratory viruses: A perspective to develop anti-COVID-19. Front. Pharmacol., 2021, 11, 586993.
[http://dx.doi.org/10.3389/fphar.2020.586993] [PMID: 33679384]
[22]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[23]
Maideen, N.M.P. Prophetic medicine-Nigella sativa (Black cumin seeds) – Potential herb for COVID-19? J. Pharmacopuncture, 2020, 23(2), 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[24]
Imran, M.; Khan, S.A. Abida; Alshammari, M.K.; Alkhaldi, S.M.; Alshammari, F.N.; Kamal, M.; Alam, O.; Asdaq, S.M.B.; Alzahrani, A.K.; Jomah, S. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules, 2022, 27(9), 2750.
[http://dx.doi.org/10.3390/molecules27092750] [PMID: 35566101]
[25]
Takeda, Y.; Okuyama, Y.; Nakano, H.; Yaoita, Y.; Machida, K.; Ogawa, H.; Imai, K. Antiviral activities of Hibiscus sabdarifa L. tea extract against human infuenza A virus rely largely on acidic pH but partially on a low-pH-independent mechanism. Food Environ. Virol., 2020, 12(1), 9-19.
[http://dx.doi.org/10.1007/s12560-019-09408-x] [PMID: 31620998]
[26]
Hassan, S.T.S.; Švajdlenka, E.; Berchová-Bímová, K. Hibiscus sabdarifa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules, 2017, 22(5), 722.
[http://dx.doi.org/10.3390/molecules22050722] [PMID: 28468298]
[27]
Vimalanathan, S.; Hudson, J.B. Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds. J. Med. Plants Res., 2009, 3, 576-582.
[28]
Elkhateeb, A.; Hussein, S.R.; Salem, M.M.; El Negoumy, S.I.M. LC-ESI-MS analysis, antitumor and antiviral activities of Bosica senegalensis aqueous methanolic extract. Egypt. J. Chem., 2019, 62(1), 77-83.
[29]
Al Rawi, A.A.S.; Al Dulaimi, H.S.H.; Al Rawi, M.A.A. Antiviral activity of Mangifera extract on influenza virus cultivated in different cell cultures. J. Pure Appl. Microbiol., 2019, 13(1), 455-458.
[http://dx.doi.org/10.22207/JPAM.13.1.50]
[30]
Asres, K.; Seyoum, A.; Veeresham, C.; Bucar, F.; Gibbons, S. Naturally derived anti-HIV agents. Phytother. Res., 2005, 19(7), 557-581.
[http://dx.doi.org/10.1002/ptr.1629] [PMID: 16161055]
[31]
Rehman, S.; Ashfaq, U.A.; Riaz, S.; Javed, T.; Riazuddin, S. Antiviral activity of Acacia nilotica against hepatitis C virus in liver infected cells. Virol. J., 2011, 8(1), 220.
[http://dx.doi.org/10.1186/1743-422X-8-220] [PMID: 21569385]
[32]
Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease. Phytother. Res., 1999, 13(1), 31-36.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199902)13:1<31:AID-PTR381>3.0.CO;2-C] [PMID: 10189947]
[33]
Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res., 2000, 14(7), 510-516.
[http://dx.doi.org/10.1002/1099-1573(200011)14:7<510:AID-PTR646>3.0.CO;2-B] [PMID: 11054840]
[34]
Raheel, R.; Ashraf, M.; Javeed, A.; Bashir, R.; Munir, N.; Altaf, I. Evaluation of antiviral and cytotoxic potential of ethanolic extract of Acacia nilotica against peste des petits ruminants virus in vitro cell culture. Indian J. Anim. Sci., 2013, 86(11), 1274-1275.
[35]
Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Ochora, J.; Muthaura, C.N.; Mungai, G.M.; Kofi-Tsekpo, M.W. The anti-viral effect of Acacia mellifera, Melia azedarach and Prunus africana, extracts against herpes simplex virus type 1 infection in mice. J. Trop. Microbiol. Biotechnol., 2006, 2(1)
[http://dx.doi.org/10.4314/jtmb.v2i1.35440]
[36]
Parker, M.E.; Chabot, S.; Ward, B.J.; Johns, T. Traditional dietary additives of the Maasai are antiviral against the measles virus. J. Ethnopharmacol., 2007, 114(2), 146-152.
[http://dx.doi.org/10.1016/j.jep.2007.06.011] [PMID: 17870263]
[37]
Taha, M. Antiviral effect of ethanolic extract of Salvadora persica (siwak) on herpes simplex virus infection. Al-Rafidain Dental Journal, 2007, 8(1), 50-55.
[http://dx.doi.org/10.33899/rden.2007.9041]
[38]
Anani, K.; de Souza, C.; Akpagana, K.; Tower, G.H.N.; Arnason, J.T.; Gbeassor, M.; Hudson, J.B. Investigation of medicinal plants of togo for antiviral and antimicrobial activities. Pharm. Biol., 2000, 38(1), 40-45.
[http://dx.doi.org/10.1076/1388-0209(200001)38:1;1-B;FT040] [PMID: 21214438]
[39]
Okoh, O.O.; Obiiyeke, G.E.; Nwodo, U.U.; Okoh, A.I. Ethanol extract and chromatographic fractions of Tamarindus indica stem bark inhibits Newcastle disease virus replication. Pharm. Biol., 2017, 55(1), 1806-1808.
[http://dx.doi.org/10.1080/13880209.2017.1331364] [PMID: 28539068]
[40]
Mohamed, I.E.; El Nur, E.E.; Choudhary, M.I.; Khan, S.N. Bioactive natural products from two Sudanese medicinal plants Diospyros mespiliformis and Croton zambesicus. Rec. Nat. Prod., 2009, 3(4), 198-203.
[41]
Donalisio, M.; Nana, H.M.; Ngono Ngane, R.A.; Gatsing, D.; Tiabou Tchinda, A.; Rovito, R.; Cagno, V.; Cagliero, C.; Boyom, F.F.; Rubiolo, P.; Bicchi, C.; Lembo, D. In vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complement. Altern. Med., 2013, 13(1), 266.
[http://dx.doi.org/10.1186/1472-6882-13-266] [PMID: 24131916]
[42]
Lee, J.B.; Yamagishi, C.; Hayashi, K.; Hayashi, T. Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci. Biotechnol. Biochem., 2011, 75(3), 459-465.
[http://dx.doi.org/10.1271/bbb.100645] [PMID: 21389629]
[43]
Lee, N.K.; Lee, J.H.; Lim, S.M.; Lee, K.A.; Kim, Y.B.; Chang, P.S.; Paik, H.D. Short communication: Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J. Dairy Sci., 2014, 97(9), 5383-5386.
[http://dx.doi.org/10.3168/jds.2014-8016] [PMID: 25022686]
[44]
Ubillas, R.; Jolad, S.D.; Bruening, R.C.; Kernan, M.R.; King, S.R.; Sesin, D.F.; Barrett, M.; Stoddart, C.A.; Flaster, T.; Kuo, J.; Ayala, F.; Meza, E.; Castañel, M.; Mcmeekin, D.; Rozhon, E.; Tempesta, M.S.; Barnard, D.; Huffman, J.; Smee, D.; Sidwell, R.; Soike, K.; Brazier, A.; Safrin, S.; Orlando, R.; Kenny, P.T.M.; Berova, N.; Nakanishi, K. SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine, 1994, 1(2), 77-106.
[http://dx.doi.org/10.1016/S0944-7113(11)80026-7] [PMID: 23195881]
[45]
Corlay, N.; Delang, L.; Girard-Valenciennes, E.; Neyts, J.; Clerc, P.; Smadja, J.; Guéritte, F.; Leyssen, P.; Litaudon, M. Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia, 2014, 97, 87-91.
[http://dx.doi.org/10.1016/j.fitote.2014.05.015] [PMID: 24879904]
[46]
Ogbole, O.O.; Akinleye, T.E.; Segun, P.A.; Faleye, T.C.; Adeniji, A.J. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol. J., 2018, 15(1), 110.
[http://dx.doi.org/10.1186/s12985-018-1022-7] [PMID: 30021589]
[47]
Jain, R.; Saxena, U.; Rathore, K.; Jain, S.C. Bioactivities of polyphenolics from the roots of Bauhinia racemosa. Arch. Pharm. Res., 2008, 31(12), 1525-1529.
[http://dx.doi.org/10.1007/s12272-001-2145-7] [PMID: 19099218]
[48]
Yoosook, C.; Bunyapraphatsara, N.; Boonyakiat, Y.; Kantasuk, C. Anti-herpes simplex virus activities of crude water extracts of Thai Medicinal Plants. Phytomedicine, 2000, 6(6), 411-419.
[http://dx.doi.org/10.1016/S0944-7113(00)80068-9] [PMID: 10715843]
[49]
Ibrahim, A.K.; Youssef, A.I.; Arafa, A.S.; Ahmed, S.A. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat. Prod. Res., 2013, 27(22), 2149-2153.
[http://dx.doi.org/10.1080/14786419.2013.790027] [PMID: 23651316]
[50]
Di Sotto, A; Checconi, P; Celestino, I; Locatelli, M; Carissimi, S; De Angelis, M Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus L. Oxid. Med. Cell. Longev., 2018, 2018
[51]
Mehrbod, P.; Abdalla, M.A.; Fotouhi, F.; Heidarzadeh, M.; Aro, A.O.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement. Altern. Med., 2018, 18(1), 184-210.
[http://dx.doi.org/10.1186/s12906-018-2246-1] [PMID: 29903008]
[52]
Li, N.; Cao, L.; Ding, G.; Xiao, W. Antibacterial and antiviral effects of strictosamide. Chin. J. Exp. Tradit. Med. Formul., 2012, 18, 170-174.
[53]
Li, Z.; Li, Z.; Lin, Y.; Meng, Z.; Ding, G.; Cao, L.; Li, N.; Liu, W.; Xiao, W.; Wu, X.; Xu, J. Synthesis and biological evaluation of strictosamide derivatives with improved antiviral and antiproliferative activities. Chem. Biol. Drug Des., 2015, 86(4), 523-530.
[http://dx.doi.org/10.1111/cbdd.12515] [PMID: 25589048]
[54]
Zheng, M.S.; Lu, Z.Y. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin. Med. J. (Engl.), 1990, 103(2), 160-165.
[PMID: 2167819]
[55]
Zhu, X.M.; Song, J.X.; Huang, Z.Z.; Wu, Y.M.; Yu, M.J. Antiviral activity of mangiferin against herpes simplex virus type 2 in vitro. Zhongguo Yao Li Xue Bao, 1993, 14(5), 452-454.
[56]
Zendrini Rechenchoski, D.; Faccin-Galhardi, L.C.; Pacheco Cunha, A.; Pontes Silva Ricardo, N.M.; Nozawa, C.; Carvalho Linhares, R.E. Antiviral potential of mangiferin against poliovirus. Int. J. Pharmacol. Res., 2018, 8(4), 34-39.
[http://dx.doi.org/10.7439/ijpr.v8i4.4706]
[57]
Sharmaa, N.; Muthamilarasanb, M.; Prasada, A.; Prasad, M. Genomics approaches to synthesize plant-based biomolecules for therapeutic applications to combat SARS-CoV-2. Genomics, 2020, 112, 4322-4331.
[http://dx.doi.org/10.1016/j.ygeno.2020.07.033]
[58]
Omar, S.; Bouziane, I.; Bouslama, Z.; Djemel, A. In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin converting enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2. ChemRxiv, Preprint.
[59]
Smith, M.; Smith, J.C. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRxiv, Preprint.
[60]
Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[61]
Williamson, G.; Kerimi, A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (COVID-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem. Pharmacol., 2020, 178, 114123.
[http://dx.doi.org/10.1016/j.bcp.2020.114123] [PMID: 32593613]
[62]
Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Ali, M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: an in silico strategy unveils a hope against CORONA Preprints, 2020, 2020030333.
[63]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2020, 10, 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1763201] [PMID: 32362245]
[64]
Cheng, J.; Tang, Y.; Bao, B.; Zhang, P. Exploring the active compounds of traditional Mongolian medicine agsirga in intervention of novel coronavirus (2019-nCoV) based on HPLC-Q-exactive- MS/MS and molecular docking method. ChemRxiv, Preprint.
[65]
Cheng, L.; Zheng, W.; Li, M.; Huang, J.; Bao, S.; Xu, Q.; Ma, Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints, 2020.
[66]
Su, W.; Wang, Y.; Li, P.; Wu, H.; Zeng, X.; Shi, R.; Zheng, Y.Y.; Li, P.L.; Peng, W. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19. Trad. Med. Res., 2020, 5(3), 160-166.
[http://dx.doi.org/10.53388/TMR20200406172]
[67]
Joshi, S.S.; Dice, L.; D’Souza, D.H. Aqueous extracts of Hibiscus sabdarifa calyces decrease hepatitis a virus and human norovirus surrogate titers. Food Environ. Virol., 2015, 7(4), 366-373.
[http://dx.doi.org/10.1007/s12560-015-9209-1] [PMID: 26143492]
[68]
Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[69]
Alrasheid, A.A.; Babiker, M.Y.; Awad, T.A. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol., 2021, 9(1), 10.
[http://dx.doi.org/10.1007/s40203-020-00073-8] [PMID: 33432283]
[70]
Koshak, D.A.E.; Koshak, P.E.A. Nigella sativa L. as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Curr. Ther. Res. Clin. Exp., 2020, 93, 100602.
[http://dx.doi.org/10.1016/j.curtheres.2020.100602] [PMID: 32863400]
[71]
Khan, S.L.; Siddiqui, F.A. Beta-Sitosterol: as immunostimulant, antioxidant and inhibitor of SARS-CoV-2 spike glycoprotein. Arch. Pharmacol. Ther., 2020, 2(1), 12-16.
[72]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2020, 12, 1-21.
[PMID: 32448034]
[73]
Schwarz, S; Sauter, D; Wang, K; Zhang, R; Sun, B; Karioti, A; Bilia, AR; Efferth, T; Schwarz, W Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med, 2014, 80(02/03), 177-182.
[74]
Adam, M.; Ahmed, A.A.; Yagi, A.; Yagi, S. Ethnobotanical investigation on medicinal plants used against human ailments in Erkowit and Sinkat areas. Eastern Sudan. Biodiversitas (Surak.), 2020, 21(7), 3255-3262.
[http://dx.doi.org/10.13057/biodiv/d210748]
[75]
Suleiman, M.H.A. An ethnobotanical survey of medicinal plants used by communities of Northern Kordofan region. Sudan. J. Ethnopharmacol., 2015, 176, 232-242.
[http://dx.doi.org/10.1016/j.jep.2015.10.039] [PMID: 26519203]
[76]
Musa, M.S.; Abdelrasool, F.E.; Elsheikh, E.A.; Ahmed, L.A.M.N.; Mahmoud, A.E.; Yagi, S.M. Ethnobotanical study of medicinal plants in the Blue Nile state. Southeastern Sudan. J. Med. Plants Res., 2011, 5(17), 4287-4297.
[77]
Doka, I.G.; Yagi, S.M. Ethnobotanical survey of medicinal plants in west Kordofan (Western Sudan). Ethnobot. Leafl., 2009, 13, 1409-1416.
[78]
El Ghazali, G.E.B.; Bari, E.E.A.; Bashir, A.K.; Saleh, A.M. Medicinal plants of Sudan: Part II. Medicinal plants of the Eastern Nuba Mountains; Khartoum University Press: Khartoum, 1987.
[79]
Mar, W.; Tan, G.T.; Cordell, G.A.; Pezzuto, J.M.; Jurcic, K.; Offermann, F.; Redl, K.; Steinke, B.; Wagner, H. Biological activity of novel macrocyclic alkaloids (budmunchiamines) from Albizia amara detected on the basis of interaction with DNA. J. Nat. Prod., 1991, 54(6), 1531-1542.
[http://dx.doi.org/10.1021/np50078a007] [PMID: 1725878]
[80]
El Ghazali, G.E.B.; Abdalla, W.E.; Khalid, H.E.; Khalafalla, M.M.; Hamad, A.A. Medicinal Plants of the Sudan Part V. Medicinal Plants of Ingassana Area; National Council for Research: Khartoum, Sudan, 2003.
[81]
El Ghazali, G.E.B.; Khalid, H.E.; El Tohami, M.S.; Abdalla, W.S.; Yagi, M.M.S. The medicinal plants commonly used in Khartoum State; Alhyat Press: Khartoum, Sudan, 1998. (in Arabic)
[82]
Issa, T.O.; Mohamed, Y.S.; Yagi, S.; Ahmed, R.H.; Najeeb, T.M.; Makhawi, A.M.; Khider, T.O. Ethnobotanical investigation on medicinal plants in Algoz area (South Kordofan), Sudan. J. Ethnobiol. Ethnomed., 2018, 14(1), 31.
[http://dx.doi.org/10.1186/s13002-018-0230-y] [PMID: 29699576]
[83]
Ross, S.; El Sayed, K.; El Sohly, M.; Hamann, M.; Abdel-Halim, O.; Ahmed, A.; Ahmed, M. Phytochemical analysis of Geigeria alata and Francoeuria crispa essential oils. Planta Med., 1997, 63(5), 479-482.
[http://dx.doi.org/10.1055/s-2006-957743] [PMID: 9342957]
[84]
Onifade, A.A.; Jewell, A.P.; Ajadi, T.A.; Rahamon, S.K.; Ogunrin, O.O. Effectiveness of a herbal remedy in six HIV patients in Nigeria. J. Herb. Med., 2013, 3(3), 99-103.
[http://dx.doi.org/10.1016/j.hermed.2013.04.006]
[85]
Onifade, A.A.; Jewell, A.P.; Adedeji, W.A. Nigella sativa Concoction induced sustained seroreversion in HIV patient. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 332-335.
[http://dx.doi.org/10.4314/ajtcam.v10i5.18] [PMID: 24311845]
[86]
Onifade, A.A.; Jewell, A.P.; Okesina, A.B. Seronegative conversion of an HIV positive subject treated with Nigella sativa and honey. Afr. J. Infect. Dis., 2015, 9(2), 47-50.
[http://dx.doi.org/10.4314/ajid.v9i2.6]
[87]
Barakat, E.M.F.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol., 2013, 19(16), 2529-2536.
[http://dx.doi.org/10.3748/wjg.v19.i16.2529] [PMID: 23674855]
[88]
Salem, M.L.; Hossain, M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol., 2000, 22(9), 729-740.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]
[89]
Maurya, S.; Marimuthu, P.; Singh, A.; Rao, G.P.; Singh, G. Antiviral activity of essential oils and acetone extracts of medicinal plants against papaya ring spot virus. J. Essent. Oil-Bear. Plants, 2005, 8(3), 233-238.
[http://dx.doi.org/10.1080/0972060X.2005.10643452]
[90]
Oyero, O.G.; Toyama, M.; Mitsuhiro, N.; Onifade, A.A.; Hidaka, A.; Okamoto, M.; Baba, M. Selective inhibition of hepatitis c virus replication by Alphazam, a Nigella sativa seed formulation. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(6), 144-148.
[http://dx.doi.org/10.21010/ajtcam.v13i6.20] [PMID: 28480371]
[91]
Umar, S.; Munir, M.T.; Subhan, S.; Azam, T. un Nisa, Q.; Khan, M.I.; Umar, W.; ur Rehman, Z.; Saqib, A.S.; Shah, M.A. WITHDRAWN: Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J. Saudi Soc. Agric. Sci., 2016.
[http://dx.doi.org/10.1016/j.jssas.2016.09.004]
[92]
Khan, A.U.; Tipu, M.Y.; Shafee, M.; Khan, N.U.; Tariq, M.M.; Kiani, M.R. In-ovo antiviral effect of Nigella sativa extract against Newcastle disease virus in experimentally infected chicken embryonated eggs. Pak. Vet. J., 2018, 38(4), 434-437.
[http://dx.doi.org/10.29261/pakvetj/2018.075]
[93]
Aqil, K.; Khan, M.R.; Aslam, A.; Javeed, A.; Qayyum, R.; Yousaf, F.; Yasmeen, F.; Sohail, M.L.; Umar, S. In vitro antiviral activity of Nigella sativa against peste des petits ruminants (PPR) virus. Pak. J. Zool., 2018, 50(6), 2223-2228.
[http://dx.doi.org/10.17582/journal.pjz/2018.50.6.2223.2228]
[94]
Shukla, H.S.; Dubey, P.; Chaturvedi, R.V. Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agronomie, 1989, 9(3), 277-279.
[http://dx.doi.org/10.1051/agro:19890307]
[95]
Galib, N.A.; Ali, K.S.; Munaiem, R.T.; Mohammed, A.S.A. Phytochemical screening and thin layer chromatography of Acacia etbaica ssp. uncinata leaves. World J. Pharm. Res., 2017, 6(2), 1278-1283.
[96]
Kayed, A.M.; Genady, E.A.M.; Kadry, H.A.; Elghaly, E.M. New phytoconstituents, anti-microbial and cytotoxic activities of Acacia etbaica Schweinf. Nat. Prod. Res., 2021, 35(24), 5571-5580.
[PMID: 32700973]
[97]
Rather, L.J. Shahid-ul-Islam; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm., 2015, 2, 12-30.
[http://dx.doi.org/10.1016/j.scp.2015.08.002]
[98]
Madjid, O.A.; Sanni, A.; Lagnika, L. Chemical diversity and pharmacological properties of genus acacia. Asian J. Appli. Sci., 2020, 13(2), 40-59.
[http://dx.doi.org/10.3923/ajaps.2020.40.59]
[99]
Ali, S.; Alam, M.; Khatoon, F.; Fatima, U.; Elasbali, A.M.; Adnan, M.; Islam, A.; Hassan, M.I.; Snoussi, M.; De Feo, V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed. Pharmacother., 2022, 147, 112658.
[http://dx.doi.org/10.1016/j.biopha.2022.112658] [PMID: 35066300]
[100]
Mutai, C.; Abatis, D.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Two new triterpenoids from acacia mellifera (Vahl) benth. 11th NAPRECA Symposium Book of Proceedings, Antananarivo, Madagascar, pp. 70-76.2006
[101]
Li, X.N.; Sun, J.; Shi, H.; Yu, L.L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int., 2017, 99(Pt 1), 755-761.
[http://dx.doi.org/10.1016/j.foodres.2017.06.025] [PMID: 28784541]
[102]
Shahat, A.A. Procyanidins from Adansonia digitata. Pharm. Biol., 2006, 44(6), 445-450.
[http://dx.doi.org/10.1080/13880200600798510]
[103]
Shaik, F.B.; Swarnalatha, K.; Mohan, M.C.; Thomas, A.; Chikati, R.; Sandeep, G.; Maddu, N. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 2022, 42, 62-72.
[http://dx.doi.org/10.1016/j.nutos.2021.12.004] [PMID: 35106518]
[104]
Indravathi, G.R.; Reddy, R.S.; Babu, P.S. Albizia amara -A potential medicinal plant: A review. Int. J. Sci. Res., 2020, 5(3), 621.
[105]
Thippeswamy, S.; Mohana, D.C.; Abhishek, R.U.; Manjunath, K. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara. Braz. J. Microbiol., 2015, 46(1), 139-143.
[http://dx.doi.org/10.1590/S1517-838246120131137] [PMID: 26221099]
[106]
Arbab, A.H. Review on Anogeissus leiocarpus A potent African traditional drug. IJRPC, 2014, 4(3), 496-500.
[107]
Shuaibu, M.N.; Wuyep, P.T.A.; Yanagi, T.; Hirayama, K.; Ichinose, A.; Tanaka, T.; Kouno, I. Trypanocidal activity of extracts and compounds from the stem bark of Anogeissus leiocarpus and Terminalia avicennoides. Parasitol. Res., 2008, 102(4), 697-703.
[http://dx.doi.org/10.1007/s00436-007-0815-1] [PMID: 18066599]
[108]
Shuaibu, M.N.; Pandey, K.; Wuyep, P.A.; Yanagi, T.; Hirayama, K.; Ichinose, A.; Tanaka, T.; Kouno, I. Castalagin from Anogeissus leiocarpus mediates the killing of Leishmania in vitro. Parasitol. Res., 2008, 103(6), 1333-1338.
[http://dx.doi.org/10.1007/s00436-008-1137-7] [PMID: 18690475]
[109]
Shuaibu, M.N.; Wuyep, P.A.; Yanagi, T.; Hirayama, K.; Tanaka, T.; Kouno, I. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol. Res., 2008, 102(6), 1119-1127.
[http://dx.doi.org/10.1007/s00436-008-0879-6] [PMID: 18214539]
[110]
Hassan, H; Sule, M; Musa, A; Oyinloye, F Phytochemical and anti-diarrheal studies of Bauhinia rufescens Lam. JPB, 2008, 5(2)
[111]
Muhammad, A.; Sirat, H.M. Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae). Nat. Prod. Commun., 2013, 8(10), 1435-1437.
[http://dx.doi.org/10.1177/1934578X1300801025] [PMID: 24354195]
[112]
Kjær, A.; Schuster, A.; Delaveau, P.; Koudogbo, B. Glucosinolates in Boscia senegalensis. Phytochemistry, 1973, 12(3), 8.
[113]
Gueye, M.T.; Seck, D.; Diallo, A.; Trisman, D.; Fischer, C.; Barthelemy, J.P.; Wathelet, J.P.; Lognay, G. Development of a performant method for glucocapparin determination in Boscia senegalensis Lam Ex. Poir.: A study of the variability. Am. J. Anal. Chem., 2013, 4(2), 104-110.
[http://dx.doi.org/10.4236/ajac.2013.42014]
[114]
Morgan, A.M.A.; Kim, J.H.; Kim, S.K.; Lim, C.H.; Kim, Y.H. A new flavonol glycoside from the leaves of Boscia senegalensis. Bull. Korean Chem. Soc., 2014, 35(12), 3447-3452.
[http://dx.doi.org/10.5012/bkcs.2014.35.12.3447]
[115]
Rashan, L.; Hakkim, F.L.; Idrees, M.; Essa, M.; Velusamy, T.; Al-Baloshi, M.; Al-Bulushi, B.S.; Al Jabri, A.; Alrizeiki, M.H.; Guillemin, G.; Abdo Hasson, S.S.A. Abdo Hasson S.S.A. Boswellia gum resin and essential oils: Potential health benefits- An evidence based review. Int. J. Nutr. Pharmacol. Neurol. Dis., 2019, 9(2), 53-71.
[http://dx.doi.org/10.4103/ijnpnd.ijnpnd_11_19]
[116]
Javed, H.; Meeran, M.F.N.; Jha, N.K.; Ojha, S. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Front. Plant Sci., 2021, 11, 601335.
[http://dx.doi.org/10.3389/fpls.2020.601335] [PMID: 33664752]
[117]
Danlami, U.; Abayomi, O.; Lawa, D.R. Phytochemical, nutritional and antimicrobial evaluations of the aqueous extract of Brassica nigra (brassicaceae) seeds. Am. J. Appl. Sci., 2016, 4(44), 161-163.
[118]
Mejía-Garibay, B.; Palou, E.; López-Malo, A. Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact. J. Food Prot., 2015, 78(4), 843-848.
[http://dx.doi.org/10.4315/0362-028X.JFP-14-485] [PMID: 25836415]
[119]
Abdalaziz, M.N.; Ali, A.; Kabbashi, A.S. In vitro antioxidant activity and phytochemical screening of Croton zambesicus. J. Pharmacogn. Phytochem., 2016, 5(6), 12-16.
[120]
Hisham Shady, N.; Youssif, K.A.; Sayed, A.M.; Belbahri, L.; Oszako, T.; Hassan, H.M.; Abdelmohsen, U.R. Sterols and Triterpenes: Antiviral potential supported by in-silico analysis. Plants, 2020, 10(1), 41.
[http://dx.doi.org/10.3390/plants10010041] [PMID: 33375282]
[121]
Zheleva-Dimitrova, D.; Gevrenova, R.; Zaharieva, M.M.; Najdenski, H.; Ruseva, S.; Lozanov, V.; Balabanova, V.; Yagi, S.; Momekov, G.; Mitev, V. HPLC‐UV and LC–MS analyses of acylquinic acids in Geigeria alata (DC) Oliv. & Hiern. and their contribution to antioxidant and antimicrobial capacity. Phytochem. Anal., 2017, 28(3), 176-184.
[http://dx.doi.org/10.1002/pca.2658] [PMID: 27910164]
[122]
Al-Hatamleh, M.A.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.D.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: potential mechanisms of action and future directions. Molecules, 2020, 25(21), 5017.
[http://dx.doi.org/10.3390/molecules25215017] [PMID: 33138197]
[123]
Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chem., 2014, 165, 424-443.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.002] [PMID: 25038696]
[124]
Shadrack, D.M.; Deogratias, G.; Kiruri, L.W.; Onoka, I.; Vianney, J.M.; Swai, H.; Nyandoro, S.S. Luteolin: a blocker of SARS-CoV-2 cell entry based on relaxed complex scheme, molecular dynamics simulation, and metadynamics. J. Mol. Model., 2021, 27(8), 221.
[http://dx.doi.org/10.1007/s00894-021-04833-x] [PMID: 34236507]
[125]
Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Mangos and their bioactive components: adding variety to the fruit plate for health. Food Funct., 2017, 8(9), 3010-3032.
[http://dx.doi.org/10.1039/C7FO00190H] [PMID: 28612853]
[126]
Barreto, J.C.; Trevisan, M.T.S.; Hull, W.E.; Erben, G.; de Brito, E.S.; Pfundstein, B.; Würtele, G.; Spiegelhalder, B.; Owen, R.W. Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J. Agric. Food Chem., 2008, 56(14), 5599-5610.
[http://dx.doi.org/10.1021/jf800738r] [PMID: 18558692]
[127]
Haudecoeur, R.; Peuchmaur, M.; Pérès, B.; Rome, M.; Taïwe, G.S.; Boumendjel, A.; Boucherle, B. Traditional uses, phytochemistry and pharmacological properties of African Nauclea species: A review. J. Ethnopharmacol., 2018, 212(15), 106-136.
[http://dx.doi.org/10.1016/j.jep.2017.10.011] [PMID: 29045823]
[128]
Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (black cumin): A promising natural remedy for wide range of illnesses. Evid. Based Complemen. Altern. Med., 2019, 1528635.
[129]
Akram Khan, M.; Afzal, M. Chemical composition of Nigella sativa Linn: Part 2 Recent advances. Inflammopharmacology, 2016, 24(2-3), 67-79.
[http://dx.doi.org/10.1007/s10787-016-0262-7] [PMID: 27068721]
[130]
Duru, C.E.; Duru, I.A.; Adegboyega, A.E. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull. Natl. Res. Cent., 2021, 45(1), 57.
[http://dx.doi.org/10.1186/s42269-021-00517-x] [PMID: 33727782]
[131]
Jakhmola Mani, R.; Sehgal, N.; Dogra, N.; Saxena, S.; Pande Katare, D. Deciphering underlying mechanism of SARS-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID-19: in-silico study. J. Biomol. Struct. Dyn., 2022, 40(6), 2417-2429.
[http://dx.doi.org/10.1080/07391102.2020.1839560] [PMID: 33111624]
[132]
Mir, S.A.; Firoz, A.; Alaidarous, M.; Alshehri, B.; Bin Dukhyil, A.A.; Banawas, S.; Alsagaby, S.A.; Alturaiki, W.; Bhat, G.A.; Kashoo, F.; Abdel-Hadi, A.M. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J. Biol. Sci., 2022, 29(1), 394-401.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.002] [PMID: 34518755]
[133]
Pandey, P.; Khan, F.; Mazumder, A.; Rana, A.K.; Srivastava, Y. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Indian J. Pharma. Edu. Res., 2021, 55(1), 190-197.
[http://dx.doi.org/10.5530/ijper.55.1.21]
[134]
Shojaii, A.; Fard, M.A. Review of pharmacological properties and chemical constituents of Pimpinella anisum. Int. Sch. Res., 2012, 2012, 510795.
[135]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, 2020, 030226.
[136]
Suja, KP; Jayalekshmy, A; Arumughan, C Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. J. Agric. Food Chem., 2004, 52, 912-915.
[http://dx.doi.org/10.1021/jf0303621] [PMID: 14969550]
[137]
Al-Jaber, N.A.; Awaad, A.S.; Moses, J.E. Review on some antioxidant plants growing in Arab world. J. Saudi Chem. Soc., 2011, 15(4), 293-307.
[http://dx.doi.org/10.1016/j.jscs.2011.07.004]
[138]
Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem., 2005, 53(20), 7749-7759.
[http://dx.doi.org/10.1021/jf051513y] [PMID: 16190627]
[139]
Tril, U.; Fernández-López, J.; Álvarez, J.Á.P.; Viuda-Martos, M. Chemical, physicochemical, technological, antibacterial and antioxidant properties of rich-fibre powder extract obtained from tamarind (Tamarindus indica L.). Ind. Crops Prod., 2014, 55, 155-162.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.047]
[140]
Hänsel, R.; Keller, K.; Rimpler, H.; Schneider, G. Hagers Handbuch der Pharmzeutischen Praxis, 5th ed; Springer Verlag, 1992, p. 893.
[141]
Salih, E.Y.A.; Julkunen-Tiitto, R.; Lampi, A.M.; Kanninen, M.; Luukkanen, O.; Sipi, M.; Lehtonen, M.; Vuorela, H.; Fyhrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol., 2018, 227, 82-96.
[http://dx.doi.org/10.1016/j.jep.2018.04.030] [PMID: 29733942]
[142]
Ekong, D.E.U.; Idemudia, O.G. Constituents of some West African members of the genus Terminalia. J. Chem. Soc. C, 1967, 863-864.
[http://dx.doi.org/10.1039/j39670000863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy