Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

The Potential of Melatonin to Treat Atherosclerosis by Targeting Mitochondria

Author(s): Xuan Sun*, Li Chen and Qing-Jun Gui

Volume 23, Issue 10, 2023

Published on: 10 February, 2023

Page: [848 - 859] Pages: 12

DOI: 10.2174/1568026623666230116102054

Price: $65

conference banner
Abstract

As a circadian rhythm hormone, melatonin is widely present in the body and has rich physiological functions. Compared to its prominent circadian role, melatonin has been extensively studied in many fields as an ancient antioxidant. In addition to being considered a potent antioxidant, melatonin has also been found to play an important role in mitochondrial homeostasis. Mitochondrial oxidative stress plays a crucial role in the occurrence and development of atherosclerosis. Therefore, the possible therapeutic value of melatonin as an antioxidant targeting mitochondria in atherosclerosis is worth exploring. The most widespread clinical applications of melatonin are in circadian rhythms and sleep, but the cardiovascular system may be the most promising area.

Graphical Abstract

[1]
Pandi-Perumal, S.R.; Srinivasan, V.; Maestroni, G.J.M.; Cardinali, D.P.; Poeggeler, B.; Hardeland, R. Melatonin. FEBS J., 2006, 273(13), 2813-2838.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05322.x] [PMID: 16817850]
[2]
Ekmekcioglu, C. Melatonin receptors in humans: Biological role and clinical relevance. Biomed. Pharmacother., 2006, 60(3), 97-108.
[http://dx.doi.org/10.1016/j.biopha.2006.01.002] [PMID: 16527442]
[3]
Pfeffer, M.; Korf, H.W.; Wicht, H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen. Comp. Endocrinol., 2018, 258, 215-221.
[http://dx.doi.org/10.1016/j.ygcen.2017.05.013] [PMID: 28533170]
[4]
Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev., 2005, 9(1), 25-39.
[http://dx.doi.org/10.1016/j.smrv.2004.05.002] [PMID: 15649736]
[5]
Xie, Z.; Chen, F.; Li, W.A.; Geng, X.; Li, C.; Meng, X.; Feng, Y.; Liu, W.; Yu, F. A review of sleep disorders and melatonin. Neurol. Res., 2017, 39(6), 559-565.
[http://dx.doi.org/10.1080/01616412.2017.1315864] [PMID: 28460563]
[6]
Auld, F.; Maschauer, E.L.; Morrison, I.; Skene, D.J.; Riha, R.L. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev., 2017, 34, 10-22.
[http://dx.doi.org/10.1016/j.smrv.2016.06.005] [PMID: 28648359]
[7]
Cipolla-Neto, J.; Amaral, F.G.; Afeche, S.C.; Tan, D.X.; Reiter, R.J. Melatonin, energy metabolism, and obesity: A review. J. Pineal Res., 2014, 56(4), 371-381.
[http://dx.doi.org/10.1111/jpi.12137] [PMID: 24654916]
[8]
Amstrup, A.K.; Sikjaer, T.; Pedersen, S.B.; Heickendorff, L.; Mosekilde, L.; Rejnmark, L. Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women: A randomized placebo-controlled trial. Clin. Endocrinol. (Oxf.), 2016, 84(3), 342-347.
[http://dx.doi.org/10.1111/cen.12942] [PMID: 26352863]
[9]
Owino, S.; Sánchez-Bretaño, A.; Tchio, C.; Cecon, E.; Karamitri, A.; Dam, J.; Jockers, R.; Piccione, G.; Noh, H.L.; Kim, T.; Kim, J.K.; Baba, K.; Tosini, G. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J. Pineal Res., 2018, 64(3), e12462.
[http://dx.doi.org/10.1111/jpi.12462] [PMID: 29247541]
[10]
Nogueira, T.C.; Lellis-Santos, C.; Jesus, D.S.; Taneda, M.; Rodrigues, S.C.; Amaral, F.G.; Lopes, A.M.S.; Cipolla-Neto, J.; Bordin, S.; Anhê, G.F. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology, 2011, 152(4), 1253-1263.
[http://dx.doi.org/10.1210/en.2010-1088] [PMID: 21303940]
[11]
Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M. Vascular melatonin receptors. Neurosignals, 1993, 2(4), 221-227.
[http://dx.doi.org/10.1159/000109495] [PMID: 8205165]
[12]
Han, D.; Wang, Y.; Chen, J.; Zhang, J.; Yu, P.; Zhang, R.; Li, S.; Tao, B.; Wang, Y.; Qiu, Y.; Xu, M.; Gao, E.; Cao, F. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J. Pineal Res., 2019, 67(1), e12571.
[http://dx.doi.org/10.1111/jpi.12571] [PMID: 30903623]
[13]
Baltatu, O.C.; Amaral, F.G.; Campos, L.A.; Cipolla-Neto, J. Melatonin, mitochondria and hypertension. Cell. Mol. Life Sci., 2017, 74(21), 3955-3964.
[http://dx.doi.org/10.1007/s00018-017-2613-y] [PMID: 28791422]
[14]
Cagnacci, A.; Cannoletta, M.; Renzi, A.; Baldassari, F.; Arangino, S.; Volpe, A. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am. J. Hypertens., 2005, 18(12), 1614-1618.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.008] [PMID: 16364834]
[15]
Tan, D.X.; Hardeland, R.; Manchester, L.C.; Paredes, S.D.; Korkmaz, A.; Sainz, R.M.; Mayo, J.C.; Fuentes-Broto, L.; Reiter, R.J. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc., 2010, 85(3), 607-623.
[PMID: 20039865]
[16]
Tan, D.X.; Zheng, X.; Kong, J.; Manchester, L.; Hardeland, R.; Kim, S.; Xu, X.; Reiter, R. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: Relation to their biological functions. Int. J. Mol. Sci., 2014, 15(9), 15858-15890.
[http://dx.doi.org/10.3390/ijms150915858] [PMID: 25207599]
[17]
Tan, D.X.; Hardeland, R.; Manchester, L.C.; Galano, A.; Reiter, R.J. Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem., 2014, 21(13), 1557-1565.
[http://dx.doi.org/10.2174/0929867321666131129113146] [PMID: 24304286]
[18]
Galano, A.; Medina, M.E.; Tan, D.X.; Reiter, R.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. J. Pineal Res., 2015, 58(1), 107-116.
[http://dx.doi.org/10.1111/jpi.12196] [PMID: 25424557]
[19]
Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res., 2013, 54(3), 245-257.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[20]
Túnez, I.; Muñoz, M.C.; Medina, F.J.; Salcedo, M.; Feijóo, M.; Montilla, P. Comparison of melatonin, vitamin E and L-carnitine in the treatment of neuro- and hepatotoxicity induced by thioacetamide. Cell Biochem. Funct., 2007, 25(2), 119-127.
[http://dx.doi.org/10.1002/cbf.1276] [PMID: 16245358]
[21]
Tan, D.X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules, 2015, 20(10), 18886-18906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[22]
Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol., 2015, 34(1), 100-113.
[http://dx.doi.org/10.1177/0960327114531995] [PMID: 24812155]
[23]
Gao, Y.; Wang, Y.; Qian, J.; Si, W.; Tan, Q.; Xu, J.; Zhao, Y. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes. Food Chem., 2020, 330, 127263.
[http://dx.doi.org/10.1016/j.foodchem.2020.127263] [PMID: 32531629]
[24]
Sun, H.; Gusdon, A.M.; Qu, S. Effects of melatonin on cardiovascular diseases. Curr. Opin. Lipidol., 2016, 27(4), 408-413.
[http://dx.doi.org/10.1097/MOL.0000000000000314] [PMID: 27075419]
[25]
Andersen, L.P.H.; Gögenur, I.; Rosenberg, J.; Reiter, R.J. The safety of melatonin in humans. Clin. Drug Investig., 2016, 36(3), 169-175.
[http://dx.doi.org/10.1007/s40261-015-0368-5] [PMID: 26692007]
[26]
Hay, S.I.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; Abu-Raddad, L.J.; Ackerman, I.N.; Adedeji, I.A.; Adetokunboh, O.; Afshin, A.; Aggarwal, R.; Agrawal, S.; Agrawal, A.; Ahmed, M.B.; Aichour, M.T.E.; Aichour, A.N.; Aichour, I.; Aiyar, S.; Akinyemiju, T.F.; Akseer, N.; Al Lami, F.H.; Alahdab, F.; Al-Aly, Z.; Alam, K.; Alam, N.; Alam, T.; Alasfoor, D.; Alene, K.A.; Ali, R.; Alizadeh-Navaei, R.; Alkaabi, J.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Allen, C.; Al-Maskari, F.; AlMazroa, M.A.A.; Al-Raddadi, R.; Alsharif, U.; Alsowaidi, S.; Althouse, B.M.; Altirkawi, K.A.; Alvis-Guzman, N.; Amare, A.T.; Amini, E.; Ammar, W.; Amoako, Y.A.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Ärnlöv, J.; Arora, M.; Artaman, A.; Aryal, K.K.; Asgedom, S.W.; Atey, T.M.; Atnafu, N.T.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awasthi, S.; Azarpazhooh, M.R.; Azzopardi, P.; Babalola, T.K.; Bacha, U.; Badawi, A.; Balakrishnan, K.; Bannick, M.S.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barquera, S.; Barrero, L.H.; Basu, S.; Battista, R.; Battle, K.E.; Baune, B.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Béjot, Y.; Bekele, B.B.; Bell, M.L.; Bennett, D.A.; Bennett, J.R.; Bensenor, I.M.; Benson, J.; Berhane, A.; Berhe, D.F.; Bernabé, E.; Betsu, B.D.; Beuran, M.; Beyene, A.S.; Bhansali, A.; Bhatt, S.; Bhutta, Z.A.; Biadgilign, S.; Bicer, B.K.; Bienhoff, K.; Bikbov, B.; Birungi, C.; Biryukov, S.; Bisanzio, D.; Bizuayehu, H.M.; Blyth, F.M.; Boneya, D.J.; Bose, D.; Bou-Orm, I.R.; Bourne, R.R.A.; Brainin, M.; Brayne, C.; Brazinova, A.; Breitborde, N.J.K.; Briant, P.S.; Britton, G.; Brugha, T.S.; Buchbinder, R.; Bulto, L.N.B.; Bumgarner, B.R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cameron, E.; Campos-Nonato, I.R.; Carabin, H.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Carter, A.; Carvalho, F.; Casey, D.; Castañeda-Orjuela, C.A.; Castle, C.D.; Catalá-López, F.; Chang, J-C.; Charlson, F.J.; Chaturvedi, P.; Chen, H.; Chibalabala, M.; Chibueze, C.E.; Chisumpa, V.H.; Chitheer, A.A.; Chowdhury, R.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Colombara, D.; Cooper, L.T.; Cooper, C.; Cortesi, P.A.; Cortinovis, M.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dalal, K.; Damasceno, A.; Dandona, L.; Dandona, R. das Neves, J.; Davitoiu, D.V.; Davletov, K.; de Courten, B.; De Leo, D.; De Steur, H.; Defo, B.K.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Des Jarlais, D.C.; Dey, S.; Dharmaratne, S.D.; Dhillon, P.K.; Dicker, D.; Djalainia, S.; Do, H.P.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; dos Santos, K.P.B.; Driscoll, T.R.; Dubey, M.; Duncan, B.B.; Ebel, B.E.; Echko, M.; El-Khatib, Z.Z.; Enayati, A.; Endries, A.Y.; Ermakov, S.P.; Erskine, H.E.; Eshetie, S.; Eshrati, B.; Esteghamati, A.; Estep, K.; Fanuel, F.B.B.; Farag, T.; Farinha, C.S.S.; Faro, A.; Farzadfar, F.; Fazeli, M.S.; Feigin, V.L.; Feigl, A.B.; Fereshtehnejad, S-M.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, T.R.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Flaxman, A.D.; Foigt, N.; Foreman, K.J.; Franklin, R.C.; Frostad, J.J.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gakidou, E.; Garcia-Basteiro, A.L.; Gebre, T.; Gebregergs, G.B.; Gebrehiwot, T.T.; Geleijnse, J.M.; Geleto, A.; Gemechu, B.L.; Gesesew, H.A.; Gething, P.W.; Ghajar, A.; Gibney, K.B.; Gillum, R.F.; Ginawi, I.A.M.; Gishu, M.D.; Giussani, G.; Godwin, W.W.; Goel, K.; Goenka, S.; Goldberg, E.M.; Gona, P.N.; Goodridge, A.; Gopalani, S.V.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Goulart, A.C.; Graetz, N.; Gugnani, H.C.; Gupta, P.C.; Gupta, R.; Gupta, T.; Gupta, V.; Gupta, R.; Gutiérrez, R.A.; Hachinski, V.; Hafezi-Nejad, N.; Hailu, A.D.; Hailu, G.B.; Hamadeh, R.R.; Hamidi, S.; Hammami, M.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Hareri, H.A.; Haro, J.M.; Harun, K.M.; Harvey, J.; Hassanvand, M.S.; Havmoeller, R.; Hay, R.J.; Hedayati, M.T.; Hendrie, D.; Henry, N.J.; Heredia-Pi, I.B.; Heydarpour, P.; Hoek, H.W.; Hoffman, H.J.; Horino, M.; Horita, N.; Hosgood, H.D.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.; Iburg, K.M.; Igumbor, E.U.; Ikeda, C.; Irvine, C.M.S.; Islam, S.M.S.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; James, P.; Jassal, S.K.; Javanbakht, M.; Jayaraman, S.P.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; John, D.; Johnson, C.O.; Johnson, S.C.; Jonas, J.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kamal, R.; Kar, C.; Karam, N.E.; Karch, A.; Karema, C.K.; Karimi, S.M.; Karimkhani, C.; Kasaeian, A.; Kassa, G.M.; Kassaw, N.A.; Kassebaum, N.J.; Kastor, A.; Katikireddi, S.V.; Kaul, A.; Kawakami, N.; Keiyoro, P.N.; Kemmer, L.; Kengne, A.P.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khoja, A.T.; Khosravi, A.; Khubchandani, J.; Kiadaliri, A.A.; Kieling, C.; Kim, Y.J.; Kim, D.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.A.; Kissoon, N.; Kivimaki, M.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Krohn, K.J.; Kumar, G.A.; Kumar, P.; Kyu, H.H.; Lager, A.C.J.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lambert, N.; Lan, Q.; Lansingh, V.C.; Larsson, A.; Leasher, J.L.; Lee, P.H.; Leigh, J.; Leshargie, C.T.; Leung, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Liang, X.; Liben, M.L.; Lim, S.S.; Linn, S.; Liu, P.Y.; Liu, A.; Liu, S.; Liu, Y.; Lodha, R.; Logroscino, G.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lozano, R.; Lucas, T.C.D.; Lunevicius, R.; Lyons, R.A.; Macarayan, E.R.K.; Maddison, E.R.; Magdy Abd El Razek, H.M.A.; Magdy Abd El Razek, M.; Magis-Rodriguez, C.; Mahdavi, M.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malhotra, R.; Malta, D.C.; Mamun, A.A.; Manguerra, H.; Manhertz, T.; Mantovani, L.G.; Mapoma, C.C.; March, L.M.; Marczak, L.B.; Martinez-Raga, J.; Martins, P.H.V.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Mathur, M.R.; Mazidi, M.; McAlinden, C.; McGaughey, M.; McGrath, J.J.; McKee, M.; Mehata, S.; Meier, T.; Meles, K.G.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Mengesha, M.M.; Mengistie, M.A.; Mengistu, D.T.; Mensah, G.A.; Meretoja, T.J.; Meretoja, A.; Mezgebe, H.B.; Micha, R.; Millear, A.; Miller, T.R.; Minnig, S.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.; Mishra, S.R.; Mitchell, P.B.; Mohammad, K.A.; Mohammadi, A.; Mohammed, M.S.K.; Mohammed, K.E.; Mohammed, S.; Mohan, M.B.V.; Mokdad, A.H.; Mollenkopf, S.K.; Monasta, L.; Montañez Hernandez, J.C.; Montico, M.; Moradi-Lakeh, M.; Moraga, P.; Morawska, L.; Mori, R.; Morrison, S.D.; Moses, M.; Mountjoy-Venning, C.; Mruts, K.B.; Mueller, U.O.; Muller, K.; Murdoch, M.E.; Murthy, G.V.S.; Murthy, S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naghavi, M.; Naheed, A.; Naidoo, K.S.; Nangia, V.; Nasher, J.T.; Natarajan, G.; Negasa, D.E.; Negoi, R.I.; Negoi, I.; Newton, C.R.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, Q.L.; Nguyen, T.H.; Nguyen, G.; Nguyen, M.; Nichols, E.; Ningrum, D.N.A.; Nong, V.M.; Norheim, O.F.; Norrving, B.; Noubiap, J.J.N.; Nyandwi, A.; Obermeyer, C.M.; O’Donnell, M.J.; Ogbo, F.A.; Oh, I-H.; Okoro, A.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olsen, H.E.; Olusanya, B.O.; Olusanya, J.O.; Ong, K.; Opio, J.N.; Oren, E.; Ortiz, A.; Osborne, R.H.; Osgood-Zimmerman, A.; Osman, M.; Ota, E.; Owolabi, M.O.; Pa, M.; Pacella, R.E.; Panda, B.K.; Pandian, J.D.; Papachristou, C.; Park, E-K.; Parry, C.D.; Parsaeian, M.; Patil, S.T.; Patten, S.B.; Patton, G.C.; Paudel, D.; Paulson, K.; Pearce, N.; Pereira, D.M.; Perez, K.M.; Perico, N.; Pesudovs, K.; Peterson, C.B.; Petri, W.A.; Petzold, M.; Phillips, M.R.; Phipps, G.; Pigott, D.M.; Pillay, J.D.; Pinho, C.; Piradov, M.A.; Plass, D.; Pletcher, M.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.; Purcell, C.; Purwar, M.; Qorbani, M.; Quintanilla, B.P.A.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.H.U.; Rahman, M.A.; Rahman, M.; Rai, R.K.; Rajsic, S.; Ram, U.; Ranabhat, C.L.; Rangaswamy, T.; Rankin, Z.; Rao, P.V.; Rao, P.C.; Rawaf, S.; Ray, S.E.; Reiner, R.C.; Reinig, N.; Reitsma, M.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Ribeiro, A.L.; Rivas, J.C.; Roba, H.S.; Robinson, S.R.; Rojas-Rueda, D.; Rokni, M.B.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Rothenbacher, D.; Roy, A.; Rubagotti, E.; Ruhago, G.M.; Saadat, S.; Safdarian, M.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahraian, M.A.; Salama, J.; Saleh, M.M.; Salomon, J.A.; Salvi, S.S.; Samy, A.M.; Sanabria, J.R.; Sanchez-Niño, M.D.; Santomauro, D.; Santos, J.V.; Santos, I.S.; Santric Milicevic, M.M.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saxena, S.; Schelonka, K.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Schwendicke, F.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shaheen, A.; Shaikh, M.A.; Shamsipour, M.; Sharma, R.; Sharma, J.; She, J.; Shi, P.; Shibuya, K.; Shields, C.; Shifa, G.T.; Shiferaw, M.S.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shirude, S.; Shishani, K.; Shoman, H.; Siabani, S.; Sibai, A.M.; Sigfusdottir, I.D.; Silberberg, D.H.; Silva, D.A.S.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Singh, O.P.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.; Smith, D.L.; Smith, M.; Sobaih, B.H.A.; Sobngwi, E.; Soljak, M.; Sorensen, R.J.D.; Sousa, T.C.M.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stathopoulou, V.; Steel, N.; Stein, D.J.; Steiner, C.; Steinke, S.; Stokes, M.A.; Stovner, L.J.; Strub, B.; Subart, M.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Swaminathan, S.; Sykes, B.L.; Sylte, D.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Taffere, G.R.; Takala, J.S.; Tandon, N.; Tanne, D.; Tarekegn, Y.L.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tegegne, T.K.; Tehrani-Banihashemi, A.; Tekelab, T.; Terkawi, A.S.; Tesfaye, D.J.; Tesssema, B.; Thakur, J.S.; Thamsuwan, O.; Theadom, A.M.; Theis, A.M.; Thomas, K.E.; Thomas, N.; Thompson, R.; Thrift, A.G.; Tobe-Gai, R.; Tobollik, M.; Tonelli, M.; Topor-Madry, R.; Tortajada, M.; Touvier, M.; Traebert, J.; Tran, B.X.; Troeger, C.; Truelsen, T.; Tsoi, D.; Tuzcu, E.M.; Tymeson, H.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Updike, R.; Uthman, O.A.; Uzochukwu, B.S.C.; van Boven, J.F.M.; Varughese, S.; Vasankari, T.; Veerman, L.J.; Venkatesh, S.; Venketasubramanian, N.; Vidavalur, R.; Vijayakumar, L.; Violante, F.S.; Vishnu, A.; Vladimirov, S.K.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wadilo, F.; Wakayo, T.; Wallin, M.T.; Wang, Y-P.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Wijeratne, T.; Williams, H.C.; Wiysonge, C.S.; Woldeyes, B.G.; Wolfe, C.D.A.; Woodbrook, R.; Woolf, A.D.; Workicho, A.; Xavier, D.; Xu, G.; Yadgir, S.; Yaghoubi, M.; Yakob, B.; Yan, L.L.; Yano, Y.; Ye, P.; Yihdego, M.G.; Yimam, H.H.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zegeye, E.A.; Zenebe, Z.M.; Zhang, X.; Zheng, Y.; Zhou, M.; Zipkin, B.; Zodpey, S.; Zoeckler, L.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100), 1260-1344.
[http://dx.doi.org/10.1016/S0140-6736(17)32130-X] [PMID: 28919118]
[27]
Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep., 2017, 19(11), 42.
[http://dx.doi.org/10.1007/s11883-017-0678-6] [PMID: 28921056]
[28]
Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; Watts, G.F.; Borén, J.; Fazio, S.; Horton, J.D.; Masana, L.; Nicholls, S.J.; Nordestgaard, B.G.; van de Sluis, B.; Taskinen, M.R. Tokgözoğlu, L.; Landmesser, U.; Laufs, U.; Wiklund, O.; Stock, J.K.; Chapman, M.J.; Catapano, A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2017, 38(32), 2459-2472.
[http://dx.doi.org/10.1093/eurheartj/ehx144] [PMID: 28444290]
[29]
Orekhov, A.N.; Sobenin, I.A. Modified and dysfunctional lipoproteins in atherosclerosis: effectors or biomarkers? Curr. Med. Chem., 2019, 26(9), 1512-1524.
[http://dx.doi.org/10.2174/0929867325666180320121137] [PMID: 29557739]
[30]
Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol., 2011, 12(3), 204-212.
[http://dx.doi.org/10.1038/ni.2001] [PMID: 21321594]
[31]
Wei, Y.; Corbalán-Campos, J.; Gurung, R.; Natarelli, L.; Zhu, M.; Exner, N.; Erhard, F.; Greulich, F.; Geißler, C.; Uhlenhaut, N.H.; Zimmer, R.; Schober, A. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation, 2018, 138(18), 2007-2020.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031589] [PMID: 29748186]
[32]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[33]
Orekhov, A.N.; Poznyak, A.V.; Sobenin, I.A.; Nikifirov, N.N.; Ivanova, E.A. Mitochondrion as a selective target for the treatment of atherosclerosis: role of mitochondrial dna mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation. Curr. Neuropharmacol., 2020, 18(11), 1064-1075.
[http://dx.doi.org/10.2174/1570159X17666191118125018] [PMID: 31744449]
[34]
Yu, E.P.K.; Bennett, M.R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol. Metab., 2014, 25(9), 481-487.
[http://dx.doi.org/10.1016/j.tem.2014.06.008] [PMID: 25034130]
[35]
Liu, P.S.; Ho, P.C. Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion, 2018, 41, 45-50.
[http://dx.doi.org/10.1016/j.mito.2017.11.002] [PMID: 29146487]
[36]
Kolmychkova, K.I.; Zhelankin, A.V.; Karagodin, V.P.; Orekhov, A.N. Mitochondria and inflammation. Patol. Fiziol. Eksp. Ter., 2016, 60(4), 114-121.
[PMID: 29244932]
[37]
Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Talaverón-Rey, M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Sánchez-Alcázar, J.A. From mitochondria to atherosclerosis: the inflammation path. Biomedicines, 2021, 9(3), 258.
[http://dx.doi.org/10.3390/biomedicines9030258] [PMID: 33807807]
[38]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[39]
Zhong, Z. Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; McGeough, M.D.; Ellisman, M.H.; Seki, E.; Gustafsson, A.B.; Hoffman, H.M.; Diaz-Meco, M.T.; Moscat, J.; Karin, M. NF-κB Restricts inflammasome activation via elimination of damaged mitochondria. Cell, 2016, 164(5), 896-910.
[http://dx.doi.org/10.1016/j.cell.2015.12.057] [PMID: 26919428]
[40]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[41]
Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 426-431.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[42]
Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203.
[http://dx.doi.org/10.1038/s41586-018-0372-z] [PMID: 30046112]
[43]
Hoseini, Z.; Sepahvand, F.; Rashidi, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol., 2018, 233(3), 2116-2132.
[http://dx.doi.org/10.1002/jcp.25930] [PMID: 28345767]
[44]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[45]
Loo, Y.M.; Gale, M. Jr Immune signaling by RIG-I-like receptors. Immunity, 2011, 34(5), 680-692.
[http://dx.doi.org/10.1016/j.immuni.2011.05.003] [PMID: 21616437]
[46]
Buskiewicz, I.A.; Montgomery, T.; Yasewicz, E.C.; Huber, S.A.; Murphy, M.P.; Hartley, R.C.; Kelly, R.; Crow, M.K.; Perl, A.; Budd, R.C.; Koenig, A. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal., 2016, 9(456), ra115.
[http://dx.doi.org/10.1126/scisignal.aaf1933] [PMID: 27899525]
[47]
Park, S.; Juliana, C.; Hong, S.; Datta, P.; Hwang, I.; Fernandes-Alnemri, T.; Yu, J.W.; Alnemri, E.S. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol., 2013, 191(8), 4358-4366.
[http://dx.doi.org/10.4049/jimmunol.1301170] [PMID: 24048902]
[48]
Iyer, S.S.; He, Q.; Janczy, J.R.; Elliott, E.I.; Zhong, Z.; Olivier, A.K.; Sadler, J.J.; Knepper-Adrian, V.; Han, R.; Qiao, L.; Eisenbarth, S.C.; Nauseef, W.M.; Cassel, S.L.; Sutterwala, F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 2013, 39(2), 311-323.
[http://dx.doi.org/10.1016/j.immuni.2013.08.001] [PMID: 23954133]
[49]
Coppi, L.; Ligorio, S.; Mitro, N.; Caruso, D.; De Fabiani, E.; Crestani, M. PGC1s and beyond: disentangling the complex regulation of mitochondrial and cellular metabolism. Int. J. Mol. Sci., 2021, 22(13), 6913.
[http://dx.doi.org/10.3390/ijms22136913] [PMID: 34199142]
[50]
Pircher, A.; Treps, L.; Bodrug, N.; Carmeliet, P. Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis, 2016, 253, 247-257.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.011] [PMID: 27594537]
[51]
Victor, V.; Apostolova, N.; Herance, R.; Hernandez-Mijares, A.; Rocha, M. Oxidative stress and mitochondrial dysfunction in atherosclerosis: Mitochondria-targeted antioxidants as potential therapy. Curr. Med. Chem., 2009, 16(35), 4654-4667.
[http://dx.doi.org/10.2174/092986709789878265] [PMID: 19903143]
[52]
Frey, R.S.; Gao, X.; Javaid, K.; Siddiqui, S.S.; Rahman, A.; Malik, A.B. Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. J. Biol. Chem., 2006, 281(23), 16128-16138.
[http://dx.doi.org/10.1074/jbc.M508810200] [PMID: 16527821]
[53]
Guo, C.; Wang, J.; Jing, L.; Ma, R.; Liu, X.; Gao, L.; Cao, L.; Duan, J.; Zhou, X.; Li, Y.; Sun, Z. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ. Pollut., 2018, 236, 926-936.
[http://dx.doi.org/10.1016/j.envpol.2017.10.060] [PMID: 29074197]
[54]
Peng, W.; Cai, G.; Xia, Y.; Chen, J.; Wu, P.; Wang, Z.; Li, G.; Wei, D. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol., 2019, 38(7), 597-606.
[http://dx.doi.org/10.1089/dna.2018.4552] [PMID: 31095428]
[55]
Kadlec, A.O.; Chabowski, D.S.; Ait-Aissa, K.; Gutterman, D.D. Role of PGC-1α in vascular regulation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(8), 1467-1474.
[http://dx.doi.org/10.1161/ATVBAHA.116.307123] [PMID: 27312223]
[56]
Summerhill, V.; Orekhov, A. Pericytes in atherosclerosis. Adv. Exp. Med. Biol., 2019, 1147, 279-297.
[http://dx.doi.org/10.1007/978-3-030-16908-4_13] [PMID: 31147883]
[57]
Price, T.O.; Sheibani, N.; Shah, G.N. Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: A specific target for prevention of diabetic cerebrovascular pathology. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(4), 929-935.
[http://dx.doi.org/10.1016/j.bbadis.2017.01.025] [PMID: 28131914]
[58]
Jeon, H.; Jin, Y.; Myung, C.S.; Heo, K.S. Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch. Pharm. Res., 2021, 44(7), 702-712.
[http://dx.doi.org/10.1007/s12272-021-01345-3] [PMID: 34302638]
[59]
Vásquez-Trincado, C.; García-Carvajal, I.; Pennanen, C.; Parra, V.; Hill, J.A.; Rothermel, B.A.; Lavandero, S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol., 2016, 594(3), 509-525.
[http://dx.doi.org/10.1113/JP271301] [PMID: 26537557]
[60]
Shi, N.; Chen, S.Y. Smooth Muscle Cells Move With Mitochondria. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1255-1257.
[http://dx.doi.org/10.1161/ATVBAHA.118.311085] [PMID: 29793991]
[61]
Mishra, P.; Chan, D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(10), 634-646.
[http://dx.doi.org/10.1038/nrm3877] [PMID: 25237825]
[62]
Chalmers, S.; Saunter, C.; Wilson, C.; Coats, P.; Girkin, J.M.; McCarron, J.G. Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler. Thromb. Vasc. Biol., 2012, 32(12), 3000-3011.
[http://dx.doi.org/10.1161/ATVBAHA.112.255174] [PMID: 23104850]
[63]
Parra, V.; Bravo-Sagua, R.; Norambuena-Soto, I.; Hernández-Fuentes, C.P.; Gómez-Contreras, A.G.; Verdejo, H.E.; Mellado, R.; Chiong, M.; Lavandero, S.; Castro, P.F. Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(11), 2891-2903.
[http://dx.doi.org/10.1016/j.bbadis.2017.07.018] [PMID: 28739174]
[64]
Feng, W.; Wang, J.; Yan, X.; Zhang, Q.; Chai, L.; Wang, Q.; Shi, W.; Chen, Y.; Liu, J.; Qu, Z.; Li, S.; Xie, X.; Li, M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif., 2021, 54(6), e13048.
[http://dx.doi.org/10.1111/cpr.13048] [PMID: 33948998]
[65]
Li, Q.; Park, K.; Xia, Y.; Matsumoto, M.; Qi, W.; Fu, J.; Yokomizo, H.; Khamaisi, M.; Wang, X.; Rask-Madsen, C.; King, G.L. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCδ isoform activation. Circ. Res., 2017, 121(10), 1153-1167.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311606] [PMID: 28855204]
[66]
Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446), 445-455.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[67]
Chinetti-Gbaguidi, G.; Colin, S.; Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol., 2015, 12(1), 10-17.
[http://dx.doi.org/10.1038/nrcardio.2014.173] [PMID: 25367649]
[68]
Wang, Y.; Li, N.; Zhang, X.; Horng, T. Mitochondrial metabolism regulates macrophage biology. J. Biol. Chem., 2021, 297(1), 100904.
[http://dx.doi.org/10.1016/j.jbc.2021.100904] [PMID: 34157289]
[69]
Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R.J.; Braun, T.; Frezza, C.; Murphy, M.P.; O’Neill, L.A. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2), 457-470.e13.
[http://dx.doi.org/10.1016/j.cell.2016.08.064] [PMID: 27667687]
[70]
Cramer, T.; Yamanishi, Y.; Clausen, B.E.; Förster, I.; Pawlinski, R.; Mackman, N.; Haase, V.H.; Jaenisch, R.; Corr, M.; Nizet, V.; Firestein, G.S.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 2003, 112(5), 645-657.
[http://dx.doi.org/10.1016/S0092-8674(03)00154-5] [PMID: 12628185]
[71]
Fuhrmann, D.C.; Wittig, I.; Brüne, B. TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression. Redox Biol., 2019, 20, 204-216.
[http://dx.doi.org/10.1016/j.redox.2018.10.007] [PMID: 30368040]
[72]
Manchester, L.C.; Poeggeler, B.; Alvares, F.L.; Ogden, G.B.; Reiter, R.J. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: Implications for an ancient antioxidant system. Cell. Mol. Biol. Res., 1995, 41(5), 391-395.
[PMID: 8867786]
[73]
Venegas, C.; García, J.A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res., 2012, 52(2), 217-227.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00931.x] [PMID: 21884551]
[74]
He, C.; Wang, J.; Zhang, Z.; Yang, M.; Li, Y.; Tian, X.; Ma, T.; Tao, J.; Zhu, K.; Song, Y.; Ji, P.; Liu, G. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci., 2016, 17(6), 939.
[http://dx.doi.org/10.3390/ijms17060939] [PMID: 27314334]
[75]
Tan, D.X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.; Ma, S.; Rosales-Corral, S.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot., 2012, 63(2), 577-597.
[http://dx.doi.org/10.1093/jxb/err256] [PMID: 22016420]
[76]
Wang, L.; Feng, C.; Zheng, X.; Guo, Y.; Zhou, F.; Shan, D.; Liu, X.; Kong, J. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J. Pineal Res., 2017, 63(3), e12429.
[http://dx.doi.org/10.1111/jpi.12429] [PMID: 28599069]
[77]
Bars, D.L.; Thivolle, P.; Vitte, P.A.; Bojkowski, C.; Chazot, G.; Arendt, J.; Frackowiak, R.S.J.; Claustrat, B. PET and plasma pharmacokinetic studies after bolus intravenous administration of [11C]melatonin in humans. Int. J. Rad. Appl. Instrum. B, 1991, 18(3), 357-362.
[http://dx.doi.org/10.1016/0883-2897(91)90132-5] [PMID: 2071448]
[78]
Costa, E.J.X.; Shida, C.S.; Biaggi, M.H.; Ito, A.S.; Lamy-Freund, M.T. How melatonin interacts with lipid bilayers: A study by fluorescence and ESR spectroscopies. FEBS Lett., 1997, 416(1), 103-106.
[http://dx.doi.org/10.1016/S0014-5793(97)01178-2] [PMID: 9369243]
[79]
Hevia, D.; González-Menéndez, P.; Quiros-González, I.; Miar, A.; Rodríguez-García, A.; Tan, D.X.; Reiter, R.J.; Mayo, J.C.; Sainz, R.M. Melatonin uptake through glucose transporters: A new target for melatonin inhibition of cancer. J. Pineal Res., 2015, 58(2), 234-250.
[http://dx.doi.org/10.1111/jpi.12210] [PMID: 25612238]
[80]
Gómez, M.; Esparza, J.L.; Nogués, M.R.; Giralt, M.; Cabré, M.; Domingo, J.L. Pro-oxidant activity of aluminum in the rat hippocampus: Gene expression of antioxidant enzymes after melatonin administration. Free Radic. Biol. Med., 2005, 38(1), 104-111.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.009] [PMID: 15589378]
[81]
Esparza, J.L.; Gómez, M.; Rosa Nogués, M.; Paternain, J.L.; Mallol, J.; Domingo, J.L. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J. Pineal Res., 2005, 39(2), 129-136.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00225.x] [PMID: 16098089]
[82]
Zhou, W.; Liu, Y.; Shen, J.; Yu, B.; Bai, J.; Lin, J.; Guo, X.; Sun, H.; Chen, Z.; Yang, H.; Xu, Y.; Geng, D. Melatonin increases bone mass around the prostheses of OVX rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/4019619] [PMID: 31110599]
[83]
Li, D.P.; Chen, Y.L.; Jiang, H.Y.; Chen, Y.; Zeng, X.Q.; Xu, L.L.; Ye, Y.; Ke, C.Q.; Lin, G.; Wang, J.Y.; Gao, H. Phosphocreatine attenuates Gynura segetum-induced hepatocyte apoptosis via a SIRT3-SOD2-mitochondrial reactive oxygen species pathway. Drug Des. Devel. Ther., 2019, 13, 2081-2096.
[http://dx.doi.org/10.2147/DDDT.S203564] [PMID: 31417240]
[84]
Eleftheriadis, T.; Pissas, G.; Liakopoulos, V.; Stefanidis, I. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front. Immunol., 2016, 7, 279.
[http://dx.doi.org/10.3389/fimmu.2016.00279] [PMID: 27489552]
[85]
Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 2018, 41, 37-44.
[http://dx.doi.org/10.1016/j.mito.2017.12.001] [PMID: 29221810]
[86]
Liu, L.; Cao, Q.; Gao, W.; Li, B.; Xia, Z.; Zhao, B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: Involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging (Albany NY), 2021, 13(12), 16105-16123.
[http://dx.doi.org/10.18632/aging.203137] [PMID: 34118791]
[87]
Song, J.; Lu, C.; Zhao, W.; Shao, X. Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J. Cell. Physiol., 2019, 234(11), 20969-20979.
[http://dx.doi.org/10.1002/jcp.28701] [PMID: 31025320]
[88]
Bai, Y.; Yang, Y.; Gao, Y.; Lin, D.; Wang, Z.; Ma, J. Melatonin postconditioning ameliorates anoxia/reoxygenation injury by regulating mitophagy and mitochondrial dynamics in a SIRT3-dependent manner. Eur. J. Pharmacol., 2021, 904, 174157.
[http://dx.doi.org/10.1016/j.ejphar.2021.174157] [PMID: 33971181]
[89]
León, J.; Escames, G.; Rodríguez, M.I.; López, L.C.; Tapias, V.; Entrena, A.; Camacho, E.; Carrión, M.D.; Gallo, M.A.; Espinosa, A.; Tan, D.X.; Reiter, R.J.; Acuña-Castroviejo, D. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J. Neurochem., 2006, 98(6), 2023-2033.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04029.x] [PMID: 16945113]
[90]
Morris, G.; Walker, A.J.; Walder, K.; Berk, M.; Marx, W.; Carvalho, A.F.; Maes, M.; Puri, B.K. Increasing Nrf2 activity as a treatment approach in neuropsychiatry. Mol. Neurobiol., 2021, 58(5), 2158-2182.
[http://dx.doi.org/10.1007/s12035-020-02212-w] [PMID: 33411248]
[91]
Zhang, M.; Lin, J.; Wang, S.; Cheng, Z.; Hu, J.; Wang, T.; Man, W.; Yin, T.; Guo, W.; Gao, E.; Reiter, R.J.; Wang, H.; Sun, D. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J. Pineal Res., 2017, 63(2), e12418.
[http://dx.doi.org/10.1111/jpi.12418] [PMID: 28480597]
[92]
Ma, S.; Chen, J.; Feng, J.; Zhang, R.; Fan, M.; Han, D.; Li, X.; Li, C.; Ren, J.; Wang, Y.; Cao, F. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/9286458] [PMID: 30254716]
[93]
Ren, M.; Phoon, C.K.L.; Schlame, M. Metabolism and function of mitochondrial cardiolipin. Prog. Lipid Res., 2014, 55, 1-16.
[http://dx.doi.org/10.1016/j.plipres.2014.04.001] [PMID: 24769127]
[94]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(39), 14205-14218.
[http://dx.doi.org/10.3748/wjg.v20.i39.14205] [PMID: 25339807]
[95]
Musatov, A.; Robinson, N.C. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic. Res., 2012, 46(11), 1313-1326.
[http://dx.doi.org/10.3109/10715762.2012.717273] [PMID: 22856385]
[96]
Qin, L.; Sharpe, M.A.; Garavito, R.M.; Ferguson-Miller, S. Conserved lipid-binding sites in membrane proteins: A focus on cytochrome c oxidase. Curr. Opin. Struct. Biol., 2007, 17(4), 444-450.
[http://dx.doi.org/10.1016/j.sbi.2007.07.001] [PMID: 17719219]
[97]
Mileykovskaya, E.; Dowhan, W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem. Phys. Lipids, 2014, 179, 42-48.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.012] [PMID: 24220496]
[98]
Petrosillo, G.; Casanova, G.; Matera, M.; Ruggiero, F.M.; Paradies, G. Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: Induction of permeability transition and cytochrome c release. FEBS Lett., 2006, 580(27), 6311-6316.
[http://dx.doi.org/10.1016/j.febslet.2006.10.036] [PMID: 17083938]
[99]
Fang, Y.; Zhao, C.; Xiang, H.; Zhao, X.; Zhong, R. Melatonin inhibits formation of mitochondrial permeability transition pores and improves oxidative phosphorylation of frozen-thawed ram sperm. Front. Endocrinol. (Lausanne), 2020, 10, 896.
[http://dx.doi.org/10.3389/fendo.2019.00896] [PMID: 31969863]
[100]
Petrosillo, G.; Moro, N.; Ruggiero, F.M.; Paradies, G. Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic. Biol. Med., 2009, 47(7), 969-974.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.032] [PMID: 19577639]
[101]
Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev., 2007, 87(1), 99-163.
[http://dx.doi.org/10.1152/physrev.00013.2006] [PMID: 17237344]
[102]
Gong, S.; Peng, Y.; Jiang, P.; Wang, M.; Fan, M.; Wang, X.; Zhou, H.; Li, H.; Yan, Q.; Huang, T.; Guan, M.X. A deafness-associated tRNA His mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Res., 2014, 42(12), 8039-8048.
[http://dx.doi.org/10.1093/nar/gku466] [PMID: 24920829]
[103]
Zheng, B.; Meng, J.; Zhu, Y.; Ding, M.; Zhang, Y.; Zhou, J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J. Ovarian Res., 2021, 14(1), 152.
[http://dx.doi.org/10.1186/s13048-021-00912-y] [PMID: 34758863]
[104]
Ding, M.; Feng, N.; Tang, D.; Feng, J.; Li, Z.; Jia, M.; Liu, Z.; Gu, X.; Wang, Y.; Fu, F.; Pei, J. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J. Pineal Res., 2018, 65(2), e12491.
[http://dx.doi.org/10.1111/jpi.12491] [PMID: 29575122]
[105]
Lu, H.; Huang, H. FOXO1: A potential target for human diseases. Curr. Drug Targets, 2011, 12(9), 1235-1244.
[http://dx.doi.org/10.2174/138945011796150280] [PMID: 21443466]
[106]
Shen, M.; Cao, Y.; Jiang, Y.; Wei, Y.; Liu, H. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biol., 2018, 18, 138-157.
[http://dx.doi.org/10.1016/j.redox.2018.07.004] [PMID: 30014903]
[107]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[108]
Houtkooper, R.H.; Pirinen, E.; Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 225-238.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[109]
Yu, L.M.; Dong, X.; Xue, X.D.; Xu, S.; Zhang, X.; Xu, Y.L.; Wang, Z.S.; Wang, Y.; Gao, H.; Liang, Y.X.; Yang, Y.; Wang, H.S. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J. Pineal Res., 2021, 70(1), e12698.
[http://dx.doi.org/10.1111/jpi.12698] [PMID: 33016468]
[110]
Lu, K.; Liu, X.; Guo, W. Melatonin attenuates inflammation-related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J. Cell. Physiol., 2019, 234(12), 23675-23684.
[http://dx.doi.org/10.1002/jcp.28935] [PMID: 31169304]
[111]
Nie, H.; Hong, Y.; Lu, X.; Zhang, J.; Chen, H.; Li, Y.; Ma, Y.; Ying, W. SIRT2 mediates oxidative stress-induced apoptosis of differentiated PC12 cells. Neuroreport, 2014, 25(11), 838-842.
[http://dx.doi.org/10.1097/WNR.0000000000000192] [PMID: 24922350]
[112]
Keskin-Aktan, A.; Akbulut, K.G.; Yazici-Mutlu, Ç.; Sonugur, G.; Ocal, M.; Akbulut, H. The effects of melatonin and curcumin on the expression of SIRT2, Bcl-2 and Bax in the hippocampus of adult rats. Brain Res. Bull., 2018, 137, 306-310.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.006] [PMID: 29325994]
[113]
Takahashi, S.; Andreoletti, G.; Chen, R.; Munehira, Y.; Batra, A.; Afzal, N.A.; Beattie, R.M.; Bernstein, J.A.; Ennis, S.; Snyder, M. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease. Genome Med., 2017, 9(1), 8.
[http://dx.doi.org/10.1186/s13073-016-0394-9] [PMID: 28126021]
[114]
Huusko, J.M.; Karjalainen, M.K.; Graham, B.E.; Zhang, G.; Farrow, E.G.; Miller, N.A.; Jacobsson, B.; Eidem, H.R.; Murray, J.C.; Bedell, B.; Breheny, P.; Brown, N.W.; Bødker, F.L.; Litterman, N.K.; Jiang, P.P.; Russell, L.; Hinds, D.A.; Hu, Y.; Rokas, A.; Teramo, K.; Christensen, K.; Williams, S.M.; Rämet, M.; Kingsmore, S.F.; Ryckman, K.K.; Hallman, M.; Muglia, L.J. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet., 2018, 14(7), e1007394.
[http://dx.doi.org/10.1371/journal.pgen.1007394] [PMID: 30001343]
[115]
Madrigal-Matute, J.; Fernandez-Garcia, C.E.; Gomez-Guerrero, C.; Lopez-Franco, O.; Muñoz-Garcia, B.; Egido, J.; Blanco-Colio, L.M.; Martin-Ventura, J.L. HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovasc. Res., 2012, 95(1), 116-123.
[http://dx.doi.org/10.1093/cvr/cvs158] [PMID: 22547655]
[116]
Sable, A.; Rai, K.M.; Choudhary, A.; Yadav, V.K.; Agarwal, S.K.; Sawant, S.V. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci. Rep., 2018, 8(1), 3620.
[http://dx.doi.org/10.1038/s41598-018-21866-0] [PMID: 29483524]
[117]
Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; Cecon, E.; Wehbi, V.L.; Kim, J.; Heath, B.E.; Baranova, O.V.; Wang, X.; Gable, M.J.; Kretz, E.S.; Di Benedetto, G.; Lezon, T.R.; Ferrando, L.M.; Larkin, T.M.; Sullivan, M.; Yablonska, S.; Wang, J.; Minnigh, M.B.; Guillaumet, G.; Suzenet, F.; Richardson, R.M.; Poloyac, S.M.; Stolz, D.B.; Jockers, R.; Witt-Enderby, P.A.; Carlisle, D.L.; Vilardaga, J.P.; Friedlander, R.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7997-E8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[118]
Ahluwalia, A.; Brzozowska, I.M.; Hoa, N.; Jones, M.K.; Tarnawski, A.S. Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: Implications for angiogenesis and cardio/gastroprotection. Proc. Natl. Acad. Sci. USA, 2018, 115(9), E1942-E1943.
[http://dx.doi.org/10.1073/pnas.1722131115] [PMID: 29440384]
[119]
Leja-Szpak, A.; Pierzchalski, P.; Goralska, M.; Nawrot-Porabka, K.; Bonior, J.; Link-Lenczowski, P.; Jastrzebska, M.; Jaworek, J. Kynuramines induce overexpression of heat shock proteins in pancreatic cancer cells via 5-hydroxytryptamine and MT1/MT2 receptors. J. Physiol. Pharmacol., 2015, 66(5), 711-718.
[PMID: 26579577]
[120]
Xu, W.; Cai, S.Y.; Zhang, Y.; Wang, Y.; Ahammed, G.J.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Yu, J.Q.; Reiter, R.J.; Zhou, J. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal Res., 2016, 61(4), 457-469.
[http://dx.doi.org/10.1111/jpi.12359] [PMID: 27484733]
[121]
Jin, S.M.; Lazarou, M.; Wang, C.; Kane, L.A.; Narendra, D.P.; Youle, R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol., 2010, 191(5), 933-942.
[http://dx.doi.org/10.1083/jcb.201008084] [PMID: 21115803]
[122]
Lazarou, M.; Jin, S.M.; Kane, L.A.; Youle, R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell, 2012, 22(2), 320-333.
[http://dx.doi.org/10.1016/j.devcel.2011.12.014] [PMID: 22280891]
[123]
Nguyen, T.N.; Padman, B.S.; Lazarou, M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol., 2016, 26(10), 733-744.
[http://dx.doi.org/10.1016/j.tcb.2016.05.008] [PMID: 27291334]
[124]
Yoon, Y.M.; Kim, H.J.; Lee, J.H.; Lee, S.H. Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. Int. J. Mol. Sci., 2019, 20(18), 4545.
[http://dx.doi.org/10.3390/ijms20184545] [PMID: 31540288]
[125]
Lee, J.H.; Yoon, Y.M.; Song, K.H.; Noh, H.; Lee, S.H. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L–mitophagy pathway. Aging Cell, 2020, 19(3), e13111.
[http://dx.doi.org/10.1111/acel.13111] [PMID: 31965731]
[126]
Drew, B.G.; Ribas, V.; Le, J.A.; Henstridge, D.C.; Phun, J.; Zhou, Z.; Soleymani, T.; Daraei, P.; Sitz, D.; Vergnes, L.; Wanagat, J.; Reue, K.; Febbraio, M.A.; Hevener, A.L. HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes, 2014, 63(5), 1488-1505.
[http://dx.doi.org/10.2337/db13-0665] [PMID: 24379352]
[127]
Marshall, D.A.; Sheldon, T.A.; Jonsson, E. Recommendations for the application of bone density measurement. What can you believe? Int. J. Technol. Assess. Health Care, 1997, 13(3), 411-419.
[http://dx.doi.org/10.1017/S0266462300010679] [PMID: 9308271]
[128]
Zhang, Y.; Wang, Y.; Xu, J.; Tian, F.; Hu, S.; Chen, Y.; Fu, Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res., 2019, 66(2), e12542.
[http://dx.doi.org/10.1111/jpi.12542] [PMID: 30516280]
[129]
Jang, E.R.; Lee, C.S. 7-Ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-κB and Akt pathways. Neurochem. Int., 2011, 58(1), 52-59.
[http://dx.doi.org/10.1016/j.neuint.2010.10.012] [PMID: 21035514]
[130]
Chatterjee, A.; Chatterjee, U.; Ghosh, M.K. Activation of protein kinase CK2 attenuates FOXO3a functioning in a PML-dependent manner: Implications in human prostate cancer. Cell Death Dis., 2013, 4(3), e543.
[http://dx.doi.org/10.1038/cddis.2013.63] [PMID: 23492774]
[131]
Padmini, E.; Usha Rani, M. Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus. Cell Stress Chaperones, 2011, 16(4), 411-425.
[http://dx.doi.org/10.1007/s12192-011-0255-9] [PMID: 21274670]
[132]
Sato, S.; Fujita, N.; Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10832-10837.
[http://dx.doi.org/10.1073/pnas.170276797] [PMID: 10995457]
[133]
Qin, J.H.; Wang, K.; Fu, X.L.; Zhou, P.J.; Liu, Z.; Xu, D.D.; Wang, Y.F.; Yang, D.P.; Xie, Q.L.; Liu, Q.Y. Hsp90 inhibitor induces KG-1a cell differentiation and apoptosis via Akt/NF-κB signaling. Oncol. Rep., 2017, 38(3), 1517-1524.
[http://dx.doi.org/10.3892/or.2017.5797] [PMID: 28713903]
[134]
Zhang, L.; Gao, J.; Chen, T.; Chen, X.; Ji, X.; Ye, K.; Yu, J.; Tang, B.; Wei, Y.; Xu, H.; Hu, J. Microvesicles derived from human embryonic neural stem cells inhibit the apoptosis of HL-1 cardiomyocytes by promoting autophagy and regulating AKT and mTOR via transporting HSP-70. Stem Cells Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/6452684] [PMID: 31772588]
[135]
Rodella, L.F.; Favero, G.; Foglio, E.; Rossini, C.; Castrezzati, S.; Lonati, C.; Rezzani, R. Vascular endothelial cells and dysfunctions: Role of melatonin. Front. Biosci. (Elite Ed.), 2013, 5(1), 119-129.
[PMID: 23276975]
[136]
Li, H.Y.; Leu, Y.L.; Wu, Y.C.; Wang, S.H. Melatonin inhibits in vitro smooth muscle cell inflammation and proliferation and atherosclerosis in apolipoprotein e-deficient mice. J. Agric. Food Chem., 2019, 67(7), 1889-1901.
[http://dx.doi.org/10.1021/acs.jafc.8b06217] [PMID: 30661353]
[137]
Cheng, X.; Wan, Y.; Xu, Y.; Zhou, Q.; Wang, Y.; Zhu, H. Melatonin alleviates myosin light chain kinase expression and activity via the mitogen-activated protein kinase pathway during atherosclerosis in rabbits. Mol. Med. Rep., 2015, 11(1), 99-104.
[http://dx.doi.org/10.3892/mmr.2014.2753] [PMID: 25339116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy