Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Systematic Review Article

Using Cone Beam Computed Tomography for Radiological Assessment Beyond Dento-maxillofacial Imaging: A Review of the Clinical Applications in other Anatomical Districts

Author(s): Ivan Corazza*, Emanuele Giannetti, Giancarlo Bonzi, Alessandro Lombi, Giulia Paolani, Miriam Santoro, Maria Francesca Morrone, Margherita Zecchi and Pier Luca Rossi

Volume 19, Issue 9, 2023

Published on: 14 February, 2023

Article ID: e020223213379 Pages: 18

DOI: 10.2174/1573405619666230202122947

Price: $65

Abstract

Background: Cone Beam Computed Tomography (CBCT) represents the optimal imaging solution for the evaluation of the maxillofacial and dental area when quantitative geometric and volumetric accuracy is necessary (e.g., in implantology and orthodontics). Moreover, in recent years, this technique has given excellent results for the imaging of lower and upper extremities. Therefore, significant interest has been increased in using CBCT to investigate larger and non-traditional anatomical districts.

Objective: The purpose of this work is to review the scientific literature in Pubmed and Scopus on CBCT application beyond head districts by paying attention to image quality and radiological doses.

Methods: The search for keywords was conducted in Pubmed and Scopus databases with no back-date restriction. Papers on applications of CBCT to head were excluded from the present work. From each considered paper, parameters related to image quality and radiological dose were extracted. An overall qualitative evaluation of the results extracted from each issue was done by comparing the conclusive remarks of each author regarding doses and image quality. PRISMA statements were followed during this process.

Results: The review retrieved 97 issues from 83 extracted papers; 46 issues presented a comparison between CBCT and Multi-Detector Computed Tomography (MDCT), and 51 reviewed only CBCT. The radiological doses given to the patient with CBCT were considered acceptable in 91% of cases, and the final image quality was found in 99%.

Conclusion: CBCT represents a promising technology not only for imaging of the head and upper and lower extremities but for all the orthopedic districts. Moreover, the application of CBCT derived from C-arms (without the possibility of a 360 ° rotation range) during invasive investigations demonstrates the feasibility of this technique for non-standard anatomical areas, from soft tissues to vascular beds, despite the limits due to the incomplete rotation of the tube.

Graphical Abstract

[1]
Seeram E. Computed tomography: Physical principles, clinical applications, and quality control. 4th ed.; St. Louis, Missouri: Elsevier 2016.
[2]
Kumar M, Shanavas M, Sidappa A, Kiran M. Cone beam computed tomography - know its secrets. J Int Oral Health 2015; 7(2): 64-8.
[PMID: 25859112]
[3]
Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: State of the art. Dentomaxillofac Radiol 2015; 44(1): 20140224.
[http://dx.doi.org/10.1259/dmfr.20140224] [PMID: 25263643]
[4]
von Arx T, Lozanoff S, Bornstein MM. Extraoral anatomy in CBCT - a literature review. Part 1: Nasoethmoidal region. Swiss Dent J 2019; 129(10): 804-15.
[PMID: 31392880]
[5]
von Arx T, Lozanoff S, Bornstein MM. Extraoral anatomy in CBCT - a literature review. Part 2: Zygomatico-orbital region. Swiss Dent J 2020; 130(2): 126-38.
[PMID: 32024348]
[6]
von Arx T, Lozanoff S, Bornstein MM. Extraoral anatomy in CBCT - a literature review. Part 3: Retromaxillary region. Swiss Dent J 2020; 130(3): 216-28.
[PMID: 32162855]
[7]
von Arx T, Lozanoff S, Bornstein MM. Extraoral anatomy in CBCT - a literature review. Part 4: Pharyngocervical region. Swiss Dent J 2020; 130(10): 768-84.
[PMID: 33021766]
[8]
Casselman JW, Gieraerts K, Volders D, et al. Cone beam CT: Non-dental applications. JBR-BTR 2013; 96(6): 333-53.
[9]
Ferrari M, Pianta L, Borghesi A, et al. The ethmoidal arteries: A cadaveric study based on cone beam computed tomography and endoscopic dissection. Surg Radiol Anat 2017; 39(9): 991-8.
[http://dx.doi.org/10.1007/s00276-017-1839-6] [PMID: 28299444]
[10]
Jain S, Choudhary K, Nagi R, Shukla S, Kaur N, Grover D. New evolution of cone-beam computed tomography in dentistry: Combining digital technologies. Imaging Sci Dent 2019; 49(3): 179-90.
[http://dx.doi.org/10.5624/isd.2019.49.3.179] [PMID: 31583200]
[11]
Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: Clinical applications. Insights Imaging 2018; 9(1): 35-45.
[http://dx.doi.org/10.1007/s13244-017-0582-1] [PMID: 29302798]
[12]
Zhang Z, Han X, Pearson E, Pelizzari C, Sidky EY, Pan X. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction. Phys Med Biol 2016; 61(9): 3387-406.
[http://dx.doi.org/10.1088/0031-9155/61/9/3387] [PMID: 27046218]
[13]
Bridge P, Tipper DJ. CT Anatomy for Radiotherapy. 2nd Revised Ed.; M&K Publishing, MK Update Ltd: UK 2017.
[14]
Kenny E, Caldwell D, Lewis M. Practical radiation dosimetry across a variety of CBCT devices in radiology. Phys Med 2020; 71: 3-6.
[http://dx.doi.org/10.1016/j.ejmp.2020.01.021] [PMID: 32056781]
[15]
Nardi C, Salerno S, Molteni R, et al. Radiation dose in non-dental cone beam CT applications: A systematic review. Radiol Med 2018; 123(10): 765-77.
[http://dx.doi.org/10.1007/s11547-018-0910-7] [PMID: 29869227]
[16]
Aurell Y, Andersson MLE, Forslind K. Conebeam computed tomography, a new low-dose three-dimensional imaging technique for assessment of bone erosions in rheumatoid arthritis: Reliability assessment and comparison with conventional radiography - a BARFOT study. Scand J Rheumatol 2018; 47(3): 173-7.
[http://dx.doi.org/10.1080/03009742.2017.1381988] [PMID: 29318928]
[17]
Borel C, Larbi A, Delclaux S, et al. Diagnostic value of cone beam computed tomography (CBCT) in occult scaphoid and wrist fractures. Eur J Radiol 2017; 97: 59-64.
[http://dx.doi.org/10.1016/j.ejrad.2017.10.010] [PMID: 29153368]
[18]
Borggrefe J, Bolte H, Worms W, et al. Comparison of intraoperative flat panel imaging and postoperative plain radiography for the detection of intraarticular screw displacement in volar distal radius plate ostheosynthesis. Orthop Traumatol Surg Res 2015; 101(8): 913-7.
[http://dx.doi.org/10.1016/j.otsr.2015.07.023] [PMID: 26522382]
[19]
Braak SJ, van Strijen MJL, van Es HW, Nievelstein RAJ, van Heesewijk JPM. Effective dose during needle interventions: Cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 2011; 22(4): 455-61.
[http://dx.doi.org/10.1016/j.jvir.2011.02.011] [PMID: 21463755]
[20]
Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: A novel clinical relevant measurement method. Foot Ankle Surg 2016; 22(4): 233-8.
[http://dx.doi.org/10.1016/j.fas.2015.10.002] [PMID: 27810020]
[21]
Carrino JA, Al Muhit A, Zbijewski W, et al. Dedicated cone-beam CT system for extremity imaging. Radiology 2014; 270(3): 816-24.
[http://dx.doi.org/10.1148/radiol.13130225] [PMID: 24475803]
[22]
Cheng EY, Naranje SM, Ritenour ER. Radiation dosimetry of intraoperative cone-beam compared with conventional CT for radiofrequency ablation of osteoid osteoma. J Bone Joint Surg Am 2014; 96(9): 735-42.
[http://dx.doi.org/10.2106/JBJS.M.00874] [PMID: 24806010]
[23]
Cordemans V, Kaminski L, Banse X, Francq BG, Detrembleur C, Cartiaux O. Pedicle screw insertion accuracy in terms of breach and reposition using a new intraoperative cone beam computed tomography imaging technique and evaluation of the factors associated with these parameters of accuracy: A series of 695 screws. Eur Spine J 2017; 26(11): 2917-26.
[http://dx.doi.org/10.1007/s00586-017-5195-3] [PMID: 28631190]
[24]
Costa F, Ortolina A, Cardia A, et al. Preoperative magnetic resonance and intraoperative computed tomography fusion for realtime neuronavigation in intramedullary lesion surgery. Oper Neurosurg 2017; 13(2): 188-95.
[http://dx.doi.org/10.1093/ons/opw005] [PMID: 28927206]
[25]
de Cesar Netto C, Schon LC, Thawait GK, et al. Flexible adult acquired flatfoot deformity. J Bone Joint Surg Am 2017; 99(18): e98.
[http://dx.doi.org/10.2106/JBJS.16.01366] [PMID: 28926392]
[26]
de Charry C, Boutroy S, Ellouz R, et al. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone. Osteoporos Int 2016; 27(10): 3073-82.
[http://dx.doi.org/10.1007/s00198-016-3609-4] [PMID: 27121345]
[27]
De Cock J, Mermuys K, Goubau J, Van Petegem S, Houthoofd B, Casselman JW. Cone-beam computed tomography: A new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol 2012; 41(1): 93-6.
[http://dx.doi.org/10.1007/s00256-011-1198-z] [PMID: 21603872]
[28]
De Smet E, De Praeter G, Verstraete KLA, Wouters K, De Beuckeleer L, Vanhoenacker FMHM. Direct comparison of conventional radiography and cone-beam CT in small bone and joint trauma. Skeletal Radiol 2015; 44(8): 1111-7.
[http://dx.doi.org/10.1007/s00256-015-2127-3] [PMID: 25761727]
[29]
Dea N, Fisher CG, Batke J, et al. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: A patient-level data cost-effectiveness analysis. Spine J 2016; 16(1): 23-31.
[http://dx.doi.org/10.1016/j.spinee.2015.09.062] [PMID: 26456854]
[30]
Demehri S, Muhit A, Zbijewski W, et al. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system. Eur Radiol 2015; 25(6): 1742-51.
[http://dx.doi.org/10.1007/s00330-014-3546-6] [PMID: 25599933]
[31]
Dong J, Bai X, Dmytriw AA, et al. Identification of carotid artery microstructure and plaque rupture using C-Arm cone-beam CT: A case report. Front Neurol 2021; 12: 801683.
[http://dx.doi.org/10.3389/fneur.2021.801683] [PMID: 35002941]
[32]
Drazin D, Bhamb N, Al-Khouja LT, et al. Image-guided resection of aggressive sacral tumors. Neurosurg Focus 2017; 42(1): E15.
[http://dx.doi.org/10.3171/2016.6.FOCUS16125] [PMID: 28041320]
[33]
Dubreuil T, Mouly J, Ltaief-Boudrigua A, et al. Comparison of cone-beam computed tomography and multislice computed tomography in the assessment of extremity fractures. J Comput Assist Tomogr 2019; 43(3): 372-8.
[http://dx.doi.org/10.1097/RCT.0000000000000843] [PMID: 30762657]
[34]
Edlund R, Skorpil M, Lapidus G, Bäcklund J. Cone-Beam CT in diagnosis of scaphoid fractures. Skeletal Radiol 2016; 45(2): 197-204.
[http://dx.doi.org/10.1007/s00256-015-2290-6] [PMID: 26563560]
[35]
Farah K, Coudert P, Graillon T, et al. Prospective comparative study in spine surgery between O-Arm and airo systems: Efficacy and radiation exposure. World Neurosurg 2018; 118: e175-84.
[http://dx.doi.org/10.1016/j.wneu.2018.06.148] [PMID: 30257292]
[36]
Fukuda K, Higashi T, Okawa M, Matsumoto J, Takano K, Inoue T. Utility of cone-beam computed tomography angiography for the assessment of vertebral artery dissection. J Clin Neurosci 2018; 48: 76-80.
[http://dx.doi.org/10.1016/j.jocn.2017.11.010] [PMID: 29257748]
[37]
Garnon J, Koch G, Ramamurthy N, et al. Percutaneous imaging-guided screw fixation of osteoporotic transverse fractures of the lower sacrum with cement augmentation: Report of 2 cases. Cardiovasc Intervent Radiol 2017; 40(7): 1105-11.
[http://dx.doi.org/10.1007/s00270-017-1633-1] [PMID: 28357574]
[38]
Grunz JP, Gietzen CH, Kunz AS, et al. Twin robotic X-ray system for 3D cone-beam CT of the wrist: An evaluation of image quality and radiation dose. AJR Am J Roentgenol 2020; 214(2): 422-7.
[http://dx.doi.org/10.2214/AJR.19.21911] [PMID: 31799871]
[39]
Guggenberger R, Ulbrich EJ, Dietrich TJ, et al. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance. Eur Radiol 2017; 27(2): 454-63.
[http://dx.doi.org/10.1007/s00330-016-4382-7] [PMID: 27221562]
[40]
Held M, Sneed PK, Fogh SE, Pouliot J, Morin O. Feasibility of MV CBCT-based treatment planning for urgent radiation therapy: Dosimetric accuracy of MV CBCT-based dose calculations. J Appl Clin Med Phys 2015; 16(6): 458-71.
[http://dx.doi.org/10.1120/jacmp.v16i6.5625] [PMID: 26699575]
[41]
Hermie L, Dhondt E, Vanlangenhove P, De Waele J, Degroote H, Defreyne L. Empiric cone-beam CT-guided embolization in acute lower gastrointestinal bleeding. Eur Radiol 2021; 31(4): 2161-72.
[http://dx.doi.org/10.1007/s00330-020-07232-7] [PMID: 32964336]
[42]
Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF. Upright weight-bearing CT of the knee during flexion: Changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc 2017; 25(3): 853-62.
[http://dx.doi.org/10.1007/s00167-015-3853-8] [PMID: 26537597]
[43]
Huang AJ, Chang CY, Thomas BJ, MacMahon PJ, Palmer WE. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: Initial experience in 50 subjects. Skeletal Radiol 2015; 44(6): 797-809.
[http://dx.doi.org/10.1007/s00256-015-2105-9] [PMID: 25652734]
[44]
Hui TCH, Tan GZL, Tan AKW, Pua U. The use of cone beam CT in achieving unipedicular spinal augmentation. Br J Radiol 2016; 89(1065): 20160030.
[http://dx.doi.org/10.1259/bjr.20160030] [PMID: 27376703]
[45]
Hurley RK Jr, Anderson ER III, Lawson BK, Hobbs JK, Aden JK, Jorgensen AY. Comparing lumbar disc space preparation with fluoroscopy versus cone beam-computed tomography and navigation. Spine 2018; 43(14): 959-64.
[http://dx.doi.org/10.1097/BRS.0000000000002526] [PMID: 29280932]
[46]
Hwang YS, Tsai HY, Lin YY, Lui KW. Investigations of organ and effective doses of abdominal cone-beam computed tomography during transarterial chemoembolization using monte carlo simulation. BMC Med Imaging 2018; 18(1): 2.
[http://dx.doi.org/10.1186/s12880-018-0247-7] [PMID: 29402236]
[47]
Ierardi AM, Piacentino F, Giorlando F, et al. Cone beam computed tomography and its image guidance technology during percutaneous nucleoplasty procedures at L5/S1 lumbar level. Skeletal Radiol 2016; 45(12): 1669-76.
[http://dx.doi.org/10.1007/s00256-016-2486-4] [PMID: 27699478]
[48]
Jiao D, Huang K, Wu G, Wang Y, Han X. Flat detector cone-beam CT-guided percutaneous needle biopsy of mediastinal lesions: Preliminary experience. Radiol Med (Torino) 2016; 121(10): 769-79.
[http://dx.doi.org/10.1007/s11547-016-0660-3] [PMID: 27334008]
[49]
Joseph JR, Smith BW, Patel RD, Park P. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine 2016; 25(3): 339-44.
[http://dx.doi.org/10.3171/2016.2.SPINE151295] [PMID: 27104283]
[50]
Kim S, Yoshizumi TT, Toncheva G, Yoo S, Yin FF. Comparison of radiation doses between cone beam CT and multi detector CT: TLD measurements. Radiat Prot Dosimetry 2008; 132(3): 339-45.
[http://dx.doi.org/10.1093/rpd/ncn305] [PMID: 19074786]
[51]
Kim JS, Härtl R, Mayer HM, Drazin D. Minimally invasive spinal surgery. BioMed Res Int 2016; 2016: 5048659.
[http://dx.doi.org/10.1155/2016/5048659] [PMID: 27213152]
[52]
Koivisto J, van Eijnatten M, Kiljunen T, Shi XQ, Wolff J. Effective radiation dose in the wrist resulting from a radiographic device, two CBCT devices and one MSCT device: A comparative study. Radiat Prot Dosimetry 2018; 179(1): 58-68.
[http://dx.doi.org/10.1093/rpd/ncx210] [PMID: 29040707]
[53]
Koivisto J, Kiljunen T, Kadesjö N, Shi XQ, Wolff J. Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region. J Foot Ankle Res 2015; 8(1): 8.
[http://dx.doi.org/10.1186/s13047-015-0067-8] [PMID: 25788986]
[54]
Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry 2013; 157(4): 515-24.
[http://dx.doi.org/10.1093/rpd/nct162] [PMID: 23825221]
[55]
Koivisto J, Eijnatten M, Ludlow J, Kiljunen T, Shi XQ, Wolff J. Comparative dosimetry of radiography device, MSCT device and two CBCT devices in the elbow region. J Appl Clin Med Phys 2021; 22(5): 128-38.
[http://dx.doi.org/10.1002/acm2.13245] [PMID: 33811787]
[56]
Kortekangas T, Savola O, Flinkkilä T, et al. A prospective randomised study comparing TightRope and syndesmotic screw fixation for accuracy and maintenance of syndesmotic reduction assessed with bilateral computed tomography. Injury 2015; 46(6): 1119-26.
[http://dx.doi.org/10.1016/j.injury.2015.02.004] [PMID: 25769201]
[57]
Koskinen SK, Haapamäki VV, Salo J, et al. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skeletal Radiol 2013; 42(5): 649-57.
[http://dx.doi.org/10.1007/s00256-012-1516-0] [PMID: 22990597]
[58]
Kothary N, Abdelmaksoud MHK, Tognolini A, et al. Imaging guidance with C-arm CT: Prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol 2011; 22(11): 1535-43.
[http://dx.doi.org/10.1016/j.jvir.2011.07.008] [PMID: 21875814]
[59]
Kwok YM, Irani FG, Tay KH, Yang CC, Padre CG, Tan BS. Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol 2013; 23(11): 3197-204.
[http://dx.doi.org/10.1007/s00330-013-2934-7] [PMID: 23793520]
[60]
Lang H, Neubauer J, Fritz B, et al. A retrospective, semi-quantitative image quality analysis of cone beam computed tomography (CBCT) and MSCT in the diagnosis of distal radius fractures. Eur Radiol 2016; 26(12): 4551-61.
[http://dx.doi.org/10.1007/s00330-016-4321-7] [PMID: 27003138]
[61]
Lee SM, Park CM, Lee KH, Bahn YE, Kim JI, Goo JM. C-arm cone-beam CT-guided percutaneous transthoracic needle biopsy of lung nodules: Clinical experience in 1108 patients. Radiology 2014; 271(1): 291-300.
[http://dx.doi.org/10.1148/radiol.13131265] [PMID: 24475839]
[62]
Lepojärvi S, Niinimäki J, Pakarinen H, Leskelä HV. Rotational dynamics of the normal distal tibiofibular joint with weight-bearing computed tomography. Foot Ankle Int 2016; 37(6): 627-35.
[http://dx.doi.org/10.1177/1071100716634757] [PMID: 26922668]
[63]
Lepojärvi S, Niinimäki J, Pakarinen H, Koskela L, Leskelä HV. Rotational dynamics of the talus in a normal tibiotalar joint as shown by weight-bearing computed tomography. J Bone Joint Surg Am 2016; 98(7): 568-75.
[http://dx.doi.org/10.2106/JBJS.15.00470] [PMID: 27053585]
[64]
Liu JF, Jiao DC, Ren JZ, Zhang WG, Han XW. Percutaneous bone biopsy using a flat-panel cone beam computed tomography virtual navigation system. Saudi Med J 2018; 39(5): 519-23.
[http://dx.doi.org/10.15537/smj.2018.5.21872] [PMID: 29738014]
[65]
Ludlow JB. Hand‐wrist, knee, and foot‐ankle dosimetry and image quality measurements of a novel extremity imaging unit providing CBCT and 2D imaging options. Med Phys 2018; 45(11): 4955-63.
[http://dx.doi.org/10.1002/mp.13198] [PMID: 30229941]
[66]
Ludlow JB, Johnson BK, Ivanovic M. Estimation of effective doses from MDCT and CBCT imaging of extremities. J Radiol Prot 2018; 38(4): 1371-83.
[http://dx.doi.org/10.1088/1361-6498/aae44b] [PMID: 30255853]
[67]
Ludlow JB, Ivanovic M. Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diagnos Imag 2014; 1(2): 1.
[http://dx.doi.org/10.5430/ijdi.v1n2p1]
[68]
Maffezzoni F, Maddalo M, Frara S, et al. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures. Endocrine 2016; 54(2): 532-42.
[http://dx.doi.org/10.1007/s12020-016-1078-3] [PMID: 27601020]
[69]
Maier J, Black M, Bonaretti S, et al. Comparison of different approaches for measuring tibial cartilage thickness. J Integr Bioinform 2017; 14(2): 20170015.
[http://dx.doi.org/10.1515/jib-2017-0015]
[70]
Marshall EL, Guajardo S, Sellers E, et al. Radiation dose during transarterial radioembolization: A dosimetric comparison of conebeam CT and angio-CT technologies. J Vasc Interv Radiol 2021; 32(3): 429-38.
[http://dx.doi.org/10.1016/j.jvir.2020.10.021] [PMID: 33358328]
[71]
Myller KAH, Turunen MJ, Honkanen JTJ, et al. In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone. Ann Biomed Eng 2017; 45(3): 811-8.
[http://dx.doi.org/10.1007/s10439-016-1730-3] [PMID: 27646147]
[72]
Mys K, Stockmans F, Vereecke E, van Lenthe GH. Quantification of bone microstructure in the wrist using cone-beam computed tomography. Bone 2018; 114: 206-14.
[http://dx.doi.org/10.1016/j.bone.2018.06.006] [PMID: 29909060]
[73]
Nardi C, Buzzi R, Molteni R, et al. The role of cone beam CT in the study of symptomatic total knee arthroplasty (TKA): A 20 cases report. Br J Radiol 2017; 90(1074): 20160925.
[http://dx.doi.org/10.1259/bjr.20160925] [PMID: 28467105]
[74]
Neubauer J, Benndorf M, Reidelbach C, et al. Comparison of diagnostic accuracy of radiation dose-equivalent radiography, multidetector computed tomography and cone beam computed tomography for fractures of adult cadaveric wrists. PLoS One 2016; 11(10): e0164859.
[http://dx.doi.org/10.1371/journal.pone.0164859] [PMID: 27788215]
[75]
O’Connell A, Conover DL, Zhang Y, et al. Conebeam CT for breast imaging: Radiation dose, breast coverage, and image quality. AJR Am J Roentgenol 2010; 195(2): 496-509.
[http://dx.doi.org/10.2214/AJR.08.1017] [PMID: 20651210]
[76]
Osgood GM, Thawait GK, Hafezi-Nejad N, et al. Image quality of cone beam computed tomography for evaluation of extremity fractures in the presence of metal hardware: Visual grading characteristics analysis. Br J Radiol 2017; 90(1073): 20160539.
[http://dx.doi.org/10.1259/bjr.20160539] [PMID: 28281784]
[77]
Park P. Three-dimensional computed tomography-based spinal navigation in minimally invasive lateral lumbar interbody fusion: Feasibility, technique, and initial results. Neurosurgery 2015; 11 (Suppl. 2): 259-67.
[PMID: 25812070]
[78]
Patel S, Malhotra K, Cullen NP, Singh D, Goldberg AJ, Welck MJ. Defining reference values for the normal tibiofibular syndesmosis in adults using weight-bearing CT. Bone Joint J 2019; 101-B(3): 348-52.
[http://dx.doi.org/10.1302/0301-620X.101B3.BJJ-2018-0829.R1] [PMID: 30813789]
[79]
Perry BC, Monroe EJ, McKay T, Kanal KM, Shivaram G. Pediatric percutaneous osteoid osteoma ablation: Cone-beam CT with fluoroscopic overlay versus conventional CT guidance. Cardiovasc Intervent Radiol 2017; 40(10): 1593-9.
[http://dx.doi.org/10.1007/s00270-017-1685-2] [PMID: 28497188]
[80]
Pireau N, Cordemans V, Banse X, Irda N, Lichtherte S, Kaminski L. Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: A prospective randomized clinical trial. Eur Spine J 2017; 26(11): 2818-27.
[http://dx.doi.org/10.1007/s00586-017-5229-x] [PMID: 28735464]
[81]
Pugmire BS, Shailam R, Sagar P, et al. Initial clinical experience with extremity cone-beam CT of the foot and ankle in pediatric patients. AJR Am J Roentgenol 2016; 206(2): 431-5.
[http://dx.doi.org/10.2214/AJR.15.15099] [PMID: 26797374]
[82]
Ricci PM, Boldini M, Bonfante E, et al. Cone-beam computed tomography compared to X-ray in diagnosis of extremities bone fractures: A study of 198 cases. Eur J Radiol Open 2019; 6: 119-21.
[http://dx.doi.org/10.1016/j.ejro.2019.01.009] [PMID: 30911591]
[83]
Roux C, Tselikas L, Yevich S, et al. Fluoroscopy and cone-beam CT-guided fixation by internal cemented screw for pathologic pelvic fractures. Radiology 2019; 290(2): 418-25.
[http://dx.doi.org/10.1148/radiol.2018181105] [PMID: 30422090]
[84]
Schnapauff D, Maxeiner A, Wieners G, et al. Semi-automatic prostatic artery detection using cone-beam CT during prostatic arterial embolization. Acta Radiol 2020; 61(8): 1116-24.
[http://dx.doi.org/10.1177/0284185119891689] [PMID: 31830430]
[85]
Segal NA, Nevitt MC, Lynch JA, Niu J, Torner JC, Guermazi A. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys Sportsmed 2015; 43(3): 213-20.
[http://dx.doi.org/10.1080/00913847.2015.1074854] [PMID: 26313455]
[86]
Seki S, Kawaguchi Y, Nakano M, Makino H, Mine H, Kimura T. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: Effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography. Spine J 2016; 16(3): 365-71.
[http://dx.doi.org/10.1016/j.spinee.2015.11.032] [PMID: 26656172]
[87]
Shellikeri S, Girard E, Setser R, Bao J, Cahill AM. Metal artefact reduction algorithm for correction of bone biopsy needle artefact in paediatric C-arm CT images: A qualitative and quantitative assessment. Clin Radiol 2016; 71(9): 925-31.
[http://dx.doi.org/10.1016/j.crad.2016.04.021] [PMID: 27262747]
[88]
Shih CD, Bazarov I, Harrington T, Vartivarian M, Reyzelman AM. Initial report on the use of in-office cone beam computed tomography for early diagnosis of osteomyelitis in diabetic patients. J Am Podiatr Med Assoc 2016; 106(2): 128-32.
[http://dx.doi.org/10.7547/14-017] [PMID: 27031549]
[89]
Tschauner S, Marterer R, Nagy E, Singer G, Riccabona M, Sorantin E. Experiences with image quality and radiation dose of cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) in pediatric extremity trauma. Skeletal Radiol 2020; 49(12): 1939-49.
[http://dx.doi.org/10.1007/s00256-020-03506-9] [PMID: 32535775]
[90]
Tschauner S, Marterer R, Nagy E, et al. Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms. PLoS One 2017; 12(6): e0178747.
[http://dx.doi.org/10.1371/journal.pone.0178747] [PMID: 28570626]
[91]
Tselikas L, Joskin J, Roquet F, et al. Percutaneous bone biopsies: Comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol 2015; 38(1): 167-76.
[http://dx.doi.org/10.1007/s00270-014-0870-9] [PMID: 24627161]
[92]
Turunen MJ, Töyräs J, Kokkonen HT, Jurvelin JS. Quantitative evaluation of knee subchondral bone mineral density using cone beam computed tomography. IEEE Trans Med Imaging 2015; 34(10): 2186-90.
[http://dx.doi.org/10.1109/TMI.2015.2426684] [PMID: 25935027]
[93]
Vetter SY, Euler F, von Recum J, Wendl K, Grützner PA, Franke J. Impact of intraoperative cone beam computed tomography on reduction quality and implant position in treatment of tibial plafond fractures. Foot Ankle Int 2016; 37(9): 977-82.
[http://dx.doi.org/10.1177/1071100716650532] [PMID: 27188693]
[94]
Wang MQ, Duan F, Yuan K, Zhang GD, Yan J, Wang Y. Benign prostatic hyperplasia: Cone-beam CT in conjunction with dsa for identifying prostatic arterial anatomy. Radiology 2017; 282(1): 271-80.
[http://dx.doi.org/10.1148/radiol.2016152415] [PMID: 27467466]
[95]
Ramdhian-Wihlm R, Le Minor JM, Schmittbuhl M, et al. Cone-beam computed tomography arthrography: An innovative modality for the evaluation of wrist ligament and cartilage injuries. Skeletal Radiol 2012; 41(8): 963-9.
[http://dx.doi.org/10.1007/s00256-011-1305-1] [PMID: 22064983]
[96]
Yang CC, Chen FL, Lo YC. Improving image quality of on-board cone-beam CT in radiation therapy using image information provided by planning multi-detector CT: A phantom study. PLoS One 2016; 11(6): e0157072.
[http://dx.doi.org/10.1371/journal.pone.0157072] [PMID: 27280593]
[97]
Zimmermann F, Kohl K, Privalov M, Franke J, Vetter SY. Intraoperative 3D imaging with cone-beam computed tomography leads to revision of pedicle screws in dorsal instrumentation: A retrospective analysis. J Orthop Surg Res 2021; 16(1): 706.
[http://dx.doi.org/10.1186/s13018-021-02849-w] [PMID: 34863238]
[98]
Sailer AM, Schurink GWH, Wildberger JE, et al. Radiation exposure of abdominal cone beam computed tomography. Cardiovasc Intervent Radiol 2015; 38(1): 112-20.
[http://dx.doi.org/10.1007/s00270-014-0900-7] [PMID: 24798137]
[99]
de las Heras Gala H, Torresin A, Dasu A, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTROIAEA protocol (summary report). Phys Med 2017; 39: 67-72.
[http://dx.doi.org/10.1016/j.ejmp.2017.05.069] [PMID: 28602688]
[100]
Anzai Y, Heilbrun ME, Haas D, et al. Dissecting costs of CT study: Application of TDABC (Time-driven Activity-based Costing) in a tertiary academic center. Acad Radiol 2017; 24(2): 200-8.
[http://dx.doi.org/10.1016/j.acra.2016.11.001] [PMID: 27988200]
[101]
Centonze M, Lorenzin G, Francesconi A, et al. Cardiac-CT and Cardiac-MR examinations cost analysis, based on data of four Italian Centers. Radiol Med 2016; 121(1): 12-8.
[http://dx.doi.org/10.1007/s11547-015-0566-5] [PMID: 26210815]
[102]
Jaine R, Kvizhinadze G, Nair N, Blakely T. Cost-effectiveness of a low-dose computed tomography screening programme for lung cancer in New Zealand. Lung Cancer 2018; 124: 233-40.
[http://dx.doi.org/10.1016/j.lungcan.2018.08.004] [PMID: 30268467]
[103]
Kothari S, Kalinowski M, Kobeszko M, Almouradi T. Computed tomography scan imaging in diagnosing acute uncomplicated pancreatitis: Usefulness vs. cost. World J Gastroenterol 2019; 25(9): 1080-7.
[http://dx.doi.org/10.3748/wjg.v25.i9.1080] [PMID: 30862996]
[104]
Lehtimäki T, Juvonen P, Valtonen H, Miettinen P, Paajanen H, Vanninen R. Impact of routine contrast-enhanced CT on costs and use of hospital resources in patients with acute abdomen. Results of a randomised clinical trial. Eur Radiol 2013; 23(9): 2538-45.
[http://dx.doi.org/10.1007/s00330-013-2848-4] [PMID: 23715771]
[105]
Schernthaner RE, Chapiro J, Sahu S, et al. Feasibility of a modified cone-beam CT rotation trajectory to improve liver periphery visualization during transarterial chemoembolization. Radiology 2015; 277(3): 833-41.
[http://dx.doi.org/10.1148/radiol.2015142821] [PMID: 26000642]
[106]
Fotouhi J, Fuerst B, Wein W, Navab N. Can real-time RGBD enhance intraoperative Cone-Beam CT. Int J CARS 2017; 12(7): 1211-9.
[http://dx.doi.org/10.1007/s11548-017-1572-y] [PMID: 28343303]
[107]
Spin-Neto R, Wenzel A. Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: A systematic literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121(4): 425-33.
[http://dx.doi.org/10.1016/j.oooo.2015.11.019] [PMID: 26972541]
[108]
Capostagno S, Sisniega A, Stayman JW, Ehtiati T, Weiss CR, Siewerdsen JH. Deformable motion compensation for interventional cone-beam CT. Phys Med Biol 2021; 66(5): 055010.
[http://dx.doi.org/10.1088/1361-6560/abb16e] [PMID: 33594993]
[109]
Gayou O, Colonias A. Imaging a moving lung tumor with megavoltage cone beam computed tomography. Med Phys 2015; 42(5): 2347-53.
[http://dx.doi.org/10.1118/1.4917524] [PMID: 25979029]
[110]
Nardi C, Borri C, Regini F, et al. Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study. Radiol Med 2015; 120(7): 618-26.
[http://dx.doi.org/10.1007/s11547-015-0496-2] [PMID: 25634792]
[111]
Ouadah S, Jacobson M, Stayman JW, Ehtiati T, Weiss C, Siewerdsen JH. Correction of patient motion in cone-beam CT using 3D-2D registration. Phys Med Biol 2017; 62(23): 8813-31.
[http://dx.doi.org/10.1088/1361-6560/aa9254] [PMID: 28994668]
[112]
Sisniega A, Thawait GK, Shakoor D, Siewerdsen JH, Demehri S, Zbijewski W. Motion compensation in extremity cone-beam computed tomography. Skeletal Radiol 2019; 48(12): 1999-2007.
[http://dx.doi.org/10.1007/s00256-019-03241-w] [PMID: 31172206]
[113]
Yeung AWK, Azevedo B, Scarfe WC, Bornstein MM. Patient motion image artifacts can be minimized and re-exposure avoided by selective removal of a sequence of basis images from cone beam computed tomography data sets: A case series. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129(2): e212-23.
[http://dx.doi.org/10.1016/j.oooo.2019.07.003] [PMID: 31416715]
[114]
Clough A, Sanders J, Banfill K, et al. A novel use for routine CBCT imaging during radiotherapy to detect COVID-19. Radiography 2022; 28(1): 17-23.
[http://dx.doi.org/10.1016/j.radi.2021.07.011] [PMID: 34332857]
[115]
Youssef I, Donahue B, Flyer M, Thompson S, Huang A, Gallant F. Covert COVID-19: Cone beam computed tomography lung changes in an asymptomatic patient receiving radiation therapy. Adv Radiat Oncol 2020; 5(4): 715-21.
[http://dx.doi.org/10.1016/j.adro.2020.04.029] [PMID: 32775781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy