Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Using Multi-model Diffusion Weighted Imaging to Study Acute Kidney Injury in Patients with Acute Pancreatitis

Author(s): Xinghui Li*, Qi Liang, Erika Ouchi, Matthew Bautista, Jiani Hu and XiaoMing Zhang

Volume 19, Issue 12, 2023

Published on: 21 February, 2023

Article ID: e300123213255 Pages: 11

DOI: 10.2174/1573405619666230130123138

Price: $65

Abstract

Objective: To explore the diagnostic value and severity of acute kidney injury (AKI) in patients with acute pancreatitis (AP) using intravoxel incoherent motion imaging (IVIM), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI).

Methods: 224 AP patients, categorized into either the AKI group or the non-AKI group, were retrospectively analyzed in this study. MRI sequences included routine abdominal, IVIM, DTI, and DKI scans, and the main MRI parameters of kidney imaging and clinical characteristics were measured. The diagnostic performance of AKI was compared, and the relationships among these indices, glomerular filtration rate (eGFR), and AKI staging were analyzed. Finally, all parameters were analyzed by single and multi-parameter regression.

Results: Compared with the non-AKI group, the fast apparent diffusion coefficient (ADC) value and perfusion fraction (Ff ADC) value of the renal medulla in the AKI group were significantly lower than those in the non-AKI group. The fractional anisotropy (FA) value in the renal cortex was significantly lower than that in the medulla and significantly lower than in the non-AKI group. Lastly, the renal medulla mean kurtosis (MK) value was also significantly lower in the AKI group compared to the non- AKI group and exhibited the best diagnostic value for AKI in AP patients. The renal medulla MK value positively correlated with AKI staging and negatively correlated with eGFR. The MK value was an independent risk factor for AKI, as evidenced by multi-parameter logistic regression analysis.

Conclusion: The measurement of renal DKI parameters is practical for diagnosing and predicting the severity of acute kidney injury in AP patients.

[1]
Jain N, Kumar R, Pahwa N. Acute kidney injury in severe acute pancreatitis: An experience from a tertiary care center. Saudi J Kidney Dis Transpl 2015; 26(1): 56-60.
[http://dx.doi.org/10.4103/1319-2442.148734] [PMID: 25579716]
[2]
Zhou J, Li Y, Tang Y, et al. Effect of acute kidney injury on mortality and hospital stay in patient with severe acute pancreatitis. Nephrology 2015; 20(7): 485-91.
[http://dx.doi.org/10.1111/nep.12439] [PMID: 25726708]
[3]
Li H, Qian Z, Liu Z, Liu X, Han X, Kang H. Risk factors and outcome of acute renal failure in patients with severe acute pancreatitis. J Crit Care 2010; 25(2): 225-9.
[http://dx.doi.org/10.1016/j.jcrc.2009.07.009] [PMID: 19781906]
[4]
Herrera GM, Seller PG, de La Rubia DGC, Chaparro SM, Nacle LB. Med Clin (Barc) 2000; 115: 721-5.
[http://dx.doi.org/10.1016/S0025-7753(00)71674-5] [PMID: 11141437]
[5]
Vlachopanos G, Schizas D, Hasemaki N, Georgalis A. Pathophysiology of contrast-induced acute kidney injury (CIAKI). Curr Pharm Des 2020; 25(44): 4642-7.
[http://dx.doi.org/10.2174/1381612825666191210152944] [PMID: 31820694]
[6]
Wen X, Murugan R, Peng Z, Kellum JA. Pathophysiology of acute kidney injury: A new perspective. Contrib Nephrol 2010; 165: 39-45.
[http://dx.doi.org/10.1159/000313743] [PMID: 20427954]
[7]
Bansal S, Patel RN. Pathophysiology of contrast-induced acute kidney injury. Interv Cardiol Clin 2020; 9(3): 293-8.
[PMID: 32471670]
[8]
Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int 2008; 73(9): 1008-16.
[http://dx.doi.org/10.1038/sj.ki.5002729] [PMID: 18094679]
[9]
Hui ES, Cheung MM, Qi L, Wu EX. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage 2008; 42(1): 122-34.
[http://dx.doi.org/10.1016/j.neuroimage.2008.04.237] [PMID: 18524628]
[10]
Cheung MM, Hui ES, Chan KC, Helpern JA, Qi L, Wu EX. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage 2009; 45(2): 386-92.
[http://dx.doi.org/10.1016/j.neuroimage.2008.12.018] [PMID: 19150655]
[11]
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505.
[http://dx.doi.org/10.1148/radiology.168.2.3393671] [PMID: 3393671]
[12]
Li X, Liang Q, Zhuang L, et al. Preliminary study of mr diffusion tensor imaging of the liver for the diagnosis of hepatocellular carcinoma. PLoS One 2015; 10(8): e0135568.
[http://dx.doi.org/10.1371/journal.pone.0135568] [PMID: 26317346]
[13]
Li X, Zhuang L, Zhang X, et al. Preliminary study of MR diffusion tensor imaging of pancreas for the diagnosis of acute pancreatitis. PLoS One 2016; 11(9): e0160115.
[http://dx.doi.org/10.1371/journal.pone.0160115]
[14]
Schuster L, Essig M, Schröder J. Normal aging and imaging correlations. Radiologe 2011; 51(4): 266-72.
[http://dx.doi.org/10.1007/s00117-010-2093-7] [PMID: 21461704]
[15]
Collier Q, Veraart J, Jeurissen B, et al. Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach. Magn Reson Med 2018; 80(2): 802-13.
[http://dx.doi.org/10.1002/mrm.27075] [PMID: 29393531]
[16]
Yan X, Zhou M, Ying L, et al. Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data. Comput Med Imaging Graph 2013; 37(4): 272-80.
[http://dx.doi.org/10.1016/j.compmedimag.2013.04.007] [PMID: 23735303]
[17]
Pentang G, Lanzman RS, Heusch P, et al. Diffusion kurtosis imaging of the human kidney: A feasibility study. Magn Reson Imaging 2014; 32(5): 413-20.
[http://dx.doi.org/10.1016/j.mri.2014.01.006] [PMID: 24582288]
[18]
Mohamed Osman NM, Abdel Kader M, Aziz Nasr TAEL, Sharawy MA, Keryakos HKH. The role of diffusion-weighted MRI and apparent diffusion coefficient in assessment of diabetic kidney disease: Preliminary experience study. Int J Nephrol Renovasc Dis 2021; 14: 1-10.
[http://dx.doi.org/10.2147/IJNRD.S254022] [PMID: 33469339]
[19]
Zhao J, Wang ZJ, Liu M, et al. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol 2014; 69(11): 1117-22.
[http://dx.doi.org/10.1016/j.crad.2014.06.011] [PMID: 25062924]
[20]
Huang Y, Chen X, Zhang Z, et al. MRI quantification of non-Gaussian water diffusion in normal human kidney: A diffusional kurtosis imaging study. NMR Biomed 2015; 28(2): 154-61.
[http://dx.doi.org/10.1002/nbm.3235] [PMID: 25392938]
[21]
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62(1): 102-11.
[http://dx.doi.org/10.1136/gutjnl-2012-302779] [PMID: 23100216]
[22]
Carioca AL, Jozala DR, Bem LO, Rodrigues JMS. Severity assessment of acute pancreatitis: Applying Marshall scoring system. Rev Col Bras Cir 2015; 42(5): 325-7.
[http://dx.doi.org/10.1590/0100-69912015005010] [PMID: 26648151]
[23]
Gordon CE, Balk EM, Francis JM. Summary of the 2018 Kidney Disease Improving Global Outcomes (KDIGO) guideline on hepatitis C in chronic kidney disease. Semin Dial 2019; 32(2): 187-95.
[http://dx.doi.org/10.1111/sdi.12768] [PMID: 30496617]
[24]
Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011; 65(3): 823-36.
[http://dx.doi.org/10.1002/mrm.22655] [PMID: 21337412]
[25]
Xie CL, Zhang M, Chen Y, et al. Spleen and splenic vascular involvement in acute pancreatitis: An MRI study. Quant Imaging Med Surg 2018; 8(3): 291-300.
[http://dx.doi.org/10.21037/qims.2018.03.04] [PMID: 29774182]
[26]
Srisawat N, Kellum JA. Acute kidney injury. Curr Opin Crit Care 2011; 17(6): 548-55.
[http://dx.doi.org/10.1097/MCC.0b013e32834cd349] [PMID: 22027404]
[27]
Yang N, Li B, Ye B, et al. The long-term quality of life in patients with persistent inflammation-immunosuppression and catabolism syndrome after severe acute pancreatitis: A retrospective cohort study. J Crit Care 2017; 42: 101-6.
[http://dx.doi.org/10.1016/j.jcrc.2017.07.013] [PMID: 28710987]
[28]
Kylänpää ML, Repo H, Puolakkainen PA. Inflammation and immunosuppression in severe acute pancreatitis. World J Gastroenterol 2010; 16(23): 2867-72.
[http://dx.doi.org/10.3748/wjg.v16.i23.2867] [PMID: 20556831]
[29]
Ueda T, Takeyama Y, Yasuda T, et al. Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol 2006; 41(8): 779-84.
[http://dx.doi.org/10.1007/s00535-006-1852-8] [PMID: 16988767]
[30]
Schneider AG, Goodwin MD, Bellomo R. Measurement of kidney perfusion in critically ill Patients. Crit Care 2013; 17(2): 220.
[http://dx.doi.org/10.1186/cc12529] [PMID: 23514525]
[31]
Prevost VH, Girard OM, Callot V, Cozzone PJ, Duhamel G. Fast imaging strategies for mouse kidney perfusion measurement with pseudocontinuous arterial spin labeling (pCASL) at ultra high magnetic field (11.75 tesla). J Magn Reson Imaging 2015; 42(4): 999-1008.
[http://dx.doi.org/10.1002/jmri.24874] [PMID: 25712197]
[32]
Hilbert F, Bock M, Neubauer H, et al. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed 2016; 29(10): 1403-13.
[http://dx.doi.org/10.1002/nbm.3584] [PMID: 27488570]
[33]
Mahmoud H, Buchanan C, Francis ST, Selby NM. Imaging the kidney using magnetic resonance techniques. Curr Opin Nephrol Hypertens 2016; 25(6): 487-93.
[http://dx.doi.org/10.1097/MNH.0000000000000266] [PMID: 27636770]
[34]
Xie L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS. MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol 2016; 311(6): F1109-24.
[http://dx.doi.org/10.1152/ajprenal.00134.2016] [PMID: 27630064]
[35]
Otero HJ, Calle-Toro JS, Maya CL, Darge K, Serai SD. DTI of the kidney in children: comparison between normal kidneys and those with ureteropelvic junction (UPJ) obstruction. MAGMA 2020; 33(1): 63-71.
[http://dx.doi.org/10.1007/s10334-019-00812-9] [PMID: 31845301]
[36]
Deng Y, Yang B, Luo J, Du G, Luo L. DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol 2020; 45(8): 2526-31.
[http://dx.doi.org/10.1007/s00261-020-02576-6] [PMID: 32430512]
[37]
Serai SD, Otero HJ, Calle-Toro JS, Berman JI, Darge K, Hartung EA. Diffusion tensor imaging of the kidney in healthy controls and in children and young adults with autosomal recessive polycystic kidney disease. Abdom Radiol 2019; 44(5): 1867-72.
[http://dx.doi.org/10.1007/s00261-019-01933-4] [PMID: 30783727]
[38]
Jager KJ, Stel VS, Branger P, et al. The effect of differing kidney disease treatment modalities and organ donation and transplantation practices on health expenditure and patient outcomes. Nephrol Dial Transplant 2018; 33(4): 560-2.
[http://dx.doi.org/10.1093/ndt/gfx082] [PMID: 29106604]
[39]
Rheinheimer S, Stieltjes B, Schneider F, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters—Initial experience. Eur J Radiol 2012; 81(3): e310-6.
[http://dx.doi.org/10.1016/j.ejrad.2011.10.016] [PMID: 22104090]
[40]
Gaing B, Sigmund EE, Huang WC, et al. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol 2015; 50(3): 144-52.
[http://dx.doi.org/10.1097/RLI.0000000000000111] [PMID: 25387050]
[41]
Ding Y, Zeng M, Rao S, Chen C, Fu C, Zhou J. Comparison of biexponential and monoexponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol 2016; 17(6): 853-63.
[http://dx.doi.org/10.3348/kjr.2016.17.6.853] [PMID: 27833401]
[42]
Xiong R, Li W, Li Y, et al. Er Shen Wan extract reduces diarrhea and regulates AQP 4 and NHE 3 in a rat model of spleen-kidney Yang deficiency–induced diarrhea. Biomed Pharmacother 2018; 98: 834-46.
[http://dx.doi.org/10.1016/j.biopha.2018.01.023] [PMID: 29571254]
[43]
Kim JW, Lee CH, Yoo KH, et al. Intravoxel incoherent motion magnetic resonance imaging to predict vesicoureteral reflux in children with urinary tract infection. Eur Radiol 2016; 26(6): 1670-7.
[http://dx.doi.org/10.1007/s00330-015-3986-7] [PMID: 26373765]
[44]
Ebrahimi B, Rihal N, Woollard JR, Krier JD, Eirin A, Lerman LO. Assessment of renal artery stenosis using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging analysis. Invest Radiol 2014; 49(10): 640-6.
[http://dx.doi.org/10.1097/RLI.0000000000000066] [PMID: 24743589]
[45]
Mao W, Ding Y, Ding X, et al. Pathological assessment of chronic kidney disease with DWI: Is there an added value for diffusion kurtosis imaging? J Magn Reson Imaging 2021; 54(2): 508-17.
[http://dx.doi.org/10.1002/jmri.27569] [PMID: 33634937]
[46]
Zhang B, Dong Y, Guo B, et al. Application of noninvasive functional imaging to monitor the progressive changes in kidney diffusion and perfusion in contrast-induced acute kidney injury rats at 3.0 T. Abdom Radiol 2018; 43(3): 655-62.
[http://dx.doi.org/10.1007/s00261-017-1247-8] [PMID: 28677006]
[47]
Liang L, Chen W, Chan KWY, et al. Using intravoxel incoherent motion MR imaging to study the renal pathophysiological process of contrast-induced acute kidney injury in rats: Comparison with conventional DWI and arterial spin labelling. Eur Radiol 2016; 26(6): 1597-605.
[http://dx.doi.org/10.1007/s00330-015-3990-y] [PMID: 26373761]
[48]
Ye XJ, Cui SH, Song JW, et al. Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease. Clin Radiol 2019; 74(2): 116-22.
[http://dx.doi.org/10.1016/j.crad.2018.09.011] [PMID: 30360880]
[49]
Feng YZ, Ye YJ, Cheng ZY, et al. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol 2020; 93(1105): 20190562.
[http://dx.doi.org/10.1259/bjr.20190562] [PMID: 31603347]
[50]
Hueper K, Hartung D, Gutberlet M, et al. Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 2012; 47(7): 430-7.
[http://dx.doi.org/10.1097/RLI.0b013e31824f272d] [PMID: 22659594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy