Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Mini-Review Article

Research Progress on Amide Proton Transfer Imaging in Preoperative and Postoperative Glioma Assessment

Author(s): Han-wen Zhang and Fan Lin*

Volume 19, Issue 9, 2023

Published on: 24 February, 2023

Article ID: e260123213182 Pages: 6

DOI: 10.2174/1573405619666230126124039

Price: $65

Abstract

Amide proton transfer (APT) imaging is a technique that reflects the level of amide proton transport of hydrogen ions in water to peptides and proteins within the tumour by using magnetic resonance imaging without contrast administration. This technique can more accurately reflect the protein level, pH value, and other relevant information within the tumour. Currently, APT is widely used in glioma research. In this paper, we briefly describe the research progress on this technique.

[1]
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. Lab Invest 2022; 102(2): 126-33.
[http://dx.doi.org/10.1038/s41374-021-00667-6] [PMID: 34504304]
[2]
Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 2018; 44(2): 139-50.
[http://dx.doi.org/10.1111/nan.12432] [PMID: 28815663]
[3]
Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J Magn Reson Imaging 2019; 50(2): 347-64.
[http://dx.doi.org/10.1002/jmri.26645] [PMID: 30663162]
[4]
Heo HY, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 2016; 44(1): 41-50.
[http://dx.doi.org/10.1002/jmri.25108] [PMID: 26663561]
[5]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029-33.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[6]
Durmo F, Rydhög A, Testud F, et al. Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLoS One 2020; 15(12): e0244003.
[http://dx.doi.org/10.1371/journal.pone.0244003] [PMID: 33373375]
[7]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-oncol 2014; 16(3): 441-8.
[http://dx.doi.org/10.1093/neuonc/not158] [PMID: 24305718]
[8]
Su C, Li S, Chen X, et al. Predicting cancer malignancy and proliferation in glioma patients: intra-subject inter-metabolite correlation analyses using MRI and MRSI contrast scans. Quant Imaging Med Surg 2021; 11(6): 2721-32.
[http://dx.doi.org/10.21037/qims-20-1163] [PMID: 34079736]
[9]
Warnert EAH, Wood TC, Incekara F, et al. Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T. MAGMA 2022; 35(1): 53-62.
[http://dx.doi.org/10.1007/s10334-021-00911-6] [PMID: 33606114]
[10]
Zhang J, Zhu W, Tain R, Zhou XJ, Cai K. Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using apt contrast fitted from Z-Spectrum. Mol Imag 2018; 20(4): 623-31.
[http://dx.doi.org/10.1007/s11307-017-1154-y] [PMID: 29313159]
[11]
Jiang S, Eberhart CG, Zhang Y, et al. Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 2017; 83: 9-18.
[http://dx.doi.org/10.1016/j.ejca.2017.06.009] [PMID: 28704644]
[12]
Dreher C, Oberhollenzer J, Meissner J-E, et al. Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imaging 2018; 2018(5): 1-9.
[http://dx.doi.org/10.1002/jmri.26215] [PMID: 30133046]
[13]
Sotirios B, Demetriou E, Topriceanu CC, Zakrzewska Z. The role of APT imaging in gliomas grading: A systematic review and meta-analysis. Eur J Radiol 2020; 133: 109353.
[http://dx.doi.org/10.1016/j.ejrad.2020.109353] [PMID: 33120241]
[14]
Suh CH, Park JE, Jung SC, Choi CG, Kim SJ, Kim HS. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis. Neuroradiology 2019; 61(5): 525-34.
[http://dx.doi.org/10.1007/s00234-018-02152-2] [PMID: 30666352]
[15]
Togao O, Hiwatashi A, Yamashita K, et al. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 2017; 27(2): 578-88.
[http://dx.doi.org/10.1007/s00330-016-4328-0] [PMID: 27003139]
[16]
Choi YS, Ahn SS, Lee SK, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 2017; 27(8): 3181-9.
[http://dx.doi.org/10.1007/s00330-017-4732-0] [PMID: 28116517]
[17]
Kang X, Xi Y, Liu T, et al. Grading of Glioma: combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging. BMC Med Imaging 2020; 20(1): 50-6.
[http://dx.doi.org/10.1186/s12880-020-00450-x] [PMID: 32408867]
[18]
da Silva NA, Lohmann P, Fairney J, et al. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. Eur J Nucl Med Mol Imaging 2018; 45(6): 1031-40.
[http://dx.doi.org/10.1007/s00259-018-3940-4] [PMID: 29478081]
[19]
Zhao J, Huang S, Xie H, Li W. An evidence-based approach to evaluate the accuracy of amide proton transfer-weighted MRI in characterization of gliomas. Medicine (Baltimore) 2019; 98(10): e14768.
[http://dx.doi.org/10.1097/MD.0000000000014768] [PMID: 30855481]
[20]
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[21]
Han Y, Wang W, Yang Y, et al. Amide Proton transfer imaging in predicting isocitrate dehydrogenase 1 mutation status of grade II/III gliomas based on support vector machine. Front Neurosci 2020; 14: 144.
[http://dx.doi.org/10.3389/fnins.2020.00144] [PMID: 32153362]
[22]
Su L, Gao P, Lin S, et al. Predicting O6-methylguanine-DNA methyltransferase protein expression in primary low- and high-grade gliomas using certain qualitative characteristics of amide proton transfer-weighted MRI. World Neurosurg 2018; 116: e814-23.
[http://dx.doi.org/10.1016/j.wneu.2018.05.100] [PMID: 29803064]
[23]
Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro-oncol 2018; 20(12): 1661-71.
[http://dx.doi.org/10.1093/neuonc/noy073] [PMID: 29733378]
[24]
Zx A, Chao KB, Jie LA, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3T. Eur J Radiol 2020; 134: 109466.
[http://dx.doi.org/10.1016/j.ejrad.2020.109466] [PMID: 33307459]
[25]
Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. Eur Radiol 2019; 29(12): 6643-52.
[http://dx.doi.org/10.1007/s00330-019-06203-x] [PMID: 31175415]
[26]
Blumenthal DT, Dvir A, Lossos A, et al. Clinical utility and treatment outcome of comprehensive genomic profiling in high grade glioma patients. J Neurooncol 2016; 130(1): 211-9.
[http://dx.doi.org/10.1007/s11060-016-2237-3] [PMID: 27531351]
[27]
Nancy U, Eudocia Q. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol 2015; 16(6): e270-8.
[http://dx.doi.org/10.1016/S1470-2045(15)70057-4] [PMID: 26065612]
[28]
Sharma M, Juthani RG, Vogelbaum MAJCCO. Updated response assessment criteria for high-grade glioma: beyond the MacDonald criteria. Chinese Clin Oncol 2017; 6(4): 37.
[http://dx.doi.org/10.21037/cco.2017.06.26] [PMID: 28841799]
[29]
Stupp R, Tonn JC, Brada M, Pentheroudakis G, Group EGW. High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (Suppl. 5): v190-3.
[http://dx.doi.org/10.1093/annonc/mdq187] [PMID: 20555079]
[30]
Ma Bo, Jaishri O. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magnet Resonance Imag 2016; 44(2): 456-62.
[http://dx.doi.org/10.1002/jmri.25159] [PMID: 26788865]
[31]
Park YW, Ahn SS, Kim E, Kang SG, Lee SKJN. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters. Neuroradiology 2020; 1(4): 1-10.
[PMID: 32879995]
[32]
Jiang S, Eberhart CG, Lim M, et al. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging: a validation study with image-guided stereotactic biopsy. Clin Cancer Res 2019; 25(2): 552-61.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1233] [PMID: 30366937]
[33]
Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 2016; 26(12): 4390-403.
[http://dx.doi.org/10.1007/s00330-016-4261-2] [PMID: 26883333]
[34]
Meissner J-E, Korzowski A, Regnery S, Goerke S. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn Reson Imaging 2019; 50(4): 1268-77.
[http://dx.doi.org/10.1002/jmri.26702] [PMID: 30864193]
[35]
Park JE, Kim HS, Park SY, Jung SC, Kim JH, Heo HY. Identification of early response to anti-angiogenic therapy in recurrent glioblastoma: Amide proton transfer-weighted and perfusion-weighted MRI compared with diffusion-weighted MRI. Radiology 2020; 295(2): 397-406.
[http://dx.doi.org/10.1148/radiol.2020191376] [PMID: 32154775]
[36]
Park JE, Lee JY, Kim HS, et al. Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography. Eur Radiol 2018; 28(8): 3285-95.
[http://dx.doi.org/10.1007/s00330-018-5341-2] [PMID: 29488086]
[37]
Paech D, Dreher C, Regnery S, Meissner J, Schlemmer H. Relaxation-compensated amide proton transfer (APT) MRI is a predictor of survival and progression in high-grade glioma patients. Rofo 2019; 191(501): 58.
[38]
Liu J, Li C, Chen Y, et al. Diagnostic performance of multiparametric MRI in the evaluation of treatment response in glioma patients at 3T. J Magn Reson Imaging 2020; 51(4): 1154-61.
[http://dx.doi.org/10.1002/jmri.26900] [PMID: 31430008]
[39]
Yu Y, Lee DH, Peng SL, et al. Assessment of glioma response to radiotherapy using multiple MRI biomarkers with manual and semi-automated segmentation algorithms. Neuroimaging 2016; 26(6): 626-34.
[http://dx.doi.org/10.1111/jon.12354] [PMID: 27128445]
[40]
Kumari N, Thakur N, Cho HR, Choi SH. Assessment of early therapeutic response to nitroxoline in temozolomide-resistant glioblastoma by amide proton transfer imaging: A preliminary comparative study with diffusion-weighted imaging. Sci Rep 2019; 9(1): 5585-90.
[http://dx.doi.org/10.1038/s41598-019-42088-y] [PMID: 30944404]
[41]
Garber ST, Hashimoto Y, Weathers S-P, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro Oncol 2016; 18(10): 1357-66.
[http://dx.doi.org/10.1093/neuonc/now132] [PMID: 27370400]
[42]
Fukuda A, Queiroz LdS, Reis FJAdN-P. Gliosarcomas: magnetic resonance imaging findings. Arq Neuropsiquiatr 2020; 78: 112-20.
[http://dx.doi.org/10.1590/0004-282X20190158] [PMID: 32022137]
[43]
Salhotra A, Lal B, Laterra J, Sun PZ, van Zijl PC. Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR Biomed 2008; 21(5): 489-97.
[http://dx.doi.org/10.1002/nbm.1216] [PMID: 17924591]
[44]
Zhang HW, Liu XL, Zhang HB, et al. Differentiation of meningiomas and gliomas by amide proton transfer imaging: A preliminary study of brain tumour infiltration. Front Oncol 2022; 12: 886968.
[http://dx.doi.org/10.3389/fonc.2022.886968] [PMID: 35646626]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy