Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

A Mini Review on Pharmacological Significance of Isatin-1,2,3-Triazole Hybrids

Author(s): Aman Kumar, Yajat Rohila, Vijay Kumar and Kashmiri Lal*

Volume 23, Issue 10, 2023

Published on: 16 February, 2023

Page: [833 - 847] Pages: 15

DOI: 10.2174/1568026623666230202160925

Price: $65

Abstract

Molecular hybridization is one of the recent stratagems in medicinal chemistry to synthesize a novel hybrid molecule having better affinity and efficacy by combining two or more pharmacophoric moieties. Molecular hybridization, i.e., a linker or framework integration technique, can be used to connect the two pharmacophoric components. It has often been found that hybrid compounds perform more effectively and possess lower toxicity than their parent molecules. In order to create a new generation of effective and safe therapeutic candidates, such as anti-cancer, anti-viral, anti-HIV, antioxidant, and antibacterial, for a variety of frontline diseases, several articles have been published that discuss the molecular hybridization of preclinically or clinically proven compounds. Isatin and its derivatives have been studied extensively due to diversified biological activities, including antitumor, antimicrobial, anti-inflammatory, analgesic, antiviral, antioxidant, anticonvulsant, etc. Similarly, 1,2,3-triazoles have received significant interest as a bio-isostere in medicinal chemistry for generating a large number of pharmaceutically significant molecules. As it possesses diversified physiochemical properties, such as hydrogen bond formation capacity, ease of synthesis, moderate dipole moment, stability towards acidic/basic hydrolysis, inertness towards oxidizing/ reducing agents, and good binding potential with several biological targets, triazole is an important choice of the medicinal chemists for the novel medication development. The aim of the current review is to summarize the research articles showing the pharmacological significance of hybrid molecules containing isatin and 1,2,3-triazole moieties. The present review may assist chemists in designing and synthesizing isatin-1,2,3-triazole hybrids with better efficacy and low cytotoxicity.

Next »
Graphical Abstract

[1]
Claudio Viegas-Junior, ; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.; Fraga, M. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[2]
Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr. Top. Med. Chem., 2019, 19(19), 1694-1711.
[http://dx.doi.org/10.2174/1568026619666190619115735] [PMID: 31237210]
[3]
Bosquesi, P.L.; Melo, T.R.F.; Vizioli, E.O.; Santos, J.L.; Chung, M.C. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals (Basel), 2011, 4(11), 1450-1474.
[http://dx.doi.org/10.3390/ph4111450] [PMID: 27721332]
[4]
Reddyrajula, R.; Dalimba, U.; Madan Kumar, S. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem., 2019, 168, 263-282.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.010] [PMID: 30822714]
[5]
Sahu, A.; Sahu, P.; Agrawal, R. A recent review on drug modification using 1,2,3-triazole. Curr. Chem. Biol., 2020, 14(2), 71-87.
[http://dx.doi.org/10.2174/2212796814999200807214519]
[6]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[7]
Khan, F.A.; Maalik, A. Advances in pharmacology of isatin and its derivatives: A review. Trop. J. Pharm. Res., 2015, 14(10), 1937-1942.
[http://dx.doi.org/10.4314/tjpr.v14i10.28]
[8]
Kumar, S.B.; Ravinder, M.; Kishore, G.; Jayathirtha Rao, V.; Yogeeswari, P.; Sriram, D. Synthesis, antitubercular and anticancer activity of new Baylis–Hillman adduct-derived N-cinnamyl-substi-tuted isatin derivatives. Med. Chem. Res., 2014, 23(4), 1934-1940.
[http://dx.doi.org/10.1007/s00044-013-0787-x] [PMID: 32214765]
[9]
Medvedev, A.; Igosheva, N.; Crumeyrolle-Arias, M.; Glover, V. Isatin: Role in stress and anxiety. Stress, 2005, 8(3), 175-183.
[http://dx.doi.org/10.1080/10253890500342321] [PMID: 16236622]
[10]
Chauhan, G.; Pathak, D.P.; Ali, F.; Bhutani, R.; Kapoor, G.; Khasimbi, S. Advances in synthesis, derivatization and bioactivity of isatin: a review. Curr. Org. Synth., 2021, 18(1), 37-74.
[http://dx.doi.org/10.2174/18756271MTEwdMjA54] [PMID: 32972348]
[11]
Cheke, R.S.; Firke, S.D.; Patil, R.R.; Bari, S.B. ISATIN: New hope against convulsion. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(2), 76-101.
[http://dx.doi.org/10.2174/1871524917666171113124112]
[12]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[13]
De Moraes Gomes, P.A.T.; Pena, L.J.; Leite, A.C.L. Isatin derivatives and their antiviral properties against arboviruses: a review. Mini Rev. Med. Chem., 2018, 19(1), 56-62.
[http://dx.doi.org/10.2174/1389557518666180424093305] [PMID: 29692243]
[14]
Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[15]
Jiang, D.; Wang, G.Q.; Liu, X.; Zhang, Z.; Feng, L.S.; Liu, M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem., 2018, 55(6), 1263-1279.
[http://dx.doi.org/10.1002/jhet.3189]
[16]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[17]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm. (Weinheim), 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[18]
Liu, W.; Chen, H.; Zhang, X.; Zhang, X.; Xu, L.; Lei, Y.; Zhu, C.; Ma, B. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med. Chem. Res., 2021, 30(8), 1588-1602.
[http://dx.doi.org/10.1007/s00044-021-02751-4]
[19]
Beula, S.J.; Reddy, T.R.M.; Suthakaran, R.; Suneetha, K. A review an isatin, isatin derivatives and their pharmacological activity. Res. J. Pahrmacol. Pharmacodyn., 2021, 13(2), 59-62.
[20]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[21]
Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7(4), 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012C]
[22]
Ahmed, F.; Xiong, H. Recent developments in 1,2,3-triazole-based chemosensors. Dyes Pigments, 2021, 185, 108905.
[http://dx.doi.org/10.1016/j.dyepig.2020.108905]
[23]
Schröder, D.C.; Kracker, O.; Fröhr, T.; Góra, J.; Jewginski, M.; Nieß, A.; Antes, I.; Latajka, R.; Marion, A.; Sewald, N. 1,4-Disubstituted 1H-1,2,3-Triazole containing Peptidotriazolamers: A new class of peptidomimetics with interesting foldamer properties. Front Chem., 2019, 7, 155.
[http://dx.doi.org/10.3389/fchem.2019.00155] [PMID: 30972322]
[24]
Huisgen, R.; Szeimies, G.; Möbius, L. 1.3‐Dipolare Cycloadditionen, XXXII. kinetik der additionen organischer azide an CC‐mehrfachbindungen. Chem. Ber., 1967, 100(8), 2494-2507.
[http://dx.doi.org/10.1002/cber.19671000806]
[25]
Kumar, A.; Lal, K.; Poonia, N.; Kumar, A.; Kumar, A. Synthesis, antimicrobial evaluation and docking studies of fluorinated imine linked 1,2,3-triazoles. Res. Chem. Intermed., 2022, 48(7), 2933-2948.
[http://dx.doi.org/10.1007/s11164-022-04737-2]
[26]
Kumar, L.; Lal, K.; Kumar, A.; Kumar, A. Synthesis, antimicrobial evaluation and docking studies of oxazolone-1,2,3-triazole-amide hybrids. Res. Chem. Intermed., 2021, 47(12), 5079-5097.
[http://dx.doi.org/10.1007/s11164-021-04588-3]
[27]
Kumar, A.; Lal, K.; Kumar, L.; Kumar, A. Naveen; Tittal, R.K. Phenylhydrazone linked 1,2,3-triazole hybrids: synthesis, antimicrobial evaluation and docking studies as dual inhibitors of DNA gyrase and lanosterol 14-α demethylase. Res. Chem. Intermed., 2022, 48(12), 5089-5111.
[http://dx.doi.org/10.1007/s11164-022-04849-9]
[28]
Yadav, M.; Lal, K.; Kumar, A.; Singh, P.; Vishvakarma, V.K.; Chandra, R. Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J. Mol. Struct., 2023, 1273, 134321.
[http://dx.doi.org/10.1016/j.molstruc.2022.134321]
[29]
Poonia, N.; Kumar, A.; Kumar, V.; Yadav, M.; Lal, K. Recent progress in 1H-1,2,3-triazoles as potential antifungal agents. Curr. Top. Med. Chem., 2021, 21(23), 2109-2133.
[http://dx.doi.org/10.2174/1568026621666210913122828] [PMID: 34517801]
[30]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[31]
Alam, M.M. 1,2,3‐Triazole hybrids as anticancer agents: A review. Arch. Pharm. (Weinheim), 2022, 355(1), 2100158.
[http://dx.doi.org/10.1002/ardp.202100158] [PMID: 34559414]
[32]
Feng, L.S.; Zheng, M.J.; Zhao, F.; Liu, D. 1,2,3‐Triazole hybrids with anti‐HIV‐1 activity. Arch. Pharm. (Weinheim), 2021, 354(1), 2000163.
[http://dx.doi.org/10.1002/ardp.202000163] [PMID: 32960467]
[33]
Kumar, L.; Lal, K.; Yadav, P.; Kumar, A.; Paul, A.K. Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J. Mol. Struct., 2020, 1216, 128253.
[http://dx.doi.org/10.1016/j.molstruc.2020.128253]
[34]
Kaushik, C.P.; Chahal, M. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. Monatsh. Chem., 2021, 152(8), 1001-1012.
[http://dx.doi.org/10.1007/s00706-021-02821-8]
[35]
Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Kalam Khan, F.A.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm, 2015, 6(6), 1104-1116.
[http://dx.doi.org/10.1039/C5MD00057B]
[36]
Kim, T.W.; Yong, Y.; Shin, S.Y.; Jung, H.; Park, K.H.; Lee, Y.H.; Lim, Y.; Jung, K.Y. Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents. Bioorg. Chem., 2015, 59, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.003] [PMID: 25658192]
[37]
Bañuls, A.L.; Sanou, A.; Van Anh, N.T.; Godreuil, S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J. Med. Microbiol., 2015, 64(11), 1261-1269.
[http://dx.doi.org/10.1099/jmm.0.000171] [PMID: 26385049]
[38]
Chen, R.; Zhang, H.; Ma, T.; Xue, H.; Miao, Z.; Chen, L.; Shi, X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2635-2637.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.041] [PMID: 31358466]
[39]
Yan, X.; Lv, Z.; Wen, J.; Zhao, S.; Xu, Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem., 2018, 143, 899-904.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.090] [PMID: 29227930]
[40]
Xu, Z.; Zhang, S.; Song, X.; Qiang, M.; Lv, Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett., 2017, 27(16), 3643-3646.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.023] [PMID: 28720502]
[41]
Xu, Z.; Song, X.F.; Hu, Y.Q.; Qiang, M.; Lv, Z.S. Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: Design, synthesis and in vitro anti-mycobacterial evaluation. Eur. J. Med. Chem., 2017, 138, 66-71.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.057] [PMID: 28646656]
[42]
Sharma, B.; Kumar, S. Preeti; Johansen, M.D.; Kremer, L.; Kumar, V. 1 H ‐1,2,3‐triazole embedded Isatin‐Benzaldehyde‐bis(het-eronuclearhydrazones): design, synthesis, antimycobacterial, and cytotoxic evaluation. Chem. Biol. Drug Des., 2022, 99(2), 301-307.
[http://dx.doi.org/10.1111/cbdd.13984] [PMID: 34786862]
[43]
Jiang, Y.; Qian, A.; Li, Y. 1H‐1,2,3‐Triazole tethered isatin‐moxifloxacin: Design, synthesis and in vitro anti‐mycobacterial evaluation. Arch. Pharm. (Weinheim), 2019, 352(7), 1900040.
[http://dx.doi.org/10.1002/ardp.201900040] [PMID: 31106443]
[44]
Xu, Z.; Lv, Z.S.; Song, X.F.; Qiang, M. Ciprofloxacin-isatin-1 H -1,2,3-triazole Hybrids: Design, Synthesis, and in vitro Anti-tubercular Activity against M. tuberculosis. J. Heterocycl. Chem., 2018, 55(1), 97-102.
[http://dx.doi.org/10.1002/jhet.3010]
[45]
Ding, Z.; Hou, P.; Liu, B. Gatifloxacin‐1,2,3‐triazole‐isatin hybrids and their antimycobacterial activities. Arch. Pharm. (Weinheim), 2019, 352(10), 1900135.
[http://dx.doi.org/10.1002/ardp.201900135] [PMID: 31441087]
[46]
Kancharla, S.K.; Birudaraju, S.; Pal, A.; Krishnakanth Reddy, L.; Reddy, E.R.; Vagolu, S.K.; Sriram, D.; Bonige, K.B.; Korupolu, R.B. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1 H -1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. New J. Chem., 2022, 46(6), 2863-2874.
[http://dx.doi.org/10.1039/D1NJ05171G]
[47]
Hu, Y.Q.; Meng, L.D.; Qiang, M.; Song, X.F. Design, synthesis, and in vitro anti‐mycobacterial evaluation 1H‐1,2,3‐triazole‐tethered ciprofloxacin and isatin conjugates. J. Heterocycl. Chem., 2017, 54(6), 3725-3729.
[http://dx.doi.org/10.1002/jhet.2933]
[48]
Xu, Z.; Song, X.F.; Qiang, M.; Lv, Z.S. 1H‐1,2,3‐triazole‐tethered 8-OMe ciprofloxacin and isatin hybrids: design, synthesis and in vitro anti‐mycobacterial activities. J. Heterocycl. Chem., 2017, 54(6), 3735-3741.
[http://dx.doi.org/10.1002/jhet.2980]
[49]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1H‐1,2,3‐Triazole‐tethered isatin–coumarin hybrids: design, synthesis and in vitro anti‐mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55(3), 775-780.
[http://dx.doi.org/10.1002/jhet.3093]
[50]
Huang, G.C.; Xu, Y.; Xu, Z.; Lv, Z.S.; Zhang, J.; Guo, H.Y.; Hu, Y.Q.; Liu, M.L.; Guan, J.G.; Lu, Y. Propylene‐1H‐1,2,3‐triazole‐4‐methylene‐tethered isatin‐coumarin hybrids: design, synthesis, and in vitro anti‐tubercular evaluation. J. Heterocycl. Chem., 2018, 55(4), 830-835.
[http://dx.doi.org/10.1002/jhet.3106]
[51]
National Cancer Institute. About cancer: Understanding cancer, what is cancer? Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (Accessed May 20, 2022).
[52]
Rani, A.; Singh, G.I.; Kaur, R.; Palma, G.; Perumal, S.; Kaur, M.; Ebenezer, O.; Awolade, P.; Singh, P.; Kumar, V. Azide-alkyne cycloaddition en route to ferrocenyl-methoxy-methyl-isatin-conjugates: Synthesis, anti-breast cancer activities and molecular docking studies. J. Organomet. Chem., 2020, 907, 121072.
[http://dx.doi.org/10.1016/j.jorganchem.2019.121072]
[53]
Singh, A.; Saha, S.T.; Perumal, S.; Kaur, M.; Kumar, V.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered isatin-ferrocene: ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: synthesis and atiproliferative evaluation. ACS Omega, 2018, 3(1), 1263-1268.
[http://dx.doi.org/10.1021/acsomega.7b01755] [PMID: 30023800]
[54]
Rezki, N.; Almehmadi, M.A.; Ihmaid, S.; Shehata, A.M.; Omar, A.M.; Ahmed, H.E.A.; Aouad, M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg. Chem., 2020, 103, 104133.
[http://dx.doi.org/10.1016/j.bioorg.2020.104133] [PMID: 32745759]
[55]
Nazari, S.; Safari, F.; Mamaghani, M.B.; Bazgir, A. Synthesis and evaluation of in vitro cytotoxic effects of triazol/spiroindoline-quinazolinedione, triazol/indolin-3-thiosemicarbazone and triazol/thiazol-indolin-2-one conjugates. Daru, 2020, 28(2), 591-601.
[http://dx.doi.org/10.1007/s40199-020-00364-7] [PMID: 32803690]
[56]
Kumar, S.; Saha, S.T.; Gu, L.; Palma, G.; Perumal, S.; Singh-Pillay, A.; Singh, P.; Anand, A.; Kaur, M.; Kumar, V. 1H-1,2,3-Triazole tethered nitroimidazole-isatin conjugates: synthesis, docking, and anti-proliferative evaluation against breast cancer. ACS Omega, 2018, 3(9), 12106-12113.
[http://dx.doi.org/10.1021/acsomega.8b01513] [PMID: 30320289]
[57]
Kumar, S.; Gu, L.; Palma, G.; Kaur, M.; Singh-Pillay, A.; Singh, P.; Kumar, V. Design, synthesis, anti-proliferative evaluation and docking studies of 1 H -1,2,3-triazole tethered ospemifene–isatin conjugates as selective estrogen receptor modulators. New J. Chem., 2018, 42(5), 3703-3713.
[http://dx.doi.org/10.1039/C7NJ04964A]
[58]
Aneja, B.; Khan, N.S.; Khan, P.; Queen, A.; Hussain, A.; Rehman, M.T.; Alajmi, M.F.; El-Seedi, H.R.; Ali, S.; Hassan, M.I.; Abid, M. Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur. J. Med. Chem., 2019, 163, 840-852.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.026] [PMID: 30579124]
[59]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.L.; Zhang, F.; Bai, L.Y.; Deng, J.L.; Wang, Q.; Fan, Y.L. Design, synthesis, and evaluation of tetraethylene glycol-tethered isatin-1,2,3-triazole-coumarin hybrids as novel anticancer agents. J. Heterocycl. Chem., 2019, 56(3), 1127-1132.
[http://dx.doi.org/10.1002/jhet.3475]
[60]
Yu, B.; Wang, S.Q.; Qi, P.P.; Yang, D.X.; Tang, K.; Liu, H.M. Design and synthesis of isatin/triazole conjugates that induce apoptosis and inhibit migration of MGC-803 cells. Eur. J. Med. Chem., 2016, 124, 350-360.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.065] [PMID: 27597411]
[61]
Diao, Q.P.; Guo, H.; Wang, G.Q. Design, synthesis, and in vitro anticancer activities of diethylene glycol tethered isatin-1,2,3-triazole-coumarin hybrids. J. Heterocycl. Chem., 2019, 56(5), 1667-1671.
[http://dx.doi.org/10.1002/jhet.3538]
[62]
Fan, Y.L.; Huang, Z.P.; Liu, M. Design, synthesis and antitumor activities of 1,2,3-triazole-diethylene glycol tethered isatin dimers. J. Heterocycl. Chem., 2018, 55(12), 2990-2995.
[http://dx.doi.org/10.1002/jhet.3330]
[63]
Wang, R.; Yin, X.; Zhang, Y.; Zhang, T.; Shi, W. Design, synthesis, and in vitro anti-tumor activities of 1,2,3-triazole-tetraethylene glycol tethered heteronuclear bis-schiff base derivatives of isatin. J. Heterocycl. Chem., 2018, 55(12), 3001-3005.
[http://dx.doi.org/10.1002/jhet.3341]
[64]
Nagarsenkar, A.; Guntuku, L.; Guggilapu, S.D. K, D.B.; Gannoju, S.; Naidu, V.G.M.; Bathini, N.B. Synthesis and apoptosis inducing studies of triazole linked 3-benzylidene isatin derivatives. Eur. J. Med. Chem., 2016, 124, 782-793.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.009] [PMID: 27639369]
[65]
Nagarsenkar, A.; Prajapti, S.K.; Guggilapu, S.D.; Birineni, S.; Sravanti Kotapalli, S.; Ummanni, R.; Babu, B.N. Investigation of triazole-linked indole and oxindole glycoconjugates as potential anticancer agents: novel Akt/PKB signaling pathway inhibitors. MedChemComm, 2016, 7(4), 646-653.
[http://dx.doi.org/10.1039/C5MD00513B]
[66]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.069] [PMID: 28797799]
[67]
Kumar, K.; Sagar, S.; Esau, L.; Kaur, M.; Kumar, V. Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil–isatin conjugates and their cytotoxic evaluation. Eur. J. Med. Chem., 2012, 58, 153-159.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.008] [PMID: 23124212]
[68]
MedicalNewsToday: What to know about infections. Available from: https://www.medicalnewstoday.com/articles/196271 (Accessed May 20, 2022).
[69]
Guo, H.; Diao, Q.P. Gatifloxacin-1,2,3-triazole-isatin hybrids tethered through methylene and acetyl and their antibacterial activities. Rev. Roum. Chim., 2020, 65(3), 239-246.
[http://dx.doi.org/10.33224/rrch.2020.65.3.03]
[70]
Yagnam, S.; Trivedi, R.; Krishna, S.; Giribabu, L.; Praveena, G.; Prakasham, R.S. Bioactive isatin (oxime)-triazole-thiazolidinedione ferrocene molecular conjugates: Design, synthesis and antimicrobial activities. J. Organomet. Chem., 2021, 937, 121716.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121716]
[71]
Gao, F.; Ye, L.; Kong, F.; Huang, G.; Xiao, J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg. Chem., 2019, 91, 103162.
[http://dx.doi.org/10.1016/j.bioorg.2019.103162] [PMID: 31382058]
[72]
Lal, K.; Yadav, P. Green synthesis and antibacterial evaluation of isatin-oxime-triazole conjugates. Chem. Biol. Int., 2016, 6(4), 234-242.
[73]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Louven, K.; Strohmann, C.; Mastouri, M. Synthesis of new spirooxindole‐fused isoxazoline/triazole and isoxazoline/isoxazole derivatives from three‐component 1,3‐dipolar cycloaddition. J. Heterocycl. Chem., 2017, 54(6), 3554-3564.
[http://dx.doi.org/10.1002/jhet.2981]
[74]
Shaikh, M.H.; Subhedar, D.D.; Khan, F.A.K.; Sangshetti, J.N.; Nawale, L.; Arkile, M.; Sarkar, D.; Shingate, B.B. Synthesis of novel triazole‐incorporated isatin derivatives as antifungal, antitubercular, and antioxidant agents and molecular docking study. J. Heterocycl. Chem., 2017, 54(1), 413-421.
[http://dx.doi.org/10.1002/jhet.2598]
[75]
Aouad, M.R. Click synthesis and antimicrobial screening of novel isatin-1,2,3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int., 2017, 49(3), 216-227.
[http://dx.doi.org/10.1080/00304948.2017.1320515]
[76]
Malah, T.E.; Farag, H.; Hemdan, B.A.; Abdel Mageid, R.E.; Abdelrahman, M.T.; El-Manawaty, M.A.; Nour, H.F. Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J. Mol. Struct., 2022, 1250, 131855.
[http://dx.doi.org/10.1016/j.molstruc.2021.131855]
[77]
Deswal, S. Naveen; Tittal, R.K.; Ghule Vikas, D.; Lal, K.; Kumar, A. 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct., 2020, 1209, 127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[78]
National Library of Medicine. Bookshelf: Medical Microbiology Chapter-83 Malaria: General Concepts Available from: https://www.ncbi.nlm.nih.gov/books/NBK8584/ (Accessed May 20, 2022).
[79]
Raj, R.; Singh, P.; Haberkern, N.T.; Faucher, R.M.; Patel, N.; Land, K.M.; Kumar, V. Synthesis of 1H-β-lactameisatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem., 2013, 637, e906.
[80]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Benoit, N.; Kumar, V. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: Synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 87, 801-804.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.024] [PMID: 25440881]
[81]
Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(3), 756-759.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.109] [PMID: 24424135]
[82]
Marques, C.S.; López, Ó.; Bagetta, D.; Carreiro, E.P.; Petralla, S.; Bartolini, M.; Hoffmann, M.; Alcaro, S.; Monti, B.; Bolognesi, M.L.; Decker, M.; Fernández-Bolaños, J.G.; Burke, A.J. N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: A comprehensive bioassay study. Bioorg. Chem., 2020, 98, 103753.
[http://dx.doi.org/10.1016/j.bioorg.2020.103753] [PMID: 32200328]
[83]
Bhagat, K.; Singh, J.V.; Sharma, A.; Kaur, A.; Kumar, N.; Gulati, H.K.; Singh, A.; Singh, H.; Bedi, P.M.S. Novel series of triazole containing coumarin and isatin based hybrid molecules as acetylcholinesterase inhibitors. J. Mol. Struct., 2021, 1245, 131085.
[http://dx.doi.org/10.1016/j.molstruc.2021.131085]
[84]
Shareghi-Boroujeni, D.; Iraji, A.; Mojtabavi, S.; Faramarzi, M.A.; Akbarzadeh, T.; Saeedi, M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg. Chem., 2021, 111, 104869.
[http://dx.doi.org/10.1016/j.bioorg.2021.104869] [PMID: 33839583]
[85]
Singh, A.; Heer, S.; Kaur, K.; Gulati, H.K.; Kumar, N.; Sharma, A.; Singh, J.V.; Bhagat, K.; Kaur, G.; Kaur, K.; Singh, H.; Chadha, R.; Bedi, P.M.S. Design, synthesis, and biological evaluation of isatin‐indole‐3‐carboxaldehyde hybrids as a new class of xanthine oxidase inhibitors. Arch. Pharm. (Weinheim), 2022, 355(6), 2200033.
[http://dx.doi.org/10.1002/ardp.202200033] [PMID: 35315115]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy