Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Comprehensive Review on Potentially Therapeutic Agents against COVID-19 from Natural Sources

Author(s): Ali Shahali*, Zahra Jafari Azar and Rashid Alijani Ardeshir*

Volume 10, Issue 1, 2024

Published on: 17 April, 2023

Article ID: e030223213428 Pages: 11

DOI: 10.2174/2215083809666230203142343

Price: $65

Abstract

Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent pandemic and worldwide outbreak of respiratory disease. Since there are no known specific drugs for fighting this virus and the process for new drug development is lengthy, scientists have been trying to develop drugs against this viral infection. The potent antiviral activity of natural products has been confirmed in several previous studies. Viral and host proteins contributing to COVID-19 infections can be targeted by natural compounds derived from plants, marine organisms, and microorganisms. The most important of these compounds are polyphenols (e.g., anthraquinone polyphenol, hinokinin, curcumin, and epigallocatechin gallate), alkaloids (e.g., isoquinoline, 10- hydroxyusambarensine, anisotine, and adhatodine), and terpenoids (salvinorin A, thymoquinone, bilobalide, ginkgolide A, and celastrol) from plants, sulphated polysaccharides (carrageenans, chondroitin sulfate C, and fucoidan) from marine organisms, and glycocin F and lactococcin G phycocyanin, and lipopeptide from microorganisms. This study reviews these compounds and their mechanism of action for treating COVID-19 infection and guides researchers in developing effective and safe therapeutic agents against this disease from naturally derived compounds.

Graphical Abstract

[1]
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020; 395(10225): 689-97.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[2]
Hageman JR. The coronavirus disease 2019 (COVID-19). Pediatric Annals 2020; 49(3): 99-100.
[http://dx.doi.org/10.3928/19382359-20200219-01]
[3]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[4]
Khailany R, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020; 19: 100682.
[5]
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 2020; 39(3): 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[6]
Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2020.
[7]
Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[8]
Vijayaraj R, Altaff K, Rosita AS, Ramadevi S, Revathy J. Bioactive compounds from marine resources against novel corona virus (2019-nCoV): In silico study for corona viral drug. Nat Prod Res 2021; 35(23): 5525-9.
[http://dx.doi.org/10.1080/14786419.2020.1791115] [PMID: 32643410]
[9]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[10]
Stadler K, Masignani V, Eickmann M, et al. SARS - beginning to understand a new virus. Nat Rev Microbiol 2003; 1(3): 209-18.
[http://dx.doi.org/10.1038/nrmicro775] [PMID: 15035025]
[11]
Pawar AY. Combating devastating COVID-19 by drug repurposing. Int J Antimicrob Agents 2020; 56(2): 105984.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105984]
[12]
Khan Z, Karataş Y, Ceylan AF, Rahman H. COVID-19 and therapeutic drugs repurposing in hand: The need for collaborative efforts. Pharm Hosp Clin 2021; 56(1): 3-11.
[http://dx.doi.org/10.1016/j.phclin.2020.06.003]
[13]
Türsen Ü, Türsen B, Lotti T. Cutaneous sıde‐effects of the potential COVID‐19 drugs. Dermatol Ther 2020; 33(4): e13476.
[http://dx.doi.org/10.1111/dth.13476] [PMID: 32358890]
[14]
Riva L, Yuan S, Yin X, et al. A large-scale drug repositioning survey for SARS-CoV-2 antivirals BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.16.044016]
[15]
Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach. J Biomol Struct Dyn 2021; 39(13): 4594-609.
[http://dx.doi.org/10.1080/07391102.2020.1778537] [PMID: 32573351]
[16]
Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Front Microbiol 2020; 11: 1796.
[http://dx.doi.org/10.3389/fmicb.2020.01796] [PMID: 32793181]
[17]
Kumar V, Parate S, Yoon S, Lee G, Lee KW. Computational simulations identified marine-derived natural bioactive compounds as replication inhibitors of SARS-CoV-2. Front Microbiol 2021; 12: 647295.
[http://dx.doi.org/10.3389/fmicb.2021.647295] [PMID: 33967984]
[18]
Khalifa SAM, Yosri N, El-Mallah MF, et al. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 2021; 85: 153311.
[http://dx.doi.org/10.1016/j.phymed.2020.153311] [PMID: 33067112]
[19]
Kumari P, Rawat K, Saha L. Pipeline pharmacological therapies in clinical trial for COVID-19 pandemic: A recent update. Curr Pharmacol Rep 2020; 6(5): 228-40.
[http://dx.doi.org/10.1007/s40495-020-00226-5] [PMID: 32837854]
[20]
Arya R, Kumari S, Pandey B, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021; 433(2): 166725.
[http://dx.doi.org/10.1016/j.jmb.2020.11.024] [PMID: 33245961]
[21]
Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 2021; 10(4): 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[22]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181: 894-904.
[23]
Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[24]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[25]
Ujike M, Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 2015; 7(4): 1700-25.
[http://dx.doi.org/10.3390/v7041700] [PMID: 25855243]
[26]
Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 2014; 10(5): e1004077.
[http://dx.doi.org/10.1371/journal.ppat.1004077] [PMID: 24788150]
[27]
Chang C, Sue SC, Yu T, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006; 13(1): 59-72.
[http://dx.doi.org/10.1007/s11373-005-9035-9] [PMID: 16228284]
[28]
Raj R. Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochem Biophys Rep 2021; 25: 100847.
[http://dx.doi.org/10.1016/j.bbrep.2020.100847] [PMID: 33364445]
[29]
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res 2015; 202: 89-100.
[http://dx.doi.org/10.1016/j.virusres.2014.11.019] [PMID: 25432065]
[30]
Graham RL, Sims AC, Baric RS, Denison MR. The nsp2 proteins of mouse hepatitis virus and SARS coronavirus are dispensable for viral replication. Adv Exp Med Biol 2006; 581: 67-72.
[31]
Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y, Kamitani W. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 2017; 510: 165-74.
[http://dx.doi.org/10.1016/j.virol.2017.07.019] [PMID: 28738245]
[32]
Serrano P, Johnson MA, Almeida MS, et al. Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J Virol 2007; 81(21): 12049-60.
[http://dx.doi.org/10.1128/JVI.00969-07] [PMID: 17728234]
[33]
Stobart CC, Sexton NR, Munjal H, et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol 2013; 87(23): 12611-8.
[http://dx.doi.org/10.1128/JVI.02050-13] [PMID: 24027335]
[34]
Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect 2020; 81(1): e24-7.
[http://dx.doi.org/10.1016/j.jinf.2020.03.058] [PMID: 32283146]
[35]
Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 2019; 10(1): 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[36]
te Velthuis AJW, van den Worm SHE, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 2012; 40(4): 1737-47.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[37]
Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14â nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America 2015; 112(30): 9436-41.
[38]
Chen P, Jiang M, Hu T, Liu Q, Chen XS, Guo D. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J Biochem Mol Biol 2007; 40(5): 649-55.
[PMID: 17927896]
[39]
Deng X, Baker SC. An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology 2018; 517: 157-63.
[http://dx.doi.org/10.1016/j.virol.2017.12.024] [PMID: 29307596]
[40]
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004; 78(11): 5619-32.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[41]
Rosas-Lemus M, Minasov G, Shuvalova L, et al. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.17.047498]
[42]
Shang J, Han N, Chen Z, et al. Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Brief Bioinform 2021; 22(2): 1267-78.
[http://dx.doi.org/10.1093/bib/bbaa262] [PMID: 33126244]
[43]
Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: Knowns and unknowns. Front Immunol 2021; 12: 708264.
[http://dx.doi.org/10.3389/fimmu.2021.708264] [PMID: 34305949]
[44]
Martiáñez-Vendrell X, Kikkert M. Proteomics approaches for the identification of protease substrates during virus infection. Adv Virus Res 2021; 109: 135-61.
[http://dx.doi.org/10.1016/bs.aivir.2021.03.003] [PMID: 33934826]
[45]
Zang R, Castro MFG, McCune BT, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5(47): eabc3582.
[http://dx.doi.org/10.1126/sciimmunol.abc3582] [PMID: 32404436]
[46]
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural products with potential to treat RNA virus pathogens including SARS-CoV-2. J Nat Prod 2021; 84(1): 161-82.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00968] [PMID: 33352046]
[47]
Bautista-Carbajal P, Soto-Acosta R, Angel-Ambrocio AH, et al. The calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) inhibits DENV infection in Huh-7 cells. Virology 2017; 501: 188-98.
[http://dx.doi.org/10.1016/j.virol.2016.12.004] [PMID: 27940224]
[48]
Che C-T, Zhang H. Plant natural products for human health. Int J Mol Sci 2019; 20(4): 830.
[49]
Annunziata G, Sanduzzi Zamparelli M, Santoro C, et al. May polyphenols have a role against coronavirus infection? An overview of in vitro evidence. Front Med 2020; 7: 240.
[http://dx.doi.org/10.3389/fmed.2020.00240] [PMID: 32574331]
[50]
Annunziata G, Jiménez-García M, Capó X, et al. Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food Chem Toxicol 2020; 139: 111248.
[http://dx.doi.org/10.1016/j.fct.2020.111248] [PMID: 32156568]
[51]
Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[52]
Sharma P, Joshi T, Joshi T, et al. In silico screening of natural compounds to inhibit interaction of human ACE2 receptor and spike protein of SARS-CoV-2 for the prevention of COVID-19. J Biomol Struct Dyn 2021; 1-13.
[PMID: 34854365]
[53]
Yamamoto M, Matsuyama S, Li X, et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother 2016; 60(11): 6532-9.
[http://dx.doi.org/10.1128/AAC.01043-16] [PMID: 27550352]
[54]
Park JY, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012; 20(19): 5928-35.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[55]
Park JY, Jae Jeong H, Hoon Kim J, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[56]
Park JY, Ko JA, Kim DW, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 2016; 31(1): 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[57]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS-CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn 2020; 1-13.
[PMID: 32568613]
[58]
Park JY, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 504-12.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[59]
Singh R, Gautam A, Chandel S, et al. Protease inhibitory effect of natural polyphenolic compounds on SARS-CoV-2: An in silico study. Molecules 2020; 25(20): 4604.
[http://dx.doi.org/10.3390/molecules25204604] [PMID: 33050360]
[60]
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015; 2(3): 251-86.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[61]
Alfaro M, Alfaro I, Angel C. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizanthus porrigens: A molecular docking study. Chem Phys Lett 2020; 761: 138068.
[http://dx.doi.org/10.1016/j.cplett.2020.138068] [PMID: 33052144]
[62]
Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J Biomol Struct Dyn 2021; 39(9): 3396-408.
[PMID: 32367767]
[63]
Kar P, Kumar V, Vellingiri B, et al. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: A computational investigation. J Biomol Struct Dyn 2020; 1-11.
[PMID: 33305988]
[64]
Nosrati M, Behbahani M. Molecular docking study of HIV-1 protease with triterpenoides compounds from plants and Mushroom. J Arak Univ Med Sci 2015; 18: 67-79.
[65]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[66]
Shaghaghi N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants. ChemRvix 2020; 2020: 11935722.
[http://dx.doi.org/10.26434/chemrxiv.11935722.v1]
[67]
Ryu YB, Park SJ, Kim YM, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 2010; 20(6): 1873-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[68]
Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho CSMB, de Sousa DP. Bioactive terpenes and their derivatives as potential SARS-CoV-2 proteases inhibitors from molecular modeling studies. Biomolecules 2021; 11(1): 74.
[http://dx.doi.org/10.3390/biom11010074] [PMID: 33430299]
[69]
Singh SK, Singh S, Singh R. Targeting novel coronavirus SARS-CoV-2 spike protein with phytoconstituents of Momordica charantia. J Ovarian Res 2021; 14(1): 126.
[http://dx.doi.org/10.1186/s13048-021-00872-3] [PMID: 34579761]
[70]
da Silva FMA, da Silva KPA, de Oliveira LPM, et al. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem Inst Oswaldo Cruz 2020; 115: e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]
[71]
Yang C, Cheng H, Lin T, Chiang L, Lin C. Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Res 2005; 67(1): 24-30.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.008] [PMID: 15885815]
[72]
Yepes-Pérez AF, Herrera-Calderon O, Sánchez-Aparicio JE, Tiessler-Sala L, Maréchal JD, Cardona-G W. Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling. Evid Based Complement Alternat Med 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/4932572] [PMID: 33029165]
[73]
Borquaye LS, Gasu EN, Ampomah GB, et al. Alkaloids from Cryptolepis sanguinolenta as potential inhibitors of SARS-CoV-2 viral proteins: An in silico study. BioMed Res Int 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/5324560] [PMID: 33029513]
[74]
Borah PK, Chakraborty S, Jha AN, Rajkhowa S, Duary RK. In silico approaches and proportional odds model towards identifying selective ADAM17 inhibitors from anti-inflammatory natural molecules. J Mol Graph Model 2016; 70: 129-39.
[http://dx.doi.org/10.1016/j.jmgm.2016.10.003] [PMID: 27723561]
[75]
Khan MT, Ali A, Wang Q, et al. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. J Biomol Struct Dyn 2021; 39(10): 3627-37.
[http://dx.doi.org/10.1080/07391102.2020.1769733] [PMID: 32410504]
[76]
Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol 2020; 164: 1693-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[77]
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res 2021; 35(3): 1230-6.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[78]
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 2020; 18(4): 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[79]
Zahran EM, Albohy A, Khalil A, et al. Bioactivity potential of marine natural products from scleractinia-associated microbes and in silico anti-SARS-CoV-2 evaluation. Mar Drugs 2020; 18(12): 645.
[http://dx.doi.org/10.3390/md18120645] [PMID: 33339096]
[80]
Mahmudpour M, Nabipour I, Keshavarz M, Farrokhnia M. Virtual screening on marine natural products for discovering TMPRSS2 inhibitors. Front Chem 2021; 9: 722633.
[http://dx.doi.org/10.3389/fchem.2021.722633] [PMID: 34712648]
[81]
Aatif M, Muteeb G, Alsultan A, Alshoaibi A, Khelif BY. Dieckol and its derivatives as potential inhibitors of SARS-CoV-2 spike protein (UK Strain: VUI 202012/01): A computational study. Mar Drugs 2021; 19(5): 242.
[http://dx.doi.org/10.3390/md19050242] [PMID: 33922914]
[82]
Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020; 11(9): 7415-20.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[83]
Nagle V, Gaikwad M, Pawar Y, Dasgupta S. Marine red alga Porphyridium sp as a source of sulfated polysaccharides (SPs) for combating against COVID-19. Preprint 2020; p. 2020040168.
[84]
Yim SK, Kim K, Kim I, et al. Inhibition of SARS-CoV-2 virus entry by the crude polysaccharides of seaweeds and abalone viscera in vitro. Mar Drugs 2021; 19(4): 219.
[http://dx.doi.org/10.3390/md19040219] [PMID: 33921174]
[85]
Alsaidi S, Cornejal N, Mahoney O, et al. Griffithsin and carrageenan combination results in antiviral synergy against SARS-CoV-1 and 2 in a pseudoviral model. Mar Drugs 2021; 19(8): 418.
[http://dx.doi.org/10.3390/md19080418] [PMID: 34436255]
[86]
Pliego-Cortés H, Wijesekara I, Lang M, Bourgougnon N, Bedoux G. Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. Adv Bot Res 2020; 95: 289-326.
[http://dx.doi.org/10.1016/bs.abr.2019.11.008]
[87]
Pereira L, Critchley AT. The COVID-19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? J Appl Phycol 2020; 32(3): 1875-7.
[http://dx.doi.org/10.1007/s10811-020-02143-y] [PMID: 32836796]
[88]
Millet JK, Séron K, Labitt RN, et al. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 2016; 133: 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.011] [PMID: 27424494]
[89]
Barre A, Damme EJMV, Simplicien M, Benoist H, Rougé P. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific seaweed lectins as glycan probes for the SARS-CoV-2 (COVID-19) coronavirus. Mar Drugs 2020; 18(11): 543.
[http://dx.doi.org/10.3390/md18110543] [PMID: 33138151]
[90]
Surti M, Patel M, Adnan M, et al. Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: Designing, docking and molecular dynamics simulation study. RSC Advances 2020; 10(62): 37707-20.
[http://dx.doi.org/10.1039/D0RA06379G] [PMID: 35515150]
[91]
Antonio AS, Wiedemann LSM, Veiga-Junior VF. Natural products’ role against COVID-19. RSC Advances 2020; 10(39): 23379-93.
[http://dx.doi.org/10.1039/D0RA03774E] [PMID: 35693131]
[92]
Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov Today 2016; 21(2): 204-7.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[93]
Sayed AM, Alhadrami HA, El-Gendy AO, et al. Microbial natural products as potential inhibitors of SARS-CoV-2 main protease (Mpro). Microorganisms 2020; 8(7): 970.
[http://dx.doi.org/10.3390/microorganisms8070970] [PMID: 32610445]
[94]
Balmeh N, Mahmoudi S, Fard NA. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Inform Med Unlocked 2021; 23: 100515.
[http://dx.doi.org/10.1016/j.imu.2021.100515] [PMID: 33521241]
[95]
Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[96]
Raj TK, Ranjithkumar R, Kanthesh B, Gopenath T. C-phycocyanin of spirulina plantesis inhibits nsp12 required for replication of sars-COV-2: A novel finding in silico. Int J Pharm Sci 2020.
[97]
Pendyala B, Patras A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv 2020.
[98]
Miller B, Friedman AJ, Choi H, et al. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod 2014; 77(1): 92-9.
[http://dx.doi.org/10.1021/np400727r] [PMID: 24364476]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy