Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Hydrogen Sulfide (H2S): As a Potent Modulator and Therapeutic Prodrug in Cancer

Author(s): Pawan Faris*, Sharon Negri, Delia Faris, Francesca Scolari, Daniela Montagna and Francesco Moccia

Volume 30, Issue 40, 2023

Published on: 03 March, 2023

Page: [4506 - 4532] Pages: 27

DOI: 10.2174/0929867330666230126100638

Price: $65

Abstract

Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.

[1]
Dorman, D.C.; Moulin, F.J.; McManus, B.E.; Mahle, K.C.; James, R.A.; Struve, M.F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci., 2002, 65(1), 18-25.
[http://dx.doi.org/10.1093/toxsci/65.1.18] [PMID: 11752681]
[2]
De Kok, L.J.; Bosma, W.; Maas, F.M.; Kuiper, P.J.C. The effect of short-term H2S fumigation on water-soluble sulphydryl and glutathione levels in spinach. Plant Cell Environ., 1985, 8(3), 189-194.
[http://dx.doi.org/10.1111/1365-3040.ep11604605]
[3]
Felton, J.S. The heritage of Bernardino Ramazzini. Occup. Med. (Lond.), 1997, 47(3), 167-179.
[http://dx.doi.org/10.1093/occmed/47.3.167] [PMID: 9156474]
[4]
Zaichko, N.V.; Melnik, A.V.; Yoltukhivskyy, M.M.; Olhovskiy, A.S.; Palamarchuk, I.V. Hydrogen sulfide: Metabolism, biological and medical role. Ukr. Biochem. J., 2014, 86(5), 5-25.
[http://dx.doi.org/10.15407/ubj86.05.005] [PMID: 25816584]
[5]
Szabo, C. A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem. Pharmacol., 2018, 149, 5-19.
[http://dx.doi.org/10.1016/j.bcp.2017.09.010] [PMID: 28947277]
[6]
Aroca, A.; Gotor, C.; Romero, L.C. Hydrogen sulfide signaling in plants: Emerging roles of protein persulfidation. Front. Plant Sci., 2018, 9, 1369.
[http://dx.doi.org/10.3389/fpls.2018.01369] [PMID: 30283480]
[7]
Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov., 2016, 15(3), 185-203.
[http://dx.doi.org/10.1038/nrd.2015.1] [PMID: 26678620]
[8]
Wang, R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[9]
Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev., 2018, 118(3), 1253-1337.
[http://dx.doi.org/10.1021/acs.chemrev.7b00205] [PMID: 29112440]
[10]
Yang, G.; Sener, A.; Ji, Y.; Pei, Y.; Pluth, M.D. Gasotransmitters in biology and medicine: Molecular mechanisms and drug targets. Oxid. Med. Cell. Longev., 2016, 2016, 1-2.
[http://dx.doi.org/10.1155/2016/4627308] [PMID: 27777644]
[11]
Mancardi, D.; Florio Pla, A.; Moccia, F.; Tanzi, F.; Munaron, L. Old and new gasotransmitters in the cardiovascular system: focus on the role of nitric oxide and hydrogen sulfide in endothelial cells and cardiomyocytes. Curr. Pharm. Biotechnol., 2011, 12(9), 1406-1415.
[http://dx.doi.org/10.2174/138920111798281090] [PMID: 21235456]
[12]
Altaany, Z.; Moccia, F.; Munaron, L.; Mancardi, D.; Wang, R. Hydrogen sulfide and endothelial dysfunction: Relationship with nitric oxide. Curr. Med. Chem., 2014, 21(32), 3646-3661.
[http://dx.doi.org/10.2174/0929867321666140706142930] [PMID: 25005182]
[13]
Yuan, S.; Shen, X.; Kevil, C.G. Beyond a gasotransmitter: Hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxid. Redox Signal., 2017, 27(10), 634-653.
[http://dx.doi.org/10.1089/ars.2017.7096] [PMID: 28398086]
[14]
Kashfi, K.; Olson, K.R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol., 2013, 85(5), 689-703.
[http://dx.doi.org/10.1016/j.bcp.2012.10.019] [PMID: 23103569]
[15]
Szabo, C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: Mechanisms and implications. Am. J. Physiol. Cell Physiol., 2017, 312(1), C3-C15.
[http://dx.doi.org/10.1152/ajpcell.00282.2016] [PMID: 27784679]
[16]
Zuhra, K.; Augsburger, F.; Majtan, T.; Szabo, C. Cystathionine-β-synthase: Molecular regulation and pharmacological inhibition. Biomolecules, 2020, 10(5), 697.
[http://dx.doi.org/10.3390/biom10050697] [PMID: 32365821]
[17]
Searcy, D.G.; Lee, S.H. Sulfur reduction by human erythrocytes. J. Exp. Zool., 1998, 282(3), 310-322.
[http://dx.doi.org/10.1002/(SICI)1097-010X(19981015)282:3<310::AID-JEZ4>3.0.CO;2-P] [PMID: 9755482]
[18]
Elsey, D.J.; Fowkes, R.C.; Baxter, G.F. Regulation of cardiovascular cell function by hydrogen sulfide (H2S). Cell Biochem. Funct., 2010, 28(2), 95-106.
[http://dx.doi.org/10.1002/cbf.1618] [PMID: 20104507]
[19]
Karunya, R.; Jayaprakash, K.S.; Gaikwad, R.; Sajeesh, P.; Ramshad, K.; Muraleedharan, K.M.; Dixit, M.; Thangaraj, P.R.; Sen, A.K. Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Sci. Rep., 2019, 9(1), 3258.
[http://dx.doi.org/10.1038/s41598-019-39389-7] [PMID: 30824728]
[20]
Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal., 2019, 31(1), 1-38.
[http://dx.doi.org/10.1089/ars.2017.7058] [PMID: 29790379]
[21]
Hartle, M.D.; Pluth, M.D. A practical guide to working with H2S at the interface of chemistry and biology. Chem. Soc. Rev., 2016, 45(22), 6108-6117.
[http://dx.doi.org/10.1039/C6CS00212A] [PMID: 27167579]
[22]
Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; Snyder, S.H.; Wang, R. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science, 2008, 322(5901), 587-590.
[http://dx.doi.org/10.1126/science.1162667] [PMID: 18948540]
[23]
Doeller, J.E.; Isbell, T.S.; Benavides, G.; Koenitzer, J.; Patel, H.; Patel, R.P.; Lancaster, J.R., Jr; Darley-Usmar, V.M.; Kraus, D.W. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal. Biochem., 2005, 341(1), 40-51.
[http://dx.doi.org/10.1016/j.ab.2005.03.024] [PMID: 15866526]
[24]
Furne, J.; Saeed, A.; Levitt, M.D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(5), R1479-R1485.
[http://dx.doi.org/10.1152/ajpregu.90566.2008] [PMID: 18799635]
[25]
Guo, Z.; Chen, G.; Zeng, G.; Li, Z.; Chen, A.; Wang, J.; Jiang, L. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst (Lond.), 2015, 140(6), 1772-1786.
[http://dx.doi.org/10.1039/C4AN01909A] [PMID: 25529122]
[26]
Tong, X.; Hao, L.; Song, X.; Wu, S.; Zhang, N.; Li, Z.; Chen, S.; Hou, P. Construction of novel coumarin-carbazole-based fluorescent probe for tracking of endogenous and exogenous H2S in vivo with yellow-emission and large Stokes shift. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 279, 121445.
[http://dx.doi.org/10.1016/j.saa.2022.121445] [PMID: 35660155]
[27]
Wang, W.X.; Wang, Z.Q.; Tan, Z.K.; Mao, G.J.; Chen, D.H.; Li, C.Y. A nitrobenzoxadiazole-based near-infrared fluorescent probe for the specific imaging of H2S in inflammatory and tumor mice. Analyst (Lond.), 2022, 147(12), 2712-2717.
[http://dx.doi.org/10.1039/D2AN00623E] [PMID: 35635158]
[28]
Ibrahim, H.; Serag, A.; Farag, M.A. Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review. J. Adv. Res., 2021, 27, 137-153.
[http://dx.doi.org/10.1016/j.jare.2020.05.018] [PMID: 33318873]
[29]
Kimura, H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal., 2014, 20(5), 783-793.
[http://dx.doi.org/10.1089/ars.2013.5309] [PMID: 23581969]
[30]
Moccia, F.; Bertoni, G.; Florio Pla, A.; Dragoni, S.; Pupo, E.; Merlino, A.; Mancardi, D.; Munaron, L.; Tanzi, F. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta. Curr. Pharm. Biotechnol., 2011, 12(9), 1416-1426.
[http://dx.doi.org/10.2174/138920111798281117] [PMID: 21470138]
[31]
Whiteman, M.; Le Trionnaire, S.; Chopra, M.; Fox, B.; Whatmore, J. Emerging role of hydrogen sulfide in health and disease: Critical appraisal of biomarkers and pharmacological tools. Clin. Sci. (Lond.), 2011, 121(11), 459-488.
[http://dx.doi.org/10.1042/CS20110267] [PMID: 21843150]
[32]
Zhang, L.; Qi, Q.; Yang, J.; Sun, D.; Li, C.; Xue, Y.; Jiang, Q.; Tian, Y.; Xu, C.; Wang, R. An anticancer role of hydrogen sulfide in human gastric cancer cells. Oxid. Med. Cell. Longev., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/636410] [PMID: 26078811]
[33]
Wang, G.; Li, W.; Chen, Q.; Jiang, Y.; Lu, X.; Zhao, X. Hydrogen sulfide accelerates wound healing in diabetic rats. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5097-5104.
[PMID: 26191204]
[34]
Vellecco, V.; Armogida, C.; Bucci, M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br. J. Pharmacol., 2018, 175(15), 3090-3099.
[http://dx.doi.org/10.1111/bph.14358] [PMID: 29767441]
[35]
Wang, Y.H.; Huang, J.T.; Chen, W.L.; Wang, R.H.; Kao, M.C.; Pan, Y.R.; Chan, S.H.; Tsai, K.W.; Kung, H.J.; Lin, K.T.; Wang, L.H. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep., 2019, 20(10), e45986.
[http://dx.doi.org/10.15252/embr.201845986] [PMID: 31468690]
[36]
Xiao, Q.; Ying, J.; Xiang, L.; Zhang, C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore), 2018, 97(44), e13065-e13065.
[http://dx.doi.org/10.1097/MD.0000000000013065] [PMID: 30383685]
[37]
Pozzi, G.; Gobbi, G.; Masselli, E.; Carubbi, C.; Presta, V.; Ambrosini, L.; Vitale, M.; Mirandola, P. Buffering adaptive immunity by hydrogen sulfide. Cells, 2022, 11(3), 325.
[http://dx.doi.org/10.3390/cells11030325] [PMID: 35159135]
[38]
Lee, S.R.; Nilius, B.; Han, J. Gaseous signaling molecules in cardiovascular function: From mechanisms to clinical translation. Rev. Physiol. Biochem. Pharmacol., 2018, 174, 81-156.
[http://dx.doi.org/10.1007/112_2017_7] [PMID: 29372329]
[39]
Rajendran, S.; Shen, X.; Glawe, J.; Kolluru, G.K.; Kevil, C.G. Nitric oxide and hydrogen sulfide regulation of ischemic vascular growth and remodeling. Compr. Physiol., 2019, 9(3), 1213-1247.
[http://dx.doi.org/10.1002/cphy.c180026] [PMID: 31187898]
[40]
Kimura, H. Hydrogen sulfide signalling in the CNS - comparison with NO. Br. J. Pharmacol., 2020, 177(22), 5031-5045.
[http://dx.doi.org/10.1111/bph.15246] [PMID: 32860641]
[41]
Peleli, M.; Zampas, P.; Papapetropoulos, A. Hydrogen sulfide and the kidney: Physiological roles, contribution to pathophysiology, and therapeutic potential. Antioxid. Redox Signal., 2022, 36(4-6), 220-243.
[http://dx.doi.org/10.1089/ars.2021.0014] [PMID: 34978847]
[42]
Xi, Y.; Wen, X.; Zhang, Y.; Jiao, L.; Bai, S.; Shi, S.; Chang, G.; Wu, R.; Sun, F.; Hao, J.; Li, H. DR1 activation inhibits the proliferation of vascular smooth muscle cells through increasing endogenous H2S in diabetes. Aging Dis., 2022, 13(3), 910-926.
[http://dx.doi.org/10.14336/AD.2021.1104] [PMID: 35656112]
[43]
Kimura, H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. Int., 2013, 63(5), 492-497.
[http://dx.doi.org/10.1016/j.neuint.2013.09.003] [PMID: 24036365]
[44]
Kimura, H. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochem. Int., 2019, 126, 118-125.
[http://dx.doi.org/10.1016/j.neuint.2019.01.027] [PMID: 30849397]
[45]
Panthi, S.; Chung, H.J.; Jung, J.; Jeong, N.Y. Physiological importance of hydrogen sulfide: Emerging potent neuroprotector and neuromodulator. Oxid. Med. Cell. Longev., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/9049782] [PMID: 27413423]
[46]
Zhang, X.; Bian, J.S. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system. ACS Chem. Neurosci., 2014, 5(10), 876-883.
[http://dx.doi.org/10.1021/cn500185g] [PMID: 25230373]
[47]
Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020, 10, 1568.
[http://dx.doi.org/10.3389/fphar.2019.01568] [PMID: 32038245]
[48]
Chatzianastasiou, A.; Bibli, S.I.; Andreadou, I.; Efentakis, P.; Kaludercic, N.; Wood, M.E.; Whiteman, M.; Di Lisa, F.; Daiber, A.; Manolopoulos, V.G.; Szabó, C.; Papapetropoulos, A. Cardioprotection by H2S donors: Nitric oxide-dependent and -independent mechanisms. J. Pharmacol. Exp. Ther., 2016, 358(3), 431-440.
[http://dx.doi.org/10.1124/jpet.116.235119] [PMID: 27342567]
[49]
Kanagy, N.L.; Szabo, C.; Papapetropoulos, A. Vascular biology of hydrogen sulfide. Am. J. Physiol. Cell Physiol., 2017, 312(5), C537-C549.
[http://dx.doi.org/10.1152/ajpcell.00329.2016] [PMID: 28148499]
[50]
Citi, V.; Piragine, E.; Testai, L.; Breschi, M.C.; Calderone, V.; Martelli, A. The role of hydrogen sulfide and H2S- donors in myocardial protection against ischemia/reperfusion injury. Curr. Med. Chem., 2018, 25(34), 4380-4401.
[http://dx.doi.org/10.2174/0929867325666180212120504] [PMID: 29436990]
[51]
Farrugia, G.; Szurszewski, J.H. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology, 2014, 147(2), 303-313.
[http://dx.doi.org/10.1053/j.gastro.2014.04.041] [PMID: 24798417]
[52]
Wu, D.D.; Wang, D.Y.; Li, H.M.; Guo, J.C.; Duan, S.F.; Ji, X.Y. Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid. Med. Cell. Longev., 2019, 2019, 3832648.
[http://dx.doi.org/10.1155/2019/3832648] [PMID: 30805080]
[53]
Singh, S.; Lin, H. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms, 2015, 3(4), 866-889.
[http://dx.doi.org/10.3390/microorganisms3040866] [PMID: 27682122]
[54]
Buret, A.G.; Allain, T.; Motta, J.P.; Wallace, J.L. Effects of hydrogen sulfide on the microbiome: From toxicity to therapy. Antioxid. Redox Signal., 2021, 36(4-6), 211-219.
[PMID: 33691464]
[55]
Costa, S.K.P.F.; Muscara, M.N.; Allain, T.; Dallazen, J.; Gonzaga, L.; Buret, A.G.; Vaughan, D.J.; Fowler, C.J.; de Nucci, G.; Wallace, J.L. Enhanced analgesic effects and gastrointestinal safety of a novel, hydrogen sulfide-releasing anti-inflammatory drug (ATB-352): A role for endogenous cannabinoids. Antioxid. Redox Signal., 2020, 33(14), 1003-1009.
[http://dx.doi.org/10.1089/ars.2019.7884] [PMID: 32064887]
[56]
Jia, J.; Ma, B.; Wang, S.; Feng, L. Therapeutic potential of endothelial colony forming cells derived from human umbilical cord blood. Curr. Stem Cell Res. Ther., 2019, 14(6), 460-465.
[http://dx.doi.org/10.2174/1574888X14666190214162453] [PMID: 30767752]
[57]
Zhang, Y.; Masters, L.; Wang, Y.; Wu, L.; Pei, Y.; Guo, B.; Parissenti, A.; Lees, S.J.; Wang, R.; Yang, G. Cystathionine gamma-lyase/H2S signaling facilitates myogenesis under aging and injury condition. FASEB J., 2021, 35(5), e21511.
[http://dx.doi.org/10.1096/fj.202002675R] [PMID: 33826201]
[58]
Nin, D.S.; Idres, S.B.; Song, Z.J.; Moore, P.K.; Deng, L.W. Biological effects of morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate and other phosphorothioate-based hydrogen sulfide donors. Antioxid. Redox Signal., 2020, 32(2), 145-158.
[http://dx.doi.org/10.1089/ars.2019.7896] [PMID: 31642346]
[59]
Estienne, A.; Portela, V.M.; Choi, Y.; Zamberlam, G.; Boerboom, D.; Roussel, V.; Meinsohn, M.C.; Brännström, M.; Curry, T.E., Jr; Jo, M.; Price, C.A. The endogenous hydrogen sulfide generating system regulates ovulation. Free Radic. Biol. Med., 2019, 138, 43-52.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.028] [PMID: 30930295]
[60]
Taniguchi, S.; Niki, I. Significance of hydrogen sulfide production in the pancreatic β-cell. J. Pharmacol. Sci., 2011, 116(1), 1-5.
[http://dx.doi.org/10.1254/jphs.11R01CP] [PMID: 21512302]
[61]
Cao, X.; Bian, J.S. The role of hydrogen sulfide in renal system. Front. Pharmacol., 2016, 7, 385.
[http://dx.doi.org/10.3389/fphar.2016.00385] [PMID: 27803669]
[62]
Koning, A.M.; Frenay, A.R.S.; Leuvenink, H.G.D.; van Goor, H. Hydrogen sulfide in renal physiology, disease and transplantation – The smell of renal protection. Nitric Oxide, 2015, 46, 37-49.
[http://dx.doi.org/10.1016/j.niox.2015.01.005] [PMID: 25656225]
[63]
Mani, S.; Cao, W.; Wu, L.; Wang, R. Hydrogen sulfide and the liver. Nitric Oxide, 2014, 41, 62-71.
[http://dx.doi.org/10.1016/j.niox.2014.02.006] [PMID: 24582857]
[64]
Fuschillo, S.; Palomba, L.; Capparelli, R.; Motta, A.; Maniscalco, M. Nitric oxide and hydrogen sulfide: A nice pair in the respiratory system. Curr. Med. Chem., 2020, 27(42), 7136-7148.
[http://dx.doi.org/10.2174/0929867327666200310120550] [PMID: 32156225]
[65]
Olson, K.R.; Straub, K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda), 2016, 31(1), 60-72.
[http://dx.doi.org/10.1152/physiol.00024.2015] [PMID: 26674552]
[66]
Llarena, N.; Hine, C. Reproductive longevity and aging: Geroscience approaches to maintain long-term ovarian fitness. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 76(9), 1551-1560.
[PMID: 32808646]
[67]
Qi, Q.R.; Lechuga, T.J.; Patel, B.; Nguyen, N.A.; Yang, Y.H.; Li, Y.; Sarnthiyakul, S.; Zhang, Q.W.; Bai, J.; Makhoul, J.; Chen, D.B. Enhanced stromal cell CBS-H2S production promotes estrogen-stimulated human endometrial angiogenesis. Endocrinology, 2020, 161(11), bqaa176.
[http://dx.doi.org/10.1210/endocr/bqaa176] [PMID: 32987401]
[68]
Lv, B.; Chen, S.; Tang, C.; Jin, H.; Du, J.; Huang, Y. Hydrogen sulfide and vascular regulation – An update. J. Adv. Res., 2021, 27, 85-97.
[http://dx.doi.org/10.1016/j.jare.2020.05.007] [PMID: 33318869]
[69]
Giovinazzo, D.; Bursac, B.; Sbodio, J.I.; Nalluru, S.; Vignane, T.; Snowman, A.M.; Albacarys, L.M.; Sedlak, T.W.; Torregrossa, R.; Whiteman, M.; Filipovic, M.R.; Snyder, S.H.; Paul, B.D. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc. Natl. Acad. Sci. USA, 2021, 118(4), e2017225118.
[http://dx.doi.org/10.1073/pnas.2017225118] [PMID: 33431651]
[70]
Mohammad, G.; Radhakrishnan, R.; Kowluru, R.A. Hydrogen sulfide: A potential therapeutic target in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2020, 61(14), 35-35.
[http://dx.doi.org/10.1167/iovs.61.14.35] [PMID: 33372981]
[71]
Kumar, M.; Sandhir, R. Hydrogen sulfide in physiological and pathological mechanisms in brain. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 654-670.
[http://dx.doi.org/10.2174/1871527317666180605072018] [PMID: 29866024]
[72]
Hsu, C.N.; Tain, Y.L. Hydrogen sulfide in hypertension and kidney disease of developmental origins. Int. J. Mol. Sci., 2018, 19(5), 1438.
[http://dx.doi.org/10.3390/ijms19051438] [PMID: 29751631]
[73]
Uyy, E.; Suica, V.I.; Boteanu, R.M.; Safciuc, F.; Cerveanu-Hogas, A.; Ivan, L.; Stavaru, C.; Simionescu, M.; Antohe, F. Diabetic nephropathy associates with deregulation of enzymes involved in kidney sulphur metabolism. J. Cell. Mol. Med., 2020, 24(20), 12131-12140.
[http://dx.doi.org/10.1111/jcmm.15855] [PMID: 32935914]
[74]
Beck, K.F.; Pfeilschifter, J. The pathophysiology of H2S in renal glomerular diseases. Biomolecules, 2022, 12(2), 207.
[http://dx.doi.org/10.3390/biom12020207] [PMID: 35204708]
[75]
Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2002, 293(5), 1485-1488.
[http://dx.doi.org/10.1016/S0006-291X(02)00422-9] [PMID: 12054683]
[76]
Gao, R.; Chen, G.; Zhang, J.; Ding, Y.; Wang, Z.; Kong, Y. Hydrogen sulfide therapy in brain diseases: From bench to bedside. Med. Gas Res., 2017, 7(2), 113-119.
[http://dx.doi.org/10.4103/2045-9912.208517] [PMID: 28744364]
[77]
Kimura, Y.; Goto, Y.I.; Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal., 2010, 12(1), 1-13.
[http://dx.doi.org/10.1089/ars.2008.2282] [PMID: 19852698]
[78]
Shefa, U.; Kim, M.S.; Jeong, N.Y.; Jung, J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/1873962] [PMID: 29507650]
[79]
Nagpure, B.V.; Bian, J.S. Brain, learning, and memory: Role of H2S in neurodegenerative diseases. Handb. Exp. Pharmacol., 2015, 230, 193-215.
[http://dx.doi.org/10.1007/978-3-319-18144-8_10] [PMID: 26162836]
[80]
Wang, J.F.; Li, Y.; Song, J.N.; Pang, H.G. Role of hydrogen sulfide in secondary neuronal injury. Neurochem. Int., 2014, 64, 37-47.
[http://dx.doi.org/10.1016/j.neuint.2013.11.002] [PMID: 24239876]
[81]
Luo, Y.; Yang, X.; Zhao, S.; Wei, C.; Yin, Y.; Liu, T.; Jiang, S.; Xie, J.; Wan, X.; Mao, M.; Wu, J. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons. Neurochem. Int., 2013, 63(8), 826-831.
[http://dx.doi.org/10.1016/j.neuint.2013.06.004] [PMID: 23770272]
[82]
Scheid, S.; Goeller, M.; Baar, W.; Wollborn, J.; Buerkle, H.; Schlunck, G.; Lagrèze, W.; Goebel, U.; Ulbrich, F. Hydrogen sulfide reduces ischemia and reperfusion injury in neuronal cells in a dose- and time-dependent manner. Int. J. Mol. Sci., 2021, 22(18), 10099.
[http://dx.doi.org/10.3390/ijms221810099] [PMID: 34576259]
[83]
Statzer, C.; Meng, J.; Venz, R.; Bland, M.; Robida-Stubbs, S.; Patel, K.; Petrovic, D.; Emsley, R.; Liu, P.; Morantte, I.; Haynes, C.; Mair, W.B.; Longchamp, A.; Filipovic, M.R.; Blackwell, T.K.; Ewald, C.Y. ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. Nat. Commun., 2022, 13(1), 967.
[http://dx.doi.org/10.1038/s41467-022-28599-9] [PMID: 35181679]
[84]
Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Wang, X.Y.; Bian, J.S. An updated insight into molecular mechanism of hydrogen sulfide in cardiomyopathy and myocardial ischemia/reperfusion injury under diabetes. Front. Pharmacol., 2021, 12, 651884.
[http://dx.doi.org/10.3389/fphar.2021.651884] [PMID: 34764865]
[85]
Hellmich, M.R.; Szabo, C. Hydrogen sulfide and cancer. Handb. Exp. Pharmacol., 2015, 230, 233-241.
[http://dx.doi.org/10.1007/978-3-319-18144-8_12] [PMID: 26162838]
[86]
Shackelford, R.E.; Mohammad, I.Z.; Meram, A.T.; Kim, D.; Alotaibi, F.; Patel, S.; Ghali, G.E.; Kevil, C.G. Molecular functions of hydrogen sulfide in cancer. Pathophysiology, 2021, 28(3), 437-456.
[http://dx.doi.org/10.3390/pathophysiology28030028] [PMID: 35366284]
[87]
Murata, T.; Sato, T.; Kamoda, T.; Moriyama, H.; Kumazawa, Y.; Hanada, N. Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: Role of PHLDA1 as an apoptosis suppressor. Exp. Cell Res., 2014, 320(2), 247-257.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.023] [PMID: 24270013]
[88]
Dong, H.; Zhou, Q.; Zhang, L.; Tian, Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain. Angew. Chem. Int. Ed., 2019, 58(39), 13948-13953.
[http://dx.doi.org/10.1002/anie.201907210] [PMID: 31322310]
[89]
Wu, D.; Li, M.; Tian, W.; Wang, S.; Cui, L.; Li, H.; Wang, H.; Ji, A.; Li, Y. Hydrogen sulfide acts as a double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Sci. Rep., 2017, 7(1), 5134.
[http://dx.doi.org/10.1038/s41598-017-05457-z] [PMID: 28698660]
[90]
Wu, D.; Si, W.; Wang, M.; Lv, S.; Ji, A.; Li, Y. Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide, 2015, 50, 38-45.
[http://dx.doi.org/10.1016/j.niox.2015.08.004] [PMID: 26297862]
[91]
Wang, R.H.; Chu, Y.H.; Lin, K.T. The hidden role of hydrogen sulfide metabolism in cancer. Int. J. Mol. Sci., 2021, 22(12), 6562.
[http://dx.doi.org/10.3390/ijms22126562] [PMID: 34207284]
[92]
Dong, Q.; Yang, B.; Han, J.G.; Zhang, M.M.; Liu, W.; Zhang, X.; Yu, H.L.; Liu, Z.G.; Zhang, S.H.; Li, T.; Wu, D.D.; Ji, X.Y.; Duan, S.F. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. Cancer Lett., 2019, 455, 60-72.
[http://dx.doi.org/10.1016/j.canlet.2019.04.031] [PMID: 31042588]
[93]
Lee, Z.W.; Zhou, J.; Chen, C.S.; Zhao, Y.; Tan, C.H.; Li, L.; Moore, P.K.; Deng, L.W. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One, 2011, 6(6), e21077.
[http://dx.doi.org/10.1371/journal.pone.0021077] [PMID: 21701688]
[94]
Oláh, G.; Módis, K.; Törö, G.; Hellmich, M.R.; Szczesny, B.; Szabo, C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem. Pharmacol., 2018, 149, 186-204.
[http://dx.doi.org/10.1016/j.bcp.2017.10.011] [PMID: 29074106]
[95]
Sakuma, S.; Minamino, S.; Takase, M.; Ishiyama, Y.; Hosokura, H.; Kohda, T.; Ikeda, Y.; Fujimoto, Y. Hydrogen sulfide donor GYY4137 suppresses proliferation of human colorectal cancer Caco-2 cells by inducing both cell cycle arrest and cell death. Heliyon, 2019, 5(8), e02244.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02244] [PMID: 31440595]
[96]
Lei, Y.; Zhen, Y.; Zhang, W.; Sun, X.; Lin, X.; Feng, J.; Luo, H.; Chen, Z.; Su, C.; Zeng, B.; Chen, J. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, angiopoiesis and migration effects via activating HSP90 pathway in EC109 cells. Oncol. Rep., 2016, 35(6), 3714-3720.
[http://dx.doi.org/10.3892/or.2016.4734] [PMID: 27108782]
[97]
Szabo, C.; Hellmich, M.R. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle, 2013, 12(18), 2915-2916.
[http://dx.doi.org/10.4161/cc.26064] [PMID: 23974103]
[98]
Breza, J., Jr; Soltysova, A.; Hudecova, S.; Penesova, A.; Szadvari, I.; Babula, P.; Chovancova, B.; Lencesova, L.; Pos, O.; Breza, J.; Ondrias, K.; Krizanova, O. Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma. BMC Cancer, 2018, 18(1), 591.
[http://dx.doi.org/10.1186/s12885-018-4508-1] [PMID: 29793450]
[99]
Munaron, L.; Avanzato, D.; Moccia, F.; Mancardi, D. Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 2013, 53(2), 77-84.
[http://dx.doi.org/10.1016/j.ceca.2012.07.001] [PMID: 22840338]
[100]
Naik, J.S.; Osmond, J.M.; Walker, B.R.; Kanagy, N.L. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(6), H1437-H1444.
[http://dx.doi.org/10.1152/ajpheart.00465.2016] [PMID: 27765747]
[101]
Fukami, K.; Fukami, K.; Sekiguchi, F.; Sekiguchi, F.; Kawabata, A.; Kawabata, A. Hydrogen Sulfide and T-Type Ca2+ channels in pain processing, neuronal differentiation and neuroendocrine secretion. Pharmacology, 2017, 99(3-4), 196-203.
[http://dx.doi.org/10.1159/000449449] [PMID: 27931022]
[102]
Faris, P.; Ferulli, F.; Vismara, M.; Tanzi, M.; Negri, S.; Rumolo, A.; Lefkimmiatis, K.; Maestri, M.; Shekha, M.; Pedrazzoli, P.; Guidetti, G.F.; Montagna, D.; Moccia, F. Hydrogen sulfide-evoked intracellular Ca2+ signals in primary cultures of metastatic colorectal cancer cells. Cancers (Basel), 2020, 12(11), 3338.
[http://dx.doi.org/10.3390/cancers12113338] [PMID: 33187307]
[103]
Ma, Y.; Yan, Z.; Deng, X.; Guo, J.; Hu, J.; Yu, Y.; Jiao, F. Anticancer effect of exogenous hydrogen sulfide in cisplatin‑resistant A549/DDP cells. Oncol. Rep., 2018, 39(6), 2969-2977.
[http://dx.doi.org/10.3892/or.2018.6362] [PMID: 29658603]
[104]
Youness, R.A.; Gad, A.Z.; Sanber, K.; Ahn, Y.J.; Lee, G.J.; Khallaf, E.; Hafez, H.M.; Motaal, A.A.; Ahmed, N.; Gad, M.Z. Targeting hydrogen sulphide signaling in breast cancer. J. Adv. Res., 2021, 27, 177-190.
[http://dx.doi.org/10.1016/j.jare.2020.07.006] [PMID: 33318876]
[105]
Youness, R.A.; Assal, R.A.; Abdel Motaal, A.; Gad, M.Z. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide, 2018, 80, 12-23.
[http://dx.doi.org/10.1016/j.niox.2018.07.004] [PMID: 30081213]
[106]
Wallace, J.L.; Wang, R. Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov., 2015, 14(5), 329-345.
[http://dx.doi.org/10.1038/nrd4433] [PMID: 25849904]
[107]
Whitfield, N.L.; Kreimier, E.L.; Verdial, F.C.; Skovgaard, N.; Olson, K.R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 294(6), R1930-R1937.
[http://dx.doi.org/10.1152/ajpregu.00025.2008] [PMID: 18417642]
[108]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[109]
Reiffenstein, R.J.; Hulbert, W.C.; Roth, S.H. Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol., 1992, 32(1), 109-134.
[http://dx.doi.org/10.1146/annurev.pa.32.040192.000545] [PMID: 1605565]
[110]
Cuevasanta, E.; Möller, M.N.; Alvarez, B. Biological chemistry of hydrogen sulfide and persulfides. Arch. Biochem. Biophys., 2017, 617, 9-25.
[http://dx.doi.org/10.1016/j.abb.2016.09.018] [PMID: 27697462]
[111]
Cuevasanta, E.; Denicola, A.; Alvarez, B.; Möller, M.N. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS One, 2012, 7(4), e34562.
[http://dx.doi.org/10.1371/journal.pone.0034562] [PMID: 22509322]
[112]
Wang, R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, 16(13), 1792-1798.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[113]
Milby, T.H.; Baselt, R.C. Hydrogen sulfide poisoning: Clarification of some controversial issues. Am. J. Ind. Med., 1999, 35(2), 192-195.
[http://dx.doi.org/10.1002/(SICI)1097-0274(199902)35:2<192::AID-AJIM11>3.0.CO;2-C] [PMID: 9894543]
[114]
Polhemus, D.J.; Lefer, D.J. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res., 2014, 114(4), 730-737.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300505] [PMID: 24526678]
[115]
Kolluru, G.K.; Shen, X.; Bir, S.C.; Kevil, C.G. Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide, 2013, 35, 5-20.
[http://dx.doi.org/10.1016/j.niox.2013.07.002] [PMID: 23850632]
[116]
Kolluru, G.K.; Prasai, P.K.; Kaskas, A.M.; Letchuman, V.; Pattillo, C.B. Oxygen tension, H2S, and NO bioavailability: Is there an interaction? J Appl Physiol, 2016, 120(2), 263-270.
[http://dx.doi.org/10.1152/japplphysiol.00365.2015]
[117]
Stein, A.; Bailey, S.M. Redox biology of hydrogen sulfide: Implications for physiology, pathophysiology, and pharmacology. Redox Biol., 2013, 1(1), 32-39.
[http://dx.doi.org/10.1016/j.redox.2012.11.006] [PMID: 23795345]
[118]
Olson, K.R.; Dombkowski, R.A.; Russell, M.J.; Doellman, M.M.; Head, S.K.; Whitfield, N.L.; Madden, J.A. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol., 2006, 209(20), 4011-4023.
[http://dx.doi.org/10.1242/jeb.02480] [PMID: 17023595]
[119]
Shen, X.; Pattillo, C.B.; Pardue, S.; Bir, S.C.; Wang, R.; Kevil, C.G. Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic. Biol. Med., 2011, 50(9), 1021-1031.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.025] [PMID: 21276849]
[120]
Toohey, J.I. Sulphane sulphur in biological systems: A possible regulatory role. Biochem. J., 1989, 264(3), 625-632.
[http://dx.doi.org/10.1042/bj2640625] [PMID: 2695062]
[121]
Jiang, J.M.; Wang, L.; Gu, H.F.; Wu, K.; Xiao, F.; Chen, Y.; Guo, R.M.; Tang, X.Q. Arecoline induces neurotoxicity to PC12 Cells: Involvement in ER stress and disturbance of endogenous H2S generation. Neurochem. Res., 2016, 41(8), 2140-2148.
[http://dx.doi.org/10.1007/s11064-016-1929-6] [PMID: 27255601]
[122]
Paul, B.D.; Snyder, S.H.; Kashfi, K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol., 2021, 38, 101772.
[http://dx.doi.org/10.1016/j.redox.2020.101772] [PMID: 33137711]
[123]
Xiao, A.Y.; Maynard, M.R.; Piett, C.G.; Nagel, Z.D.; Alexander, J.S.; Kevil, C.G.; Berridge, M.V.; Pattillo, C.B.; Rosen, L.R.; Miriyala, S.; Harrison, L. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol., 2019, 26, 101220.
[http://dx.doi.org/10.1016/j.redox.2019.101220] [PMID: 31176262]
[124]
Shackelford, R.; Ozluk, E.; Islam, M.Z.; Hopper, B.; Meram, A.; Ghali, G.; Kevil, C.G. Hydrogen sulfide and DNA repair. Redox Biol., 2021, 38, 101675.
[http://dx.doi.org/10.1016/j.redox.2020.101675] [PMID: 33202302]
[125]
Szabo, C. Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Cells, 2021, 10(2), 220.
[http://dx.doi.org/10.3390/cells10020220] [PMID: 33499368]
[126]
Marutani, E.; Kosugi, S.; Tokuda, K.; Khatri, A.; Nguyen, R.; Atochin, D.N.; Kida, K.; Van Leyen, K.; Arai, K.; Ichinose, F. A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J. Biol. Chem., 2012, 287(38), 32124-32135.
[http://dx.doi.org/10.1074/jbc.M112.374124] [PMID: 22815476]
[127]
Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun., 1997, 237(3), 527-531.
[http://dx.doi.org/10.1006/bbrc.1997.6878] [PMID: 9299397]
[128]
Tabassum, R.; Jeong, N.Y. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int. J. Med. Sci., 2019, 16(10), 1386-1396.
[http://dx.doi.org/10.7150/ijms.36516] [PMID: 31692944]
[129]
Donnarumma, E.; Trivedi, R.K.; Lefer, D.J. Protective actions of H2S in acute myocardial infarction and heart failure. Compr. Physiol., 2017, 7(2), 583-602.
[http://dx.doi.org/10.1002/cphy.c160023] [PMID: 28333381]
[130]
Cui, T.; Liu, W.; Yu, C.; Ren, J.; Li, Y.; Shi, X.; Li, Q.; Zhang, J. Protective effects of allicin on acute myocardial infarction in rats via hydrogen sulfide-mediated regulation of coronary arterial vasomotor function and myocardial calcium transport. Front. Pharmacol., 2022, 12, 752244.
[http://dx.doi.org/10.3389/fphar.2021.752244] [PMID: 35046802]
[131]
Rodrigues, C.; Percival, S. Immunomodulatory effects of glutathione, garlic derivatives, and hydrogen sulfide. Nutrients, 2019, 11(2), 295.
[http://dx.doi.org/10.3390/nu11020295] [PMID: 30704060]
[132]
Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res., 2020, 161, 105119.
[http://dx.doi.org/10.1016/j.phrs.2020.105119] [PMID: 32781284]
[133]
Dongó, E.; Harasztos, L.; Nádasy, G.L.; Kiss, L. The effect of hydrogen sulfide on the contractility of cerebral arterioles. A pilot study. Physiol. Int., 2022, 109(1), 70-77.
[http://dx.doi.org/10.1556/2060.2022.00190] [PMID: 35230262]
[134]
Chen, Y.; Jin, S.; Teng, X.; Hu, Z.; Zhang, Z.; Qiu, X.; Tian, D.; Wu, Y. Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 6717212.
[http://dx.doi.org/10.1155/2018/6717212] [PMID: 29636853]
[135]
Wang, W.; Ge, T.; Chen, X.; Mao, Y.; Zhu, Y. Advances in the protective mechanism of NO, H2S, and H2 in myocardial ischemic injury. Front. Cardiovasc. Med., 2020, 7, 588206.
[http://dx.doi.org/10.3389/fcvm.2020.588206] [PMID: 33195476]
[136]
Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M.G.; Branski, L.K.; Herndon, D.N.; Wang, R.; Szabó, C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21972-21977.
[http://dx.doi.org/10.1073/pnas.0908047106] [PMID: 19955410]
[137]
Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Módis, K.; Panopoulos, P.; Asimakopoulou, A.; Gerö, D.; Sharina, I.; Martin, E.; Szabo, C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 9161-9166.
[http://dx.doi.org/10.1073/pnas.1202916109] [PMID: 22570497]
[138]
Mustafa, A.K.; Gadalla, M.M.; Snyder, S.H. Signaling by gasotransmitters. Sci. Signal., 2009, 2(68), re2.
[http://dx.doi.org/10.1126/scisignal.268re2] [PMID: 19401594]
[139]
Nagahara, N.; Wróbel, M. H2S, polysulfides, and enzymes: Physiological and pathological aspects. Biomolecules, 2020, 10(4), 640.
[http://dx.doi.org/10.3390/biom10040640] [PMID: 32326219]
[140]
Macabrey, D.; Longchamp, A.; MacArthur, M.R.; Lambelet, M.; Urfer, S.; Deglise, S.; Allagnat, F. Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation. EBioMedicine, 2022, 78, 103954.
[http://dx.doi.org/10.1016/j.ebiom.2022.103954] [PMID: 35334307]
[141]
Gao, C.; Xu, D.Q.; Gao, C.J.; Ding, Q.; Yao, L.N.; Li, Z.C.; Chai, W. An exogenous hydrogen sulphide donor, NaHS, inhibits the nuclear factor κB inhibitor kinase/nuclear factor κb inhibitor/nuclear factor-κB signaling pathway and exerts cardioprotective effects in a rat hemorrhagic shock model. Biol. Pharm. Bull., 2012, 35(7), 1029-1034.
[http://dx.doi.org/10.1248/bpb.b110679] [PMID: 22791148]
[142]
Walewska, A.; Szewczyk, A.; Krajewska, M.; Koprowski, P. Targeting mitochondrial large-conductance calcium-activated potassium channel by hydrogen sulfide via heme-binding site. J. Pharmacol. Exp. Ther., 2022, 381(2), 137-150.
[http://dx.doi.org/10.1124/jpet.121.001017] [PMID: 35184043]
[143]
Fresquez, A.M.; White, C. Extracellular cysteines C226 and C232 mediate hydrogen sulfide-dependent inhibition of Orai3-mediated store-operated calcium entry. Am. J. Physiol. Cell Physiol., 2022, 322(1), C38-C48.
[http://dx.doi.org/10.1152/ajpcell.00490.2019] [PMID: 34788146]
[144]
Peng, Z.; Kellenberger, S. Hydrogen sulfide upregulates acid-sensing ion channels via the MAPK-Erk1/2 signaling pathway. Function, 2021, 2(2), zqab007.
[http://dx.doi.org/10.1093/function/zqab007] [PMID: 35330812]
[145]
Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal., 2014, 20(5), 770-782.
[http://dx.doi.org/10.1089/ars.2013.5339] [PMID: 23600844]
[146]
Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, 149, 110-123.
[http://dx.doi.org/10.1016/j.bcp.2017.11.014] [PMID: 29175421]
[147]
Kimura, H. Hydrogen sulfide (H2S) and polysulfide (H2Sn) signaling: The first 25 years. Biomolecules, 2021, 11(6), 896.
[http://dx.doi.org/10.3390/biom11060896] [PMID: 34208749]
[148]
Yadav, P.K.; Yamada, K.; Chiku, T.; Koutmos, M.; Banerjee, R. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J. Biol. Chem., 2013, 288(27), 20002-20013.
[http://dx.doi.org/10.1074/jbc.M113.466177] [PMID: 23698001]
[149]
Yang, J.; Minkler, P.; Grove, D.; Wang, R.; Willard, B.; Dweik, R.; Hine, C. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol., 2019, 2(1), 194.
[http://dx.doi.org/10.1038/s42003-019-0431-5] [PMID: 31123718]
[150]
Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun., 2013, 4(1), 1366.
[http://dx.doi.org/10.1038/ncomms2371] [PMID: 23340406]
[151]
Zhang, H.; Wang, P.; Chen, G.; Cheung, H.Y.; Sun, H. A highly sensitive fluorescent probe for imaging hydrogen sulfide in living cells. Tetrahedron Lett., 2013, 54(36), 4826-4829.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.058]
[152]
Tan, B.; Jin, S.; Sun, J.; Gu, Z.; Sun, X.; Zhu, Y.; Huo, K.; Cao, Z.; Yang, P.; Xin, X.; Liu, X.; Pan, L.; Qiu, F.; Jiang, J.; Jia, Y.; Ye, F.; Xie, Y.; Zhu, Y.Z. New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci. Rep., 2017, 7(1), 46278.
[http://dx.doi.org/10.1038/srep46278] [PMID: 28406238]
[153]
Insko, M.A.; Deckwerth, T.L.; Hill, P.; Toombs, C.F.; Szabo, C. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. Br. J. Pharmacol., 2009, 157(6), 944-951.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00248.x] [PMID: 19422378]
[154]
Suzuki, Y.; Saito, J.; Munakata, M.; Shibata, Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol. Int., 2021, 70(2), 181-189.
[http://dx.doi.org/10.1016/j.alit.2020.10.003] [PMID: 33214087]
[155]
McCook, O.; Radermacher, P.; Volani, C.; Asfar, P.; Ignatius, A.; Kemmler, J.; Möller, P.; Szabó, C.; Whiteman, M.; Wood, M.E.; Wang, R.; Georgieff, M.; Wachter, U. H2S during circulatory shock: some unresolved questions. Nitric oxide : biology and chemistry, 2014, 41, 48-61.
[http://dx.doi.org/10.1016/j.niox.2014.03.163]
[156]
Cerda-Colón, J.F.; Silfa, E.; López-Garriga, J. Unusual rocking freedom of the heme in the hydrogen sulfide-binding hemoglobin from Lucina pectinata. J. Am. Chem. Soc., 1998, 120(36), 9312-9317.
[http://dx.doi.org/10.1021/ja972654m]
[157]
Pietri, R.; Román-Morales, E.; López-Garriga, J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid. Redox Signal., 2011, 15(2), 393-404.
[http://dx.doi.org/10.1089/ars.2010.3698] [PMID: 21050142]
[158]
Kumar Chakraborty, P.; Murphy, B.; Banerjee Mustafi, S.; Dey, A.; Xiong, X.; Rao, G.; Naz, S.; Zhang, M.; Yang, D.; Dhanasekaran, D.N.; Bhattacharya, R.; Mukherjee, P. Cystathionine β-synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB J., 2018, 32(8), 4145-4157.
[http://dx.doi.org/10.1096/fj.201701095R] [PMID: 29494264]
[159]
Sen, S.; Kawahara, B.; Gupta, D.; Tsai, R.; Khachatryan, M.; Roy-Chowdhuri, S.; Bose, S.; Yoon, A.; Faull, K.; Farias-Eisner, R.; Chaudhuri, G. Role of cystathionine β-synthase in human breast Cancer. Free Radic. Biol. Med., 2015, 86, 228-238.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.024] [PMID: 26051168]
[160]
Chao, C.; Zatarain, J.R.; Ding, Y.; Coletta, C.; Mrazek, A.A.; Druzhyna, N.; Johnson, P.; Chen, H.; Hellmich, J.L.; Asimakopoulou, A.; Yanagi, K.; Olah, G.; Szoleczky, P.; Törö, G.; Bohanon, F.J.; Cheema, M.; Lewis, R.; Eckelbarger, D.; Ahmad, A.; Módis, K.; Untereiner, A.; Szczesny, B.; Papapetropoulos, A.; Zhou, J.; Hellmich, M.R.; Szabo, C. Cystathionine-beta-synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol. Med., 2016, 22(1), 361-379.
[http://dx.doi.org/10.2119/molmed.2016.00102] [PMID: 27257787]
[161]
Zhang, Y.; Chen, S.; Zhu, J.; Guo, S.; Yue, T.; Xu, H.; Hu, J.; Huang, Z.; Chen, Z.; Wang, P.; Liu, Y. Overexpression of CBS/H2S inhibits proliferation and metastasis of colon cancer cells through downregulation of CD44. Cancer Cell Int., 2022, 22(1), 85.
[http://dx.doi.org/10.1186/s12935-022-02512-2] [PMID: 35172821]
[162]
Kashfi, K. The dichotomous role of H2S in cancer cell biology? Déjà vu all over again. Biochem. Pharmacol., 2018, 149, 205-223.
[http://dx.doi.org/10.1016/j.bcp.2018.01.042] [PMID: 29397935]
[163]
Zhao, Y.; Cerda, M.M.; Pluth, M.D. Fluorogenic hydrogen sulfide (H2S) donors based on sulfenyl thiocarbonates enable H2S tracking and quantification. Chem. Sci. (Camb.), 2019, 10(6), 1873-1878.
[http://dx.doi.org/10.1039/C8SC05200J] [PMID: 30842856]
[164]
Corvino, A.; Frecentese, F.; Magli, E.; Perissutti, E.; Santagada, V.; Scognamiglio, A.; Caliendo, G.; Fiorino, F.; Severino, B. Trends in H2S-trends in H2S-donors chemistry and their effects in cardiovascular diseases. Antioxidants, 2021, 10(3), 429.
[http://dx.doi.org/10.3390/antiox10030429] [PMID: 33799669]
[165]
Chattopadhyay, M.; Nath, N.; Kodela, R.; Sobocki, T.; Metkar, S.; Gan, Z.Y.; Kashfi, K. Hydrogen sulfide-releasing aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression. Leuk. Res., 2013, 37(10), 1302-1308.
[http://dx.doi.org/10.1016/j.leukres.2013.07.004] [PMID: 23896061]
[166]
Ma, K.; Liu, Y.; Zhu, Q.; Liu, C.; Duan, J.L.; Tan, B.K.H.; Zhu, Y.Z. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S? PLoS One, 2011, 6(6), e20525.
[http://dx.doi.org/10.1371/journal.pone.0020525] [PMID: 21738579]
[167]
Cai, W.J.; Wang, M.J.; Ju, L.H.; Wang, C.; Zhu, Y.C. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol. Int., 2010, 34(6), 565-572.
[http://dx.doi.org/10.1042/CBI20090368] [PMID: 20184555]
[168]
Hirata, I.; Naito, Y.; Takagi, T.; Mizushima, K.; Suzuki, T.; Omatsu, T.; Handa, O.; Ichikawa, H.; Ueda, H.; Yoshikawa, T. Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig. Dis. Sci., 2011, 56(5), 1379-1386.
[http://dx.doi.org/10.1007/s10620-010-1461-5] [PMID: 20981572]
[169]
Ning, N.; Zhu, J.; Du, Y.; Gao, X.; Liu, C.; Li, J. Dysregulation of hydrogen sulphide metabolism impairs oviductal transport of embryos. Nat. Commun., 2014, 5(1), 4107.
[http://dx.doi.org/10.1038/ncomms5107] [PMID: 24914509]
[170]
Ou, X.; Xia, T.; Yang, C.; Yu, C.; Zhang, S.; Huang, R.; Chen, C.; Zhou, C. Novel H2S donor proglumide-ADT-OH protects HUVECs from ox-LDL-induced injury through NF-κB and JAK/SATA pathway. Open Med. (Wars.), 2021, 16(1), 1318-1327.
[http://dx.doi.org/10.1515/med-2021-0287] [PMID: 34568579]
[171]
Kaur, K.; Enders, P.; Zhu, Y.; Bratton, A.F.; Powell, C.R.; Kashfi, K.; Matson, J.B. Amino acid-based H2S donors: N -thiocarboxyanhydrides that release H2S with innocuous byproducts. Chem. Commun. (Camb.), 2021, 57(45), 5522-5525.
[http://dx.doi.org/10.1039/D1CC01309B] [PMID: 33956024]
[172]
Mahato, S.K.; Bhattacherjee, D.; Barman, P.; Bhabak, K.P. Thioredoxin reductase-triggered fluorogenic donor of hydrogen sulfide: a model study with a symmetrical organopolysulfide probe with turn-on near-infrared fluorescent emission. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(13), 2183-2193.
[http://dx.doi.org/10.1039/D1TB02425F] [PMID: 35266940]
[173]
Fan, J.; Du, J.; Zhang, Z.; Shi, W.; Hu, B.; Hu, J.; Xue, Y.; Li, H.; Ji, W.; Zhuang, J.; Lv, P.; Cheng, K.; Chen, K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)-N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules, 2022, 27(5), 1554.
[http://dx.doi.org/10.3390/molecules27051554] [PMID: 35268655]
[174]
Miller, D.L.; Roth, M.B. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20618-20622.
[http://dx.doi.org/10.1073/pnas.0710191104] [PMID: 18077331]
[175]
Bithi, N.; Link, C.; Henderson, Y.O.; Kim, S.; Yang, J.; Li, L.; Wang, R.; Willard, B.; Hine, C. Dietary restriction transforms the mammalian protein persulfidome in a tissue-specific and cystathionine γ-lyase-dependent manner. Nat. Commun., 2021, 12(1), 1745.
[http://dx.doi.org/10.1038/s41467-021-22001-w] [PMID: 33741971]
[176]
Silver, D.J.; Roversi, G.A.; Bithi, N.; Wang, S.Z.; Troike, K.M.; Neumann, C.K.A.; Ahuja, G.K.; Reizes, O.; Brown, J.M.; Hine, C.; Lathia, J.D. Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma. J. Clin. Invest., 2021, 131(17), e138276.
[http://dx.doi.org/10.1172/JCI138276] [PMID: 34255747]
[177]
Dongó, E.; Beliczai-Marosi, G.; Dybvig, A.S.; Kiss, L. The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide, 2018, 81, 75-87.
[http://dx.doi.org/10.1016/j.niox.2017.10.010] [PMID: 29097155]
[178]
Paul, B.D.; Snyder, S.H. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(8), 499-507.
[http://dx.doi.org/10.1038/nrm3391] [PMID: 22781905]
[179]
Ju, Y.; Fu, M.; Stokes, E.; Wu, L.; Yang, G. H2S-mediated protein S-sulfhydration: A prediction for its formation and regulation. Molecules, 2017, 22(8), 1334.
[http://dx.doi.org/10.3390/molecules22081334] [PMID: 28800080]
[180]
Fukuto, J.M.; Vega, V.S.; Works, C.; Lin, J. The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Curr. Opin. Chem. Biol., 2020, 55, 52-58.
[http://dx.doi.org/10.1016/j.cbpa.2019.11.013] [PMID: 31940509]
[181]
Mustafa, A.K.; Gadalla, M.M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.K.; Barrow, R.K.; Yang, G.; Wang, R.; Snyder, S.H. H2S signals through protein S-sulfhydration. Sci. Signal., 2009, 2(96), ra72.
[http://dx.doi.org/10.1126/scisignal.2000464] [PMID: 19903941]
[182]
Filipovic, M.R. Persulfidation (S-sulfhydration) and H2S. Handb. Exp. Pharmacol., 2015, 230, 29-59.
[http://dx.doi.org/10.1007/978-3-319-18144-8_2] [PMID: 26162828]
[183]
Zhang, D.; Macinkovic, I.; Devarie-Baez, N.O.; Pan, J.; Park, C.M.; Carroll, K.S.; Filipovic, M.R.; Xian, M. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. Int. Ed., 2014, 53(2), 575-581.
[http://dx.doi.org/10.1002/anie.201305876] [PMID: 24288186]
[184]
Read, E.; Milford, J.; Zhu, J.; Wu, L.; Bilodeau, M.; Yang, G. The interaction of disulfiram and H2S metabolism in inhibition of aldehyde dehydrogenase activity and liver cancer cell growth. Toxicol. Appl. Pharmacol., 2021, 426, 115642.
[http://dx.doi.org/10.1016/j.taap.2021.115642] [PMID: 34242567]
[185]
Al-Magableh, M.R.; Kemp-Harper, B.K.; Ng, H.H.; Miller, A.A.; Hart, J.L. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(1), 67-74.
[http://dx.doi.org/10.1007/s00210-013-0920-x] [PMID: 24068103]
[186]
Xie, Z.Z.; Liu, Y.; Bian, J.S. Hydrogen Sulfide and cellular redox homeostasis. Oxid. Med. Cell. Longev., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/6043038] [PMID: 26881033]
[187]
Cuevasanta, E.; Lange, M.; Bonanata, J.; Coitiño, E.L.; Ferrer-Sueta, G.; Filipovic, M.R.; Alvarez, B. Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J. Biol. Chem., 2015, 290(45), 26866-26880.
[http://dx.doi.org/10.1074/jbc.M115.672816] [PMID: 26269587]
[188]
Miljkovic, J.L.; Kenkel, I.; Ivanović-Burmazović, I.; Filipovic, M.R. Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew. Chem. Int. Ed., 2013, 52(46), 12061-12064.
[http://dx.doi.org/10.1002/anie.201305669] [PMID: 24115452]
[189]
Housein, Z.; Kareem, T.S.; Salihi, A. In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Sci. Rep., 2021, 11(1), 2536.
[http://dx.doi.org/10.1038/s41598-021-82244-x] [PMID: 33510426]
[190]
Fang, Y.; Yan, C.; Zhao, Q.; Xu, J.; Liu, Z.; Gao, J.; Zhu, H.; Dai, Z.; Wang, D.; Tang, D. The roles of microbial products in the development of colorectal cancer: a review. Bioengineered, 2021, 12(1), 720-735.
[http://dx.doi.org/10.1080/21655979.2021.1889109] [PMID: 33618627]
[191]
Ngowi, E.E.; Afzal, A.; Sarfraz, M.; Khattak, S.; Zaman, S.U.; Khan, N.H.; Li, T.; Jiang, Q.Y.; Zhang, X.; Duan, S.F.; Ji, X.Y.; Wu, D.D. Role of hydrogen sulfide donors in cancer development and progression. Int. J. Biol. Sci., 2021, 17(1), 73-88.
[http://dx.doi.org/10.7150/ijbs.47850] [PMID: 33390834]
[192]
Chen, W.; Pacheco, A.; Takano, Y.; Day, J.J.; Hanaoka, K.; Xian, M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew. Chem. Int. Ed., 2016, 55(34), 9993-9996.
[http://dx.doi.org/10.1002/anie.201604892] [PMID: 27410794]
[193]
Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.; Papapetropoulos, A.; Hellmich, M.R. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12474-12479.
[http://dx.doi.org/10.1073/pnas.1306241110] [PMID: 23836652]
[194]
Untereiner, A.A.; Oláh, G.; Módis, K.; Hellmich, M.R.; Szabo, C. H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells. Biochem. Pharmacol., 2017, 136, 86-98.
[http://dx.doi.org/10.1016/j.bcp.2017.03.025] [PMID: 28404377]
[195]
Ma, Z.; Bi, Q.; Wang, Y. Hydrogen sulfide accelerates cell cycle progression in oral squamous cell carcinoma cell lines. Oral Dis., 2015, 21(2), 156-162.
[http://dx.doi.org/10.1111/odi.12223] [PMID: 24589248]
[196]
Yin, P.; Zhao, C.; Li, Z.; Mei, C.; Yao, W.; Liu, Y.; Li, N.; Qi, J.; Wang, L.; Shi, Y.; Qiu, S.; Fan, J.; Zha, X. Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Cell. Signal., 2012, 24(6), 1229-1240.
[http://dx.doi.org/10.1016/j.cellsig.2012.02.003] [PMID: 22360859]
[197]
Zheng, D.; Chen, Z.; Chen, J.; Zhuang, X.; Feng, J.; Li, J. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway. Oncol. Rep., 2016, 36(4), 1909-1916.
[http://dx.doi.org/10.3892/or.2016.5014] [PMID: 27513630]
[198]
Zhen, Y.; Pan, W.; Hu, F.; Wu, H.; Feng, J.; Zhang, Y.; Chen, J. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells. Int. J. Oncol., 2015, 46(5), 2194-2204.
[http://dx.doi.org/10.3892/ijo.2015.2914] [PMID: 25738635]
[199]
Potenza, D.M.; Guerra, G.; Avanzato, D.; Poletto, V.; Pareek, S.; Guido, D.; Gallanti, A.; Rosti, V.; Munaron, L.; Tanzi, F.; Moccia, F. Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors. Cell Calcium, 2014, 56(3), 225-234.
[http://dx.doi.org/10.1016/j.ceca.2014.07.010] [PMID: 25113159]
[200]
Szabó, C.; Papapetropoulos, A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br. J. Pharmacol., 2011, 164(3), 853-865.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01191.x] [PMID: 21198548]
[201]
Katsouda, A.; Bibli, S.I.; Pyriochou, A.; Szabo, C.; Papapetropoulos, A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol. Res., 2016, 113(Pt A), 175-185.
[http://dx.doi.org/10.1016/j.phrs.2016.08.026] [PMID: 27569706]
[202]
Lee, J.; Yang, C.; Ahn, S.; Choi, Y.; Lee, K. Enhanced NO-induced angiogenesis via NO/H2S co-delivery from self-assembled nanoparticles. Biomater. Sci., 2021, 9(15), 5150-5159.
[http://dx.doi.org/10.1039/D1BM00448D] [PMID: 33949445]
[203]
Wang, M.J.; Cai, W.J.; Zhu, Y.C. Mechanisms of angiogenesis: Role of hydrogen sulphide. Clin. Exp. Pharmacol. Physiol., 2010, 37(7), 764-771.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05371.x] [PMID: 20148917]
[204]
Zhou, Y.; Li, X.H.; Zhang, C.C.; Wang, M.J.; Xue, W.L.; Wu, D.D.; Ma, F.F.; Li, W.W.; Tao, B.B.; Zhu, Y.C. Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway. Am. J. Physiol. Cell Physiol., 2016, 310(4), C305-C317.
[http://dx.doi.org/10.1152/ajpcell.00230.2015] [PMID: 26879375]
[205]
Wang, M.; Yan, J.; Cao, X.; Hua, P.; Li, Z. Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation. Biochem. Pharmacol., 2020, 172, 113775.
[http://dx.doi.org/10.1016/j.bcp.2019.113775] [PMID: 31870768]
[206]
Pupo, E.; Fiorio Pla, A.; Avanzato, D.; Moccia, F.; Avelino Cruz, J.E.; Tanzi, F.; Merlino, A.; Mancardi, D.; Munaron, L. Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radic. Biol. Med., 2011, 51(9), 1765-1773.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.007] [PMID: 21875664]
[207]
Wu, D.; Li, J.; Zhang, Q.; Tian, W.; Zhong, P.; Liu, Z.; Wang, H.; Wang, H.; Ji, A.; Li, Y. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells. Oxid. Med. Cell. Longev., 2019, 2019, 3832648.
[http://dx.doi.org/10.1155/2019/3832648] [PMID: 31223424]
[208]
Whiteman, M.; Li, L.; Rose, P.; Tan, C.H.; Parkinson, D.B.; Moore, P.K. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal., 2010, 12(10), 1147-1154.
[http://dx.doi.org/10.1089/ars.2009.2899] [PMID: 19769459]
[209]
Xiao, Q.; Ying, J.; Qiao, Z.; Yang, Y.; Dai, X.; Xu, Z.; Zhang, C.; Xiang, L. Exogenous hydrogen sulfide inhibits human melanoma cell development via suppression of the PI3K/AKT/ mTOR pathway. J. Dermatol. Sci., 2020, 98(1), 26-34.
[http://dx.doi.org/10.1016/j.jdermsci.2020.02.004] [PMID: 32098704]
[210]
Panza, E.; De Cicco, P.; Armogida, C.; Scognamiglio, G.; Gigantino, V.; Botti, G.; Germano, D.; Napolitano, M.; Papapetropoulos, A.; Bucci, M.; Cirino, G.; Ianaro, A. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res., 2015, 28(1), 61-72.
[http://dx.doi.org/10.1111/pcmr.12312] [PMID: 25205294]
[211]
Govender, J.; Loos, B.; Marais, E.; Engelbrecht, A.M. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J. Pineal Res., 2014, 57(4), 367-380.
[http://dx.doi.org/10.1111/jpi.12176] [PMID: 25230823]
[212]
Sachinidis, A. Cardiotoxicity and heart failure: Lessons from human-induced pluripotent stem cell-derived cardiomyocytes and anticancer drugs. Cells, 2020, 9(4), 1001.
[http://dx.doi.org/10.3390/cells9041001] [PMID: 32316481]
[213]
Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst., 2010, 102(1), 14-25.
[http://dx.doi.org/10.1093/jnci/djp440] [PMID: 20007921]
[214]
Agunbiade, T.A.; Zaghlol, R.Y.; Barac, A. Heart failure in relation to anthracyclines and other chemotherapies. Methodist DeBakey Cardiovasc. J., 2019, 15(4), 243-249.
[http://dx.doi.org/10.14797/mdcj-15-4-243] [PMID: 31988684]
[215]
Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5(9), 9.
[http://dx.doi.org/10.3389/fcvm.2018.00009] [PMID: 29473044]
[216]
Shen, Y.; Shen, Z.; Luo, S.; Guo, W.; Zhu, Y.Z. The cardioprotective effects of hydrogen sulfide in heart diseases: From molecular mechanisms to therapeutic potential. Oxid. Med. Cell. Longev., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/925167] [PMID: 26078822]
[217]
LaPenna, K.B.; Polhemus, D.J.; Doiron, J.E.; Hidalgo, H.A.; Li, Z.; Lefer, D.J. Hydrogen sulfide as a potential therapy for heart failure—past, present, and future. Antioxidants, 2021, 10(3), 485.
[http://dx.doi.org/10.3390/antiox10030485] [PMID: 33808673]
[218]
Dongó, E.; Hornyák, I.; Benkő, Z.; Kiss, L. The cardioprotective potential of hydrogen sulfide in myocardial ischemia/reperfusion injury (Review). Acta Physiol. Hung., 2011, 98(4), 369-381.
[http://dx.doi.org/10.1556/APhysiol.98.2011.4.1] [PMID: 22173019]
[219]
Szabó, G.; Veres, G.; Radovits, T.; Gerő, D.; Módis, K.; Miesel-Gröschel, C.; Horkay, F.; Karck, M.; Szabó, C. Cardioprotective effects of hydrogen sulfide. Nitric Oxide, 2011, 25(2), 201-210.
[http://dx.doi.org/10.1016/j.niox.2010.11.001] [PMID: 21094267]
[220]
Du, S.; Huang, Y.; Jin, H.; Wang, T. Protective mechanism of Hydrogen Sulfide against chemotherapy-induced cardiotoxicity. Front. Pharmacol., 2018, 9(32), 32.
[http://dx.doi.org/10.3389/fphar.2018.00032] [PMID: 29434549]
[221]
Nguyen, L.H.; Cao, Y.; Hur, J.; Mehta, R.S.; Sikavi, D.R.; Wang, Y.; Ma, W.; Wu, K.; Song, M.; Giovannucci, E.L.; Rimm, E.B.; Willett, W.C.; Garrett, W.S.; Izard, J.; Huttenhower, C.; Chan, A.T. The Sulfur microbial diet is associated with increased risk of early-onset colorectal cancer precursors. Gastroenterology, 2021, 161(5), 1423-1432.e4.
[http://dx.doi.org/10.1053/j.gastro.2021.07.008] [PMID: 34273347]
[222]
Szadvari, I.; Hudecova, S.; Chovancova, B.; Matuskova, M.; Cholujova, D.; Lencesova, L.; Valerian, D.; Ondrias, K.; Babula, P.; Krizanova, O. Sodium/calcium exchanger is involved in apoptosis induced by H2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide, 2019, 87, 1-9.
[http://dx.doi.org/10.1016/j.niox.2019.02.011] [PMID: 30849492]
[223]
Lee, Z.W.; Teo, X.Y.; Song, Z.J.; Nin, D.S.; Novera, W.; Choo, B.A.; Dymock, B.W.; Moore, P.K.; Huang, R.Y.J.; Deng, L.W. Intracellular hyper-acidification potentiated by hydrogen sulfide mediates invasive and therapy resistant cancer cell death. Front. Pharmacol., 2017, 8(763), 763.
[http://dx.doi.org/10.3389/fphar.2017.00763] [PMID: 29163155]
[224]
Fortunato, S.; Lenzi, C.; Granchi, C.; Citi, V.; Martelli, A.; Calderone, V.; Di Pietro, S.; Signore, G.; Di Bussolo, V.; Minutolo, F. First examples of H2S-releasing glycoconjugates: Stereoselective synthesis and anticancer activities. Bioconjug. Chem., 2019, 30(3), 614-620.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00808] [PMID: 30609890]
[225]
Kajsik, M.; Chovancova, B.; Liskova, V.; Babula, P.; Krizanova, O. Slow sulfide donor GYY4137 potentiates effect of paclitaxel on colorectal carcinoma cells. Eur. J. Pharmacol., 2022, 922, 174875.
[http://dx.doi.org/10.1016/j.ejphar.2022.174875] [PMID: 35314158]
[226]
Lippert, A.R.; New, E.J.; Chang, C.J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J. Am. Chem. Soc., 2011, 133(26), 10078-10080.
[http://dx.doi.org/10.1021/ja203661j] [PMID: 21671682]
[227]
Chen, S.; Chang, Y.; Ding, Y. Roles of H2S and NO in regulating the antioxidant system of Vibrio alginolyticus under norfloxacin stress. PeerJ, 2021, 9, e12255.
[http://dx.doi.org/10.7717/peerj.12255] [PMID: 34707937]
[228]
Xing, P.; Niu, Y.; Li, J.; Xie, D.; Zhou, H.; Chen, J.; Dong, L.; Wang, C. A phase-transfer catalyst-based nanoreactor for accelerated hydrogen sulfide bio-imaging. Nanoscale, 2021, 13(45), 19049-19055.
[http://dx.doi.org/10.1039/D1NR04931C] [PMID: 34757353]
[229]
Ma, Y.; Wang, H.; Su, S.; Chen, Y.; Li, Y.; Wang, X.; Wang, Z. A red mitochondria-targeted AIEgen for visualizing H2S in living cells and tumours. Analyst (Lond.), 2019, 144(10), 3381-3388.
[http://dx.doi.org/10.1039/C9AN00393B] [PMID: 30984924]
[230]
Li, H.; Xu, F.; Gao, G.; Gao, X.; Wu, B.; Zheng, C.; Wang, P.; Li, Z.; Hua, H.; Li, D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol., 2020, 34, 101564.
[http://dx.doi.org/10.1016/j.redox.2020.101564] [PMID: 32403079]
[231]
Shi, B.; Ren, N.; Gu, L.; Xu, G.; Wang, R.; Zhu, T.; Zhu, Y.; Fan, C.; Zhao, C.; Tian, H. Theranostic nanoplatform with Hydrogen Sulfide activatable NIR responsiveness for imaging-guided on-demand drug release. Angew. Chem. Int. Ed., 2019, 58(47), 16826-16830.
[http://dx.doi.org/10.1002/anie.201909883] [PMID: 31532051]
[232]
Wang, Y.; Zhao, J.; Chen, Z.; Zhang, F.; Wang, Q.; Guo, W.; Wang, K.; Lin, H.; Qu, F. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials, 2019, 217, 119282.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119282] [PMID: 31260884]
[233]
Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(2), 194-206.
[http://dx.doi.org/10.1039/C6TB02249A] [PMID: 32263539]
[234]
Tao, C.; An, L.; Lin, J.; Tian, Q.; Yang, S. Surface plasmon resonance–enhanced photoacoustic imaging and photothermal therapy of endogenous H2S-triggered Au@Cu2 O. Small, 2019, 15(44), 1903473.
[http://dx.doi.org/10.1002/smll.201903473] [PMID: 31513347]
[235]
Wallace, J.L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci., 2007, 28(10), 501-505.
[http://dx.doi.org/10.1016/j.tips.2007.09.003] [PMID: 17884186]
[236]
Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J., 2001, 20(21), 6008-6016.
[http://dx.doi.org/10.1093/emboj/20.21.6008] [PMID: 11689441]
[237]
Norris, E.J.; Culberson, C.R.; Narasimhan, S.; Clemens, M.G. The liver as a central regulator of hydrogen sulfide. Shock, 2011, 36(3), 242-250.
[http://dx.doi.org/10.1097/SHK.0b013e3182252ee7] [PMID: 21617578]
[238]
Sanokawa-Akakura, R.; Ostrakhovitch, E.A.; Akakura, S.; Goodwin, S.; Tabibzadeh, S. A H2S-Nampt dependent energetic circuit is critical to survival and cytoprotection from damage in cancer cells. PLoS One, 2014, 9(9), e108537.
[http://dx.doi.org/10.1371/journal.pone.0108537] [PMID: 25248148]
[239]
Wang, L.M.; Zhao, M.J.; Chen, Z.; Mu, H.W.; Jin, Y. Urea derivative catalyzed enantioselective aldol reaction of isatins with ketones. Chirality, 2018, 30(8), 1005-1011.
[http://dx.doi.org/10.1002/chir.22977] [PMID: 29856893]
[240]
Wu, L.; Ishigaki, Y.; Hu, Y.; Sugimoto, K.; Zeng, W.; Harimoto, T.; Sun, Y.; He, J.; Suzuki, T.; Jiang, X.; Chen, H.Y.; Ye, D. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun., 2020, 11(1), 446-446.
[http://dx.doi.org/10.1038/s41467-020-14307-y] [PMID: 31974383]
[241]
Bhattacharyya, S.; Saha, S.; Giri, K.; Lanza, I.R.; Nair, K.S.; Jennings, N.B.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Basal, E.; Weaver, A.L.; Visscher, D.W.; Cliby, W.; Sood, A.K.; Bhattacharya, R.; Mukherjee, P. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One, 2013, 8(11), e79167.
[http://dx.doi.org/10.1371/journal.pone.0079167] [PMID: 24236104]
[242]
Teng, H.; Wu, B.; Zhao, K.; Yang, G.; Wu, L.; Wang, R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12679-12684.
[http://dx.doi.org/10.1073/pnas.1308487110] [PMID: 23858469]
[243]
Hellmich, M.R.; Chao, C.; Módis, K.; Ding, Y.; Zatarain, J.R.; Thanki, K.; Maskey, M.; Druzhyna, N.; Untereiner, A.A.; Ahmad, A.; Xue, Y.; Chen, H.; Russell, W.K.; Wang, J.; Zhou, J.; Szabo, C. Efficacy of novel aminooxyacetic acid prodrugs in colon cancer models: towards clinical translation of the Cystathionine β-Synthase inhibition concept. Biomolecules, 2021, 11(8), 1073.
[http://dx.doi.org/10.3390/biom11081073] [PMID: 34439739]
[244]
Yan, C.; Liu, D.; An, L.; Wang, Y.; Tian, Q.; Lin, J.; Yang, S. Magnetic–photoacoustic dual-mode probe for the visualization of H2S in colorectal cancer. Anal. Chem., 2020, 92(12), 8254-8261.
[http://dx.doi.org/10.1021/acs.analchem.0c00504] [PMID: 32388978]
[245]
Onitilo, A.A.; Engel, J.M.; Greenlee, R.T.; Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13.
[http://dx.doi.org/10.3121/cmr.2008.825] [PMID: 19574486]
[246]
Stevens, V.L.; McCullough, M.L.; Pavluck, A.L.; Talbot, J.T.; Feigelson, H.S.; Thun, M.J.; Calle, E.E. Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol. Biomarkers Prev., 2007, 16(6), 1140-1147.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-1037] [PMID: 17548676]
[247]
Davie, J.R.; He, S.; Li, L.; Sekhavat, A.; Espino, P.; Drobic, B.; Dunn, K.L.; Sun, J.M.; Chen, H.Y.; Yu, J.; Pritchard, S.; Wang, X. Nuclear organization and chromatin dynamics – Sp1, Sp3 and histone deacetylases. Adv. Enzyme Regul., 2008, 48(1), 189-208.
[http://dx.doi.org/10.1016/j.advenzreg.2007.11.016] [PMID: 18187045]
[248]
Washio, J.; Shimada, Y.; Yamada, M.; Sakamaki, R.; Takahashi, N.; Nojiri, H. Effects of pH and lactate on hydrogen sulfide production by oral Veillonella spp. Appl. Environ. Microbiol., 2014, 80(14), 4184-4188.
[http://dx.doi.org/10.1128/AEM.00606-14] [PMID: 24795374]
[249]
Li, M.; Liu, Y.; Deng, Y.; Pan, L.; Fu, H.; Han, X.; Li, Y.; Shi, H.; Wang, T. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review). Oncol. Rep., 2021, 45(5), 68.
[http://dx.doi.org/10.3892/or.2021.8019] [PMID: 33760221]
[250]
You, J.; Shi, X.; Liang, H.; Ye, J.; Wang, L.; Han, H.; Fang, H.; Kang, W.; Wang, T. Cystathionine- γ-lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget, 2017, 8(39), 65677-65686.
[http://dx.doi.org/10.18632/oncotarget.20057] [PMID: 29029463]
[251]
RAFEi, H.; El-Bahesh, E.; Finianos, A.N.T.O.I.N.E.; Nassereddine, S.A.M.A.H.; Tabbara, I. Immune-based therapies for non-small cell lung cancer. Anticancer Res., 2017, 37(2), 377-388.
[http://dx.doi.org/10.21873/anticanres.11330] [PMID: 28179283]
[252]
Khattak, S.; Zhang, Q.Q.; Sarfraz, M.; Muhammad, P.; Ngowi, E.E.; Khan, N.H.; Rauf, S.; Wang, Y.Z.; Qi, H.W.; Wang, D.; Afzal, A.; Ji, X.Y.; Wu, D.D. The role of hydrogen sulfide in respiratory diseases. Biomolecules, 2021, 11(5), 682.
[http://dx.doi.org/10.3390/biom11050682] [PMID: 34062820]
[253]
Herriges, M.; Morrisey, E.E. Lung development: orchestrating the generation and regeneration of a complex organ. Development, 2014, 141(3), 502-513.
[http://dx.doi.org/10.1242/dev.098186] [PMID: 24449833]
[254]
Rose, P.; Moore, P.K.; Zhu, Y.Z. H2S biosynthesis and catabolism: new insights from molecular studies. Cell. Mol. Life Sci., 2017, 74(8), 1391-1412.
[http://dx.doi.org/10.1007/s00018-016-2406-8] [PMID: 27844098]
[255]
Szczesny, B.; Marcatti, M.; Zatarain, J.R.; Druzhyna, N.; Wiktorowicz, J.E.; Nagy, P.; Hellmich, M.R.; Szabo, C. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci. Rep., 2016, 6(1), 36125-36125.
[http://dx.doi.org/10.1038/srep36125] [PMID: 27808278]
[256]
Caysa, H.; Hoffmann, S.; Luetzkendorf, J.; Mueller, L.P.; Unverzagt, S.; Mäder, K.; Mueller, T. Monitoring of xenograft tumor growth and response to chemotherapy by non-invasive in vivo multispectral fluorescence imaging. PLoS One, 2012, 7(10), e47927.
[http://dx.doi.org/10.1371/journal.pone.0047927] [PMID: 23112873]
[257]
Lu, S.; Gao, Y.; Huang, X.; Wang, X. GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway. Int. J. Oncol., 2014, 44(4), 1259-1267.
[http://dx.doi.org/10.3892/ijo.2014.2305] [PMID: 24535538]
[258]
Kodela, R.; Chattopadhyay, M.; Kashfi, K. NOSH-aspirin: A novel nitric oxide–hydrogen sulfide-releasing hybrid: A new class of anti-inflammatory pharmaceuticals. ACS Med. Chem. Lett., 2012, 3(3), 257-262.
[http://dx.doi.org/10.1021/ml300002m] [PMID: 22916316]
[259]
Chattopadhyay, M.; Kodela, R.; Santiago, G.; Le, T.T.C.; Nath, N.; Kashfi, K. NOSH-aspirin (NBS-1120) inhibits pancreatic cancer cell growth in a xenograft mouse model: Modulation of FoxM1, p53, NF-κB, iNOS, caspase-3 and ROS. Biochem. Pharmacol., 2020, 176, 113857.
[http://dx.doi.org/10.1016/j.bcp.2020.113857] [PMID: 32061771]
[260]
Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.M.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 17977-17982.
[http://dx.doi.org/10.1073/pnas.0705710104] [PMID: 17951430]
[261]
Liang, D.; Wu, H.; Wong, M.W.; Huang, D. Diallyl trisulfide is a fast H2S donor, but diallyl disulfide is a slow one: The reaction pathways and intermediates of glutathione with polysulfides. Org. Lett., 2015, 17(17), 4196-4199.
[http://dx.doi.org/10.1021/acs.orglett.5b01962] [PMID: 26301500]
[262]
Tao, Q.; Wu, C.; Xu, R.; Niu, L.; Qin, J.; Liu, N.; Zhang, P.; Wang, C. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signaling. Cell Tissue Res., 2017, 370(3), 379-390.
[http://dx.doi.org/10.1007/s00441-017-2678-9] [PMID: 28815294]
[263]
Xie, X.; Huang, X.; Tang, H.; Ye, F.; Yang, L.; Guo, X.; Tian, Z.; Xie, X.; Peng, C.; Xie, X. Disulfide inhibits breast cancer stem cell progression and glucose metabolism by targeting CD44/PKM2/AMPK signaling. Curr. Cancer Drug Targets, 2018, 18(6), 592-599.
[http://dx.doi.org/10.2174/1568009617666171024165657] [PMID: 29110616]
[264]
Xia, L.; Lin, J.; Su, J.; Oyang, L.; Wang, H.; Tan, S.; Tang, Y.; Chen, X.; Liu, W.; Luo, X.; Tian, Y.; Liang, J.; Su, Q.; Liao, Q.; Zhou, Y. Diallyl disulfide inhibits colon cancer metastasis by suppressing Rac1-mediated epithelial-mesenchymal transition. OncoTargets Ther., 2019, 12, 5713-5728.
[http://dx.doi.org/10.2147/OTT.S208738] [PMID: 31410018]
[265]
Su, B.; Su, J.; Zeng, Y.; Liu, F.; Xia, H.; Ma, Y.H.; Zhou, Z.G.; Zhang, S.; Yang, B.M.; Wu, Y.H.; Zeng, X.; Ai, X.H.; Ling, H.; Jiang, H.; Su, Q. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer. Oncotarget, 2016, 7(9), 10498-10512.
[http://dx.doi.org/10.18632/oncotarget.7252] [PMID: 26871290]
[266]
Lai, K.C.; Hsu, S.C.; Yang, J.S.; Yu, C.C.; Lein, J.C.; Chung, J.G. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J. Cell. Mol. Med., 2015, 19(2), 474-484.
[http://dx.doi.org/10.1111/jcmm.12486] [PMID: 25403643]
[267]
Kim, S.H.; Hahm, E.R.; Singh, K.B.; Singh, S.V. Diallyl Trisulfide inhibits leptin-induced oncogenic signaling in human breast cancer cells but fails to prevent chemically-induced luminal-type cancer in rats. J. Cancer Prev., 2020, 25(1), 1-12.
[http://dx.doi.org/10.15430/JCP.2020.25.1.1] [PMID: 32266174]
[268]
Chandra-Kuntal, K.; Lee, J.; Singh, S.V. Critical role for reactive oxygen species in apoptosis induction and cell migration inhibition by diallyl trisulfide, a cancer chemopreventive component of garlic. Breast Cancer Res. Treat., 2013, 138(1), 69-79.
[http://dx.doi.org/10.1007/s10549-013-2440-2] [PMID: 23412769]
[269]
Shazeeb, M.S.; Corazzini, R.; Konowicz, P.A.; Fogle, R.; Bangari, D.S.; Johnson, J.; Ying, X.; Dhal, P.K. Assessment of in vivo degradation profiles of hyaluronic acid hydrogels using temporal evolution of chemical exchange saturation transfer (CEST) MRI. Biomaterials, 2018, 178, 326-338.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.037] [PMID: 29861090]
[270]
Jung, H.S.; Kong, W.H.; Sung, D.K.; Lee, M.Y.; Beack, S.E.; Keum, D.H.; Kim, K.S.; Yun, S.H.; Hahn, S.K. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano, 2014, 8(1), 260-268.
[http://dx.doi.org/10.1021/nn405383a] [PMID: 24383990]
[271]
Cai, F.; Xu, H.; Cao, N.; Zhang, X.; Liu, J.; Lu, Y.; Chen, J.; Yang, Y.; Cheng, J.; Hua, Z.C.; Zhuang, H. ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis., 2020, 11(1), 33.
[http://dx.doi.org/10.1038/s41419-020-2222-9] [PMID: 31949127]
[272]
Cai, F.-f.; Xu, H.-r.; Yu, S.-h.; Li, P.; Lu, Y.-y.; Chen, J.; Bi, Z.-q.; Sun, H.-s.; Cheng, J.; Zhuang, H.-q.; Hua, Z.-c. ADT-OH inhibits malignant melanoma metastasis in mice via suppressing CSE/CBS and FAK/Paxillin signaling pathway. Acta Pharmacol. Sin., 2022, 43(7), 1829-1842.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy