Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

GPCR Allostery: A View from Computational Biology

Author(s): Mengrong Li, Yiqiong Bao, Miaomiao Li and Jingjing Guo*

Volume 30, Issue 40, 2023

Published on: 16 February, 2023

Page: [4533 - 4553] Pages: 21

DOI: 10.2174/0929867330666230113125246

Price: $65

Abstract

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface proteins that mediate cell signaling and regulate virtually various aspects of physiological and pathological processes, therefore serving as a rich source of drug targets. As intrinsically allosteric proteins, numerous functions of GPCRs are regulated via allostery, whereby allosteric modulators binding at a distal site regulate the function of the typical orthosteric site. However, only a few GPCR allosteric ligands have been presently approved as drugs due to the high dynamic structures of GPCRs. Fortunately, the rapid development of computational biology sheds light on understanding the mechanism of GPCR allosteric ligands, which is critical for the discovery of new therapeutic agents. Here, we present a comprehensive overview of the currently available resources and approaches in computational biology related to G protein-coupled receptor allostery and their conformational dynamics. In addition, current limitations and major challenges in the field are also discussed accordingly.

[1]
Katritch, V.; Cherezov, V.; Stevens, R.C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 531-556.
[http://dx.doi.org/10.1146/annurev-pharmtox-032112-135923] [PMID: 23140243]
[2]
Changeux, J.P.; Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell, 2016, 166(5), 1084-1102.
[http://dx.doi.org/10.1016/j.cell.2016.08.015] [PMID: 27565340]
[3]
Thal, D.M.; Glukhova, A.; Sexton, P.M.; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature, 2018, 559(7712), 45-53.
[http://dx.doi.org/10.1038/s41586-018-0259-z] [PMID: 29973731]
[4]
Roth, B.L.; Kroeze, W.K. Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J. Biol. Chem., 2015, 290(32), 19471-19477.
[http://dx.doi.org/10.1074/jbc.R115.654764] [PMID: 26100629]
[5]
Allen, J.A.; Roth, B.L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 117-144.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100553] [PMID: 20868273]
[6]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[7]
Singh, K.D.; Karnik, S.S. Current trends in GPCR allostery. J. Membr. Biol., 2021, 254(3), 293-300.
[http://dx.doi.org/10.1007/s00232-020-00167-6] [PMID: 33471142]
[8]
Krishnan, A.; Nijmeijer, S.; de Graaf, C.; Schiöth, H.B. Classification, nomenclature, and structural aspects of adhesion GPCRs. Handb. Exp. Pharmacol., 2016, 234, 15-41.
[http://dx.doi.org/10.1007/978-3-319-41523-9_2] [PMID: 27832482]
[9]
Hu, G.M.; Mai, T.L.; Chen, C.M. Visualizing the GPCR network: Classification and evolution. Sci. Rep., 2017, 7(1), 15495.
[http://dx.doi.org/10.1038/s41598-017-15707-9] [PMID: 29138525]
[10]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[11]
Velazhahan, V.; Ma, N.; Pándy-Szekeres, G.; Kooistra, A.J.; Lee, Y.; Gloriam, D.E.; Vaidehi, N.; Tate, C.G. Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature, 2021, 589(7840), 148-153.
[http://dx.doi.org/10.1038/s41586-020-2994-1] [PMID: 33268889]
[12]
Geng, H.; Jiang, R. cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: Mechanism and utilization in biotechnology. Appl. Microbiol. Biotechnol., 2015, 99(11), 4533-4543.
[http://dx.doi.org/10.1007/s00253-015-6587-0] [PMID: 25913005]
[13]
Alfonso-Prieto, M.; Giorgetti, A.; Carloni, P. Multiscale simulations on human Frizzled and Taste2 GPCRs. Curr. Opin. Struct. Biol., 2019, 55, 8-16.
[http://dx.doi.org/10.1016/j.sbi.2019.02.009] [PMID: 30933747]
[14]
Wu, Y.; Tong, J.; Ding, K.; Zhou, Q.; Zhao, S. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol., 2019, 1163, 225-251.
[http://dx.doi.org/10.1007/978-981-13-8719-7_10] [PMID: 31707706]
[15]
Zhao, L.H.; Ma, S.; Sutkeviciute, I.; Shen, D.D.; Zhou, X.E.; de Waal, P.W.; Li, C.Y.; Kang, Y.; Clark, L.J.; Jean-Alphonse, F.G.; White, A.D.; Yang, D.; Dai, A.; Cai, X.; Chen, J.; Li, C.; Jiang, Y.; Watanabe, T.; Gardella, T.J.; Melcher, K.; Wang, M.W.; Vilardaga, J.P.; Xu, H.E.; Zhang, Y. Structure and dynamics of the active human parathyroid hormone receptor-1. Science, 2019, 364(6436), 148-153.
[http://dx.doi.org/10.1126/science.aav7942] [PMID: 30975883]
[16]
Chun, L.; Zhang, W.; Liu, J. Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin., 2012, 33(3), 312-323.
[http://dx.doi.org/10.1038/aps.2011.186] [PMID: 22286915]
[17]
Huang, P.; Zheng, S.; Wierbowski, B.M.; Kim, Y.; Nedelcu, D.; Aravena, L.; Liu, J.; Kruse, A.C.; Salic, A. Structural basis of smoothened activation in hedgehog signaling. Cell, 2018, 174(2), 312-324.e16.
[http://dx.doi.org/10.1016/j.cell.2018.04.029] [PMID: 29804838]
[18]
Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev., 2017, 117(1), 139-155.
[http://dx.doi.org/10.1021/acs.chemrev.6b00177] [PMID: 27622975]
[19]
Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta Biomembr., 2007, 1768(4), 794-807.
[http://dx.doi.org/10.1016/j.bbamem.2006.10.021] [PMID: 17188232]
[20]
Zou, R.; Wang, X.; Li, S.; Chan, H.C.S.; Vogel, H.; Yuan, S. The role of metal ions in G protein coupled receptor signalling and drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(2), e1565.
[http://dx.doi.org/10.1002/wcms.1565]
[21]
Wang, J.; Miao, Y. Recent advances in computational studies of GPCR-G protein interactions. Adv. Protein Chem. Struct. Biol., 2019, 116, 397-419.
[http://dx.doi.org/10.1016/bs.apcsb.2018.11.011] [PMID: 31036298]
[22]
Mertz, B.; Struts, A.V.; Feller, S.E.; Brown, M.F. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim. Biophys. Acta Biomembr., 2012, 44, 1-7.
[http://dx.doi.org/10.1016/j.bbamem.2011.08.003] [PMID: 21851809]
[23]
He, X.; You, C.; Jiang, H.; Jiang, Y.; Xu, H.E.; Cheng, X. AlphaFold2 versus experimental structures: Evaluation on G protein-coupled receptors. Acta Pharmacol. Sin., 2022, 1818(2), 241-251.
[http://dx.doi.org/10.1038/s41401-022-00938-y] [PMID: 35778488]
[24]
Dror, R.O.; Green, H.F.; Valant, C.; Borhani, D.W.; Valcourt, J.R.; Pan, A.C.; Arlow, D.H.; Canals, M.; Lane, J.R.; Rahmani, R.; Baell, J.B.; Sexton, P.M.; Christopoulos, A.; Shaw, D.E. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013, 503(7475), 295-299.
[http://dx.doi.org/10.1038/nature12595] [PMID: 24121438]
[25]
Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[26]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[27]
Horstman, D.A.; Brandon, S.; Wilson, A.L.; Guyer, C.A.; Cragoe, E.J., Jr; Limbird, L.E. An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. J. Biol. Chem., 1990, 265(35), 21590-21595.
[http://dx.doi.org/10.1016/S0021-9258(18)45781-X] [PMID: 2174879]
[28]
Tesmer, J.J.G. Hitchhiking on the heptahelical highway: Structure and function of 7TM receptor complexes. Nat. Rev. Mol. Cell Biol., 2016, 17(7), 439-450.
[http://dx.doi.org/10.1038/nrm.2016.36] [PMID: 27093944]
[29]
Pándy-Szekeres, G.; Esguerra, M.; Hauser, A.S.; Caroli, J.; Munk, C.; Pilger, S.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. The G protein database, GproteinDb. Nucleic Acids Res., 2022, 50(D1), D518-D525.
[http://dx.doi.org/10.1093/nar/gkab852] [PMID: 34570219]
[30]
Okuno, Y.; Yang, J.; Taneishi, K.; Yabuuchi, H.; Tsujimoto, G. GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res., 2006, 34(90001), D673-D677.
[http://dx.doi.org/10.1093/nar/gkj028] [PMID: 16381956]
[31]
Rodríguez-Espigares, I.; Torrens-Fontanals, M.; Tiemann, J.K.S.; Aranda-García, D.; Ramírez-Anguita, J.M.; Stepniewski, T.M.; Worp, N.; Varela-Rial, A.; Morales-Pastor, A.; Medel-Lacruz, B.; Pándy-Szekeres, G.; Mayol, E.; Giorgino, T.; Carlsson, J.; Deupi, X.; Filipek, S.; Filizola, M.; Gómez-Tamayo, J.C.; Gonzalez, A.; Gutiérrez-de-Terán, H.; Jiménez-Rosés, M.; Jespers, W.; Kapla, J.; Khelashvili, G.; Kolb, P.; Latek, D.; Marti-Solano, M.; Matricon, P.; Matsoukas, M-T.; Miszta, P.; Olivella, M.; Perez-Benito, L.; Provasi, D.; Ríos, S.; R Torrecillas, I.; Sallander, J.; Sztyler, A.; Vasile, S.; Weinstein, H.; Zachariae, U.; Hildebrand, P.W.; De Fabritiis, G.; Sanz, F.; Gloriam, D.E.; Cordomi, A.; Guixà-González, R.; Selent, J. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods, 2020, 17(8), 777-787.
[http://dx.doi.org/10.1038/s41592-020-0884-y] [PMID: 32661425]
[32]
Huang, Z.; Zhu, L.; Cao, Y.; Wu, G.; Liu, X.; Chen, Y.; Wang, Q.; Shi, T.; Zhao, Y.; Wang, Y.; Li, W.; Li, Y.; Chen, H.; Chen, G.; Zhang, J. ASD: A comprehensive database of allosteric proteins and modulators. Nucleic Acids Res., 2011, 39, D663-D669.
[http://dx.doi.org/10.1093/nar/gkq1022] [PMID: 21051350]
[33]
Liu, W.; Chun, E.; Thompson, A.A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G.W.; Roth, C.B.; Heitman, L.H.; IJzerman, A.P.; Cherezov, V.; Stevens, R.C. Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 2012, 337(6091), 232-236.
[http://dx.doi.org/10.1126/science.1219218] [PMID: 22798613]
[34]
Wu, F.; Yang, L.; Hang, K.; Laursen, M.; Wu, L.; Han, G.W.; Ren, Q.; Roed, N.K.; Lin, G.; Hanson, M.A.; Jiang, H.; Wang, M.W.; Reedtz-Runge, S.; Song, G.; Stevens, R.C. Full-length human GLP-1 receptor structure without orthosteric ligands. Nat. Commun., 2020, 11(1), 1272.
[http://dx.doi.org/10.1038/s41467-020-14934-5] [PMID: 32152292]
[35]
Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; Conn, P.J.; Stevens, R.C. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 2014, 344(6179), 58-64.
[http://dx.doi.org/10.1126/science.1249489] [PMID: 24603153]
[36]
Wang, C.; Wu, H.; Evron, T.; Vardy, E.; Han, G.W.; Huang, X.P.; Hufeisen, S.J.; Mangano, T.J.; Urban, D.J.; Katritch, V.; Cherezov, V.; Caron, M.G.; Roth, B.L.; Stevens, R.C. Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun., 2014, 5(1), 4355.
[http://dx.doi.org/10.1038/ncomms5355] [PMID: 25008467]
[37]
Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; Green, R.K.; Goodsell, D.S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; Rose, A.S.; Shao, C.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.D.; Woo, J.; Yang, H.; Young, J.Y.; Zardecki, C.; Berman, H.M.; Burley, S.K. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 2017, 45(D1), D271-D281.
[PMID: 27794042]
[38]
Kruse, A.C.; Ring, A.M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; Sexton, P.M.; Christopoulos, A.; Felder, C.C.; Gmeiner, P.; Steyaert, J.; Weis, W.I.; Garcia, K.C.; Wess, J.; Kobilka, B.K. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504(7478), 101-106.
[http://dx.doi.org/10.1038/nature12735] [PMID: 24256733]
[39]
Maeda, S.; Qu, Q.; Robertson, M.J.; Skiniotis, G.; Kobilka, B.K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science, 2019, 364(6440), 552-557.
[http://dx.doi.org/10.1126/science.aaw5188] [PMID: 31073061]
[40]
Staus, D.P.; Hu, H.; Robertson, M.J.; Kleinhenz, A.L.W.; Wingler, L.M.; Capel, W.D.; Latorraca, N.R.; Lefkowitz, R.J.; Skiniotis, G. Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579(7798), 297-302.
[http://dx.doi.org/10.1038/s41586-020-1954-0] [PMID: 31945772]
[41]
Zheng, Y.; Qin, L.; Zacarías, N.V.O.; de Vries, H.; Han, G.W.; Gustavsson, M.; Dabros, M.; Zhao, C.; Cherney, R.J.; Carter, P.; Stamos, D.; Abagyan, R.; Cherezov, V.; Stevens, R.C.; IJzerman, A.P.; Heitman, L.H.; Tebben, A.; Kufareva, I.; Handel, T.M. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540(7633), 458-461.
[http://dx.doi.org/10.1038/nature20605] [PMID: 27926736]
[42]
Jaeger, K.; Bruenle, S.; Weinert, T.; Guba, W.; Muehle, J.; Miyazaki, T.; Weber, M.; Furrer, A.; Haenggi, N.; Tetaz, T.; Huang, C.Y.; Mattle, D.; Vonach, J.M.; Gast, A.; Kuglstatter, A.; Rudolph, M.G.; Nogly, P.; Benz, J.; Dawson, R.J.P.; Standfuss, J. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell, 2019, 178(5), 1222-1230.e10.
[http://dx.doi.org/10.1016/j.cell.2019.07.028] [PMID: 31442409]
[43]
Oswald, C.; Rappas, M.; Kean, J.; Doré, A.S.; Errey, J.C.; Bennett, K.; Deflorian, F.; Christopher, J.A.; Jazayeri, A.; Mason, J.S.; Congreve, M.; Cooke, R.M.; Marshall, F.H. Intracellular allosteric antagonism of the CCR9 receptor. Nature, 2016, 540(7633), 462-465.
[http://dx.doi.org/10.1038/nature20606] [PMID: 27926729]
[44]
Sun, B.; Bachhawat, P.; Chu, M.L.H.; Wood, M.; Ceska, T.; Sands, Z.A.; Mercier, J.; Lebon, F.; Kobilka, T.S.; Kobilka, B.K. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc. Natl. Acad. Sci. USA, 2017, 114(8), 2066-2071.
[http://dx.doi.org/10.1073/pnas.1621423114] [PMID: 28167788]
[45]
Liu, X.; Ahn, S.; Kahsai, A.W.; Meng, K.C.; Latorraca, N.R.; Pani, B.; Venkatakrishnan, A.J.; Masoudi, A.; Weis, W.I.; Dror, R.O.; Chen, X.; Lefkowitz, R.J.; Kobilka, B.K. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548(7668), 480-484.
[http://dx.doi.org/10.1038/nature23652] [PMID: 28813418]
[46]
Liu, X.; Kaindl, J.; Korczynska, M.; Stößel, A.; Dengler, D.; Stanek, M.; Hübner, H.; Clark, M.J.; Mahoney, J.; Matt, R.A.; Xu, X.; Hirata, K.; Shoichet, B.K.; Sunahara, R.K.; Kobilka, B.K.; Gmeiner, P. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat. Chem. Biol., 2020, 16(7), 749-755.
[http://dx.doi.org/10.1038/s41589-020-0549-2] [PMID: 32483378]
[47]
Wang, X.; Liu, D.; Shen, L.; Li, F.; Li, Y.; Yang, L.; Xu, T.; Tao, H.; Yao, D.; Wu, L.; Hirata, K.; Bohn, L.M.; Makriyannis, A.; Liu, X.; Hua, T.; Liu, Z.J.; Wang, J. A genetically encoded F-19 NMR probe reveals the allosteric modulation mechanism of cannabinoid receptor 1. J. Am. Chem. Soc., 2021, 143(40), 16320-16325.
[http://dx.doi.org/10.1021/jacs.1c06847] [PMID: 34596399]
[48]
Shao, Z.; Yan, W.; Chapman, K.; Ramesh, K.; Ferrell, A.J.; Yin, J.; Wang, X.; Xu, Q.; Rosenbaum, D.M. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol., 2019, 15(12), 1199-1205.
[http://dx.doi.org/10.1038/s41589-019-0387-2] [PMID: 31659318]
[49]
Draper-Joyce, C.J.; Bhola, R.; Wang, J.; Bhattarai, A.; Nguyen, A.T.N.; Cowie-Kent, I.; O’Sullivan, K.; Chia, L.Y.; Venugopal, H.; Valant, C.; Thal, D.M.; Wootten, D.; Panel, N.; Carlsson, J.; Christie, M.J.; White, P.J.; Scammells, P.; May, L.T.; Sexton, P.M.; Danev, R.; Miao, Y.; Glukhova, A.; Imlach, W.L.; Christopoulos, A. Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597(7877), 571-576.
[http://dx.doi.org/10.1038/s41586-021-03897-2] [PMID: 34497422]
[50]
Zhang, D.; Gao, Z.G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang, J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; Han, G.W.; Liu, H.; Cherezov, V.; Katritch, V.; Jiang, H.; Stevens, R.C.; Jacobson, K.A.; Zhao, Q.; Wu, B. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 2015, 520(7547), 317-321.
[http://dx.doi.org/10.1038/nature14287] [PMID: 25822790]
[51]
Liu, H.; Kim, H.R.; Deepak, R.N.V.K.; Wang, L.; Chung, K.Y.; Fan, H.; Wei, Z.; Zhang, C. Orthosteric and allosteric action of the C5a receptor antagonists. Nat. Struct. Mol. Biol., 2018, 25(6), 472-481.
[http://dx.doi.org/10.1038/s41594-018-0067-z] [PMID: 29867214]
[52]
Robertson, N.; Rappas, M.; Doré, A.S.; Brown, J.; Bottegoni, G.; Koglin, M.; Cansfield, J.; Jazayeri, A.; Cooke, R.M.; Marshall, F.H. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature, 2018, 553(7686), 111-114.
[http://dx.doi.org/10.1038/nature25025] [PMID: 29300009]
[53]
Liu, X.; Masoudi, A.; Kahsai, A.W.; Huang, L.Y.; Pani, B.; Staus, D.P.; Shim, P.J.; Hirata, K.; Simhal, R.K.; Schwalb, A.M.; Rambarat, P.K.; Ahn, S.; Lefkowitz, R.J.; Kobilka, B. Mechanism of β 2 AR regulation by an intracellular positive allosteric modulator. Science, 2019, 364(6447), 1283-1287.
[http://dx.doi.org/10.1126/science.aaw8981] [PMID: 31249059]
[54]
Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.; Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.; Okada, K. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature, 2014, 513(7516), 124-127.
[http://dx.doi.org/10.1038/nature13494] [PMID: 25043059]
[55]
Lu, J.; Byrne, N.; Wang, J.; Bricogne, G.; Brown, F.K.; Chobanian, H.R.; Colletti, S.L.; Di Salvo, J.; Thomas-Fowlkes, B.; Guo, Y.; Hall, D.L.; Hadix, J.; Hastings, N.B.; Hermes, J.D.; Ho, T.; Howard, A.D.; Josien, H.; Kornienko, M.; Lumb, K.J.; Miller, M.W.; Patel, S.B.; Pio, B.; Plummer, C.W.; Sherborne, B.S.; Sheth, P.; Souza, S.; Tummala, S.; Vonrhein, C.; Webb, M.; Allen, S.J.; Johnston, J.M.; Weinglass, A.B.; Sharma, S.; Soisson, S.M. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol., 2017, 24(7), 570-577.
[http://dx.doi.org/10.1038/nsmb.3417] [PMID: 28581512]
[56]
Ho, J.D.; Chau, B.; Rodgers, L.; Lu, F.; Wilbur, K.L.; Otto, K.A.; Chen, Y.; Song, M.; Riley, J.P.; Yang, H.C.; Reynolds, N.A.; Kahl, S.D.; Lewis, A.P.; Groshong, C.; Madsen, R.E.; Conners, K.; Lineswala, J.P.; Gheyi, T.; Saflor, M.B.D.; Lee, M.R.; Benach, J.; Baker, K.A.; Montrose-Rafizadeh, C.; Genin, M.J.; Miller, A.R.; Hamdouchi, C. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat. Commun., 2018, 9(1), 1645.
[http://dx.doi.org/10.1038/s41467-017-01240-w] [PMID: 29695780]
[57]
Cheng, R.K.Y.; Fiez-Vandal, C.; Schlenker, O.; Edman, K.; Aggeler, B.; Brown, D.G.; Brown, G.A.; Cooke, R.M.; Dumelin, C.E.; Doré, A.S.; Geschwindner, S.; Grebner, C.; Hermansson, N.O.; Jazayeri, A.; Johansson, P.; Leong, L.; Prihandoko, R.; Rappas, M.; Soutter, H.; Snijder, A.; Sundström, L.; Tehan, B.; Thornton, P.; Troast, D.; Wiggin, G.; Zhukov, A.; Marshall, F.H.; Dekker, N. Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 2017, 545(7652), 112-115.
[http://dx.doi.org/10.1038/nature22309] [PMID: 28445455]
[58]
Zhao, P.; Liang, Y.L.; Belousoff, M.J.; Deganutti, G.; Fletcher, M.M.; Willard, F.S.; Bell, M.G.; Christe, M.E.; Sloop, K.W.; Inoue, A.; Truong, T.T.; Clydesdale, L.; Furness, S.G.B.; Christopoulos, A.; Wang, M.W.; Miller, L.J.; Reynolds, C.A.; Danev, R.; Sexton, P.M.; Wootten, D. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577(7790), 432-436.
[http://dx.doi.org/10.1038/s41586-019-1902-z] [PMID: 31915381]
[59]
Cong, Z.; Chen, L.N.; Ma, H.; Zhou, Q.; Zou, X.; Ye, C.; Dai, A.; Liu, Q.; Huang, W.; Sun, X.; Wang, X.; Xu, P.; Zhao, L.; Xia, T.; Zhong, W.; Yang, D.; Eric Xu, H.; Zhang, Y.; Wang, M.W. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat. Commun., 2021, 12(1), 3763.
[http://dx.doi.org/10.1038/s41467-021-24058-z] [PMID: 34145245]
[60]
Bueno, A.B.; Sun, B.; Willard, F.S.; Feng, D.; Ho, J.D.; Wainscott, D.B.; Showalter, A.D.; Vieth, M.; Chen, Q.; Stutsman, C.; Chau, B.; Ficorilli, J.; Agejas, F.J.; Cumming, G.R.; Jiménez, A.; Rojo, I.; Kobilka, T.S.; Kobilka, B.K.; Sloop, K.W. Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nat. Chem. Biol., 2020, 16(10), 1105-1110.
[http://dx.doi.org/10.1038/s41589-020-0589-7] [PMID: 32690941]
[61]
Song, G.; Yang, D.; Wang, Y.; de Graaf, C.; Zhou, Q.; Jiang, S.; Liu, K.; Cai, X.; Dai, A.; Lin, G.; Liu, D.; Wu, F.; Wu, Y.; Zhao, S.; Ye, L.; Han, G.W.; Lau, J.; Wu, B.; Hanson, M.A.; Liu, Z.J.; Wang, M.W.; Stevens, R.C. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature, 2017, 546(7657), 312-315.
[http://dx.doi.org/10.1038/nature22378] [PMID: 28514449]
[62]
Xu, Y.; Wang, Y.; Wang, Y.; Liu, K.; Peng, Y.; Yao, D.; Tao, H.; Liu, H.; Song, G. Mutagenesis facilitated crystallization of GLP-1R. IUCrJ, 2019, 6(6), 996-1006.
[http://dx.doi.org/10.1107/S2052252519013496] [PMID: 31709055]
[63]
Zhang, H.; Qiao, A.; Yang, D.; Yang, L.; Dai, A.; de Graaf, C.; Reedtz-Runge, S.; Dharmarajan, V.; Zhang, H.; Han, G.W.; Grant, T.D.; Sierra, R.G.; Weierstall, U.; Nelson, G.; Liu, W.; Wu, Y.; Ma, L.; Cai, X.; Lin, G.; Wu, X.; Geng, Z.; Dong, Y.; Song, G.; Griffin, P.R.; Lau, J.; Cherezov, V.; Yang, H.; Hanson, M.A.; Stevens, R.C.; Zhao, Q.; Jiang, H.; Wang, M.W.; Wu, B. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 2017, 546(7657), 259-264.
[http://dx.doi.org/10.1038/nature22363] [PMID: 28514451]
[64]
Jazayeri, A.; Doré, A.S.; Lamb, D.; Krishnamurthy, H.; Southall, S.M.; Baig, A.H.; Bortolato, A.; Koglin, M.; Robertson, N.J.; Errey, J.C.; Andrews, S.P.; Teobald, I.; Brown, A.J.H.; Cooke, R.M.; Weir, M.; Marshall, F.H. Extra-helical binding site of a glucagon receptor antagonist. Nature, 2016, 533(7602), 274-277.
[http://dx.doi.org/10.1038/nature17414] [PMID: 27111510]
[65]
Hollenstein, K.; Kean, J.; Bortolato, A.; Cheng, R.K.Y.; Doré, A.S.; Jazayeri, A.; Cooke, R.M.; Weir, M.; Marshall, F.H. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 2013, 499(7459), 438-443.
[http://dx.doi.org/10.1038/nature12357] [PMID: 23863939]
[66]
Dore, A.S.; Bortolato, A.; Hollenstein, K.; Cheng, R.K.Y.; Read, R.J.; Marshall, F.H. Decoding corticotropin-releasing factor receptor type 1 crystal structures. Curr. Mol. Pharmacol., 2017, 10(4), 334-344.
[PMID: 28183242]
[67]
Gao, Y.; Robertson, M.J.; Rahman, S.N.; Seven, A.B.; Zhang, C.; Meyerowitz, J.G.; Panova, O.; Hannan, F.M.; Thakker, R.V.; Bräuner-Osborne, H.; Mathiesen, J.M.; Skiniotis, G. Asymmetric activation of the calcium-sensing receptor homodimer. Nature, 2021, 595(7867), 455-459.
[http://dx.doi.org/10.1038/s41586-021-03691-0] [PMID: 34194040]
[68]
Kim, Y.; Jeong, E.; Jeong, J.H.; Kim, Y.; Cho, Y. Structural basis for activation of the heterodimeric GABAB receptor. J. Mol. Biol., 2020, 432(22), 5966-5984.
[http://dx.doi.org/10.1016/j.jmb.2020.09.023] [PMID: 33058878]
[69]
Shaye, H.; Ishchenko, A.; Lam, J.H.; Han, G.W.; Xue, L.; Rondard, P.; Pin, J.P.; Katritch, V.; Gati, C.; Cherezov, V. Structural basis of the activation of a metabotropic GABA receptor. Nature, 2020, 584(7820), 298-303.
[http://dx.doi.org/10.1038/s41586-020-2408-4] [PMID: 32555460]
[70]
Weierstall, U.; James, D.; Wang, C.; White, T.A.; Wang, D.; Liu, W.; Spence, J.C.H.; Bruce Doak, R.; Nelson, G.; Fromme, P.; Fromme, R.; Grotjohann, I.; Kupitz, C.; Zatsepin, N.A.; Liu, H.; Basu, S.; Wacker, D.; Won Han, G.; Katritch, V.; Boutet, S.; Messerschmidt, M.; Williams, G.J.; Koglin, J.E.; Marvin Seibert, M.; Klinker, M.; Gati, C.; Shoeman, R.L.; Barty, A.; Chapman, H.N.; Kirian, R.A.; Beyerlein, K.R.; Stevens, R.C.; Li, D.; Shah, S.T.A.; Howe, N.; Caffrey, M.; Cherezov, V. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun., 2014, 5(1), 3309.
[http://dx.doi.org/10.1038/ncomms4309] [PMID: 24525480]
[71]
White, K.L.; Eddy, M.T.; Gao, Z.G.; Han, G.W.; Lian, T.; Deary, A.; Patel, N.; Jacobson, K.A.; Katritch, V.; Stevens, R.C. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure, 2018, 26(2), 259-269.e5.
[http://dx.doi.org/10.1016/j.str.2017.12.013] [PMID: 29395784]
[72]
Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci., 1995, 25, 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[73]
Wang, S.; Wacker, D.; Levit, A.; Che, T.; Betz, R.M.; McCorvy, J.D.; Venkatakrishnan, A.J.; Huang, X.P.; Dror, R.O.; Shoichet, B.K.; Roth, B.L. D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 2017, 358(6361), 381-386.
[http://dx.doi.org/10.1126/science.aan5468] [PMID: 29051383]
[74]
Christopher, J.A.; Brown, J.; Doré, A.S.; Errey, J.C.; Koglin, M.; Marshall, F.H.; Myszka, D.G.; Rich, R.L.; Tate, C.G.; Tehan, B.; Warne, T.; Congreve, M. Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structure-based drug design. J. Med. Chem., 2013, 56(9), 3446-3455.
[http://dx.doi.org/10.1021/jm400140q] [PMID: 23517028]
[75]
Fenalti, G.; Giguere, P.M.; Katritch, V.; Huang, X.P.; Thompson, A.A.; Cherezov, V.; Roth, B.L.; Stevens, R.C. Molecular control of δ-opioid receptor signalling. Nature, 2014, 506(7487), 191-196.
[http://dx.doi.org/10.1038/nature12944] [PMID: 24413399]
[76]
Luginina, A.; Gusach, A.; Marin, E.; Mishin, A.; Brouillette, R.; Popov, P.; Shiriaeva, A.; Besserer-Offroy, É.; Longpré, J.M.; Lyapina, E.; Ishchenko, A.; Patel, N.; Polovinkin, V.; Safronova, N.; Bogorodskiy, A.; Edelweiss, E.; Hu, H.; Weierstall, U.; Liu, W.; Batyuk, A.; Gordeliy, V.; Han, G.W.; Sarret, P.; Katritch, V.; Borshchevskiy, V.; Cherezov, V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv., 2019, 5(10), eaax2518.
[http://dx.doi.org/10.1126/sciadv.aax2518] [PMID: 31633023]
[77]
Rappas, M.; Ali, A.A.E.; Bennett, K.A.; Brown, J.D.; Bucknell, S.J.; Congreve, M.; Cooke, R.M.; Cseke, G.; de Graaf, C.; Doré, A.S.; Errey, J.C.; Jazayeri, A.; Marshall, F.H.; Mason, J.S.; Mould, R.; Patel, J.C.; Tehan, B.G.; Weir, M.; Christopher, J.A. Comparison of orexin 1 and orexin 2 ligand binding modes using X-ray crystallography and computational analysis. J. Med. Chem., 2020, 63(4), 1528-1543.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01787] [PMID: 31860301]
[78]
Schiffmann, A.; Gimpl, G. Sodium functions as a negative allosteric modulator of the oxytocin receptor. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1301-1308.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.003] [PMID: 29524392]
[79]
Michino, M.; Free, R.B.; Doyle, T.B.; Sibley, D.R.; Shi, L. Structural basis for Na+-sensitivity in dopamine D2 and D3 receptors. Chem. Commun. (Camb.), 2015, 51(41), 8618-8621.
[http://dx.doi.org/10.1039/C5CC02204E] [PMID: 25896577]
[80]
Chan, H.C.S.; Xu, Y.; Tan, L.; Vogel, H.; Cheng, J.; Wu, D.; Yuan, S. Enhancing the signaling of GPCRs via orthosteric ions. ACS Cent. Sci., 2020, 6(2), 274-282.
[http://dx.doi.org/10.1021/acscentsci.9b01247] [PMID: 32123746]
[81]
Ye, L.; Neale, C.; Sljoka, A.; Lyda, B.; Pichugin, D.; Tsuchimura, N.; Larda, S.T.; Pomès, R.; García, A.E.; Ernst, O.P.; Sunahara, R.K.; Prosser, R.S. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun., 2018, 9(1), 1372.
[http://dx.doi.org/10.1038/s41467-018-03314-9] [PMID: 29636462]
[82]
Hu, X.; Provasi, D.; Ramsey, S.; Filizola, M. Mechanism of μ-opioid receptor-magnesium interaction and positive allosteric modulation. Biophys. J., 2020, 118(4), 909-921.
[http://dx.doi.org/10.1016/j.bpj.2019.10.007] [PMID: 31676132]
[83]
Waltenspühl, Y.; Schöppe, J.; Ehrenmann, J.; Kummer, L.; Plückthun, A. Crystal structure of the human oxytocin receptor. Sci. Adv., 2020, 6(29), eabb5419.
[http://dx.doi.org/10.1126/sciadv.abb5419] [PMID: 32832646]
[84]
Schetz, J.A.; Chu, A.; Sibley, D.R. Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J. Pharmacol. Exp. Ther., 1999, 289(2), 956-964.
[PMID: 10215675]
[85]
White, A.D.; Fang, F.; Jean-Alphonse, F.G.; Clark, L.J.; An, H.J.; Liu, H.; Zhao, Y.; Reynolds, S.L.; Lee, S.; Xiao, K.; Sutkeviciute, I.; Vilardaga, J.P. Ca2+ allostery in PTH-receptor signaling. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 3294-3299.
[http://dx.doi.org/10.1073/pnas.1814670116] [PMID: 30718391]
[86]
Cao, C.; Tan, Q.; Xu, C.; He, L.; Yang, L.; Zhou, Y.; Zhou, Y.; Qiao, A.; Lu, M.; Yi, C.; Han, G.W.; Wang, X.; Li, X.; Yang, H.; Rao, Z.; Jiang, H.; Zhao, Y.; Liu, J.; Stevens, R.C.; Zhao, Q.; Zhang, X.C.; Wu, B. Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol., 2018, 25(6), 488-495.
[http://dx.doi.org/10.1038/s41594-018-0068-y] [PMID: 29808000]
[87]
Holst, B.; Elling, C.E.; Schwartz, T.W. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J. Biol. Chem., 2002, 277(49), 47662-47670.
[http://dx.doi.org/10.1074/jbc.M202103200] [PMID: 12244039]
[88]
Yu, J.; Gimenez, L.E.; Hernandez, C.C.; Wu, Y.; Wein, A.H.; Han, G.W.; McClary, K.; Mittal, S.R.; Burdsall, K.; Stauch, B.; Wu, L.; Stevens, S.N.; Peisley, A.; Williams, S.Y.; Chen, V.; Millhauser, G.L.; Zhao, S.; Cone, R.D.; Stevens, R.C. Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding. Science, 2020, 368(6489), 428-433.
[http://dx.doi.org/10.1126/science.aaz8995] [PMID: 32327598]
[89]
Israeli, H.; Degtjarik, O.; Fierro, F.; Chunilal, V.; Gill, A.K.; Roth, N.J.; Botta, J.; Prabahar, V.; Peleg, Y.; Chan, L.F.; Ben-Zvi, D.; McCormick, P.J.; Niv, M.Y.; Shalev-Benami, M. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science, 2021, 372(6544), 808-814.
[http://dx.doi.org/10.1126/science.abf7958] [PMID: 33858992]
[90]
Li, M.; Li, M.; Guo, J. Molecular mechanism of Ca2+ in the allosteric regulation of human parathyroid hormone receptor-1. J. Chem. Inf. Model., 2022, 62, 5110-5119.
[http://dx.doi.org/10.1021/acs.jcim.1c00471] [PMID: 34464108]
[91]
Cournia, Z.; Allen, T.W.; Andricioaei, I.; Antonny, B.; Baum, D.; Brannigan, G.; Buchete, N.V.; Deckman, J.T.; Delemotte, L.; del Val, C.; Friedman, R.; Gkeka, P.; Hege, H.C.; Hénin, J.; Kasimova, M.A.; Kolocouris, A.; Klein, M.L.; Khalid, S.; Lemieux, M.J.; Lindow, N.; Roy, M.; Selent, J.; Tarek, M.; Tofoleanu, F.; Vanni, S.; Urban, S.; Wales, D.J.; Smith, J.C.; Bondar, A.N. Membrane protein structure, function, and dynamics: A perspective from experiments and theory. J. Membr. Biol., 2015, 248(4), 611-640.
[http://dx.doi.org/10.1007/s00232-015-9802-0] [PMID: 26063070]
[92]
Safdari, H.A.; Pandey, S.; Shukla, A.K.; Dutta, S. Illuminating GPCR signaling by cryo-EM. Trends Cell Biol., 2018, 28(8), 591-594.
[http://dx.doi.org/10.1016/j.tcb.2018.06.002] [PMID: 29945844]
[93]
Jisna, V.A.; Jayaraj, P.B. Protein structure prediction: Conventional and deep learning perspectives. Protein J., 2021, 40(4), 522-544.
[http://dx.doi.org/10.1007/s10930-021-10003-y] [PMID: 34050498]
[94]
Zhang, J.; Yang, J.; Jang, R.; Zhang, Y. GPCR-I-TASSER: A hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure, 2015, 23(8), 1538-1549.
[http://dx.doi.org/10.1016/j.str.2015.06.007] [PMID: 26190572]
[95]
Bharathi; Roy, K.K. Structural basis for the binding of a selective inverse agonist AF64394 with the human G-protein coupled receptor 3 (GPR3). J. Biomol. Struct. Dyn., 2021. [Epub ahead of print]
[96]
Kashani-Amin, E.; Sakhteman, A.; Larijani, B.; Ebrahim-Habibi, A. Introducing a new model of sweet taste receptor, a class C G-protein coupled receptor (C GPCR). Cell Biochem. Biophys., 2019, 77(3), 227-243.
[http://dx.doi.org/10.1007/s12013-019-00872-7] [PMID: 31069640]
[97]
Chan, W.K.B.; Zhang, Y. Virtual screening of human class-A GPCRs using ligand profiles built on multiple ligand–receptor interactions. J. Mol. Biol., 2020, 432(17), 4872-4890.
[http://dx.doi.org/10.1016/j.jmb.2020.07.003] [PMID: 32652079]
[98]
Bender, B.J.; Marlow, B.; Meiler, J. Improving homology modeling from low-sequence identity templates in Rosetta: A case study in GPCRs. PLOS Comput. Biol., 2020, 16(10), e1007597.
[http://dx.doi.org/10.1371/journal.pcbi.1007597] [PMID: 33112852]
[99]
Worth, C.L.; Kreuchwig, F.; Tiemann, J.K.S.; Kreuchwig, A.; Ritschel, M.; Kleinau, G.; Hildebrand, P.W.; Krause, G. GPCR-SSFE 2.0—a fragment-based molecular modeling web tool for Class A G-protein coupled receptors. Nucleic Acids Res., 2017, 45(W1), W408-W415.
[http://dx.doi.org/10.1093/nar/gkx399] [PMID: 28582569]
[100]
Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; Velankar, S.; Kleywegt, G.J.; Bateman, A.; Evans, R.; Pritzel, A.; Figurnov, M.; Ronneberger, O.; Bates, R.; Kohl, S.A.A.; Potapenko, A.; Ballard, A.J.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Clancy, E.; Reiman, D.; Petersen, S.; Senior, A.W.; Kavukcuoglu, K.; Birney, E.; Kohli, P.; Jumper, J.; Hassabis, D. Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596(7873), 590-596.
[http://dx.doi.org/10.1038/s41586-021-03828-1] [PMID: 34293799]
[101]
Heo, L.; Feig, M. Multi state modeling of G protein coupled receptors at experimental accuracy. Proteins, 2022, 90(11), 1873-1885.
[http://dx.doi.org/10.1002/prot.26382] [PMID: 35510704]
[102]
Decherchi, S.; Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev., 2020, 120(23), 12788-12833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00534] [PMID: 33006893]
[103]
Jaakola, V.P.; Griffith, M.T.; Hanson, M.A.; Cherezov, V.; Chien, E.Y.T.; Lane, J.R.; IJzerman, A.P.; Stevens, R.C. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science, 2008, 322(5905), 1211-1217.
[http://dx.doi.org/10.1126/science.1164772] [PMID: 18832607]
[104]
Lebon, G.; Warne, T.; Edwards, P.C.; Bennett, K.; Langmead, C.J.; Leslie, A.G.W.; Tate, C.G. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature, 2011, 474(7352), 521-525.
[http://dx.doi.org/10.1038/nature10136] [PMID: 21593763]
[105]
Carpenter, B.; Nehmé, R.; Warne, T.; Leslie, A.G.W.; Tate, C.G. Erratum: Structure of the adenosine A2A receptor bound to an engineered G protein. Nature, 2016, 538(7626), 542.
[http://dx.doi.org/10.1038/nature19803] [PMID: 27629518]
[106]
Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; Liu, Q.; Zhao, S.; Shui, W.; Jiang, Y.; Wang, M.W. G protein-coupled receptors: Structure and function-based drug discovery. Signal. Transduct. Target. Ther., 2021, 6(1), 7.
[http://dx.doi.org/10.1038/s41392-020-00435-w] [PMID: 33414387]
[107]
Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Wess, J.; Kobilka, B.K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482(7386), 552-556.
[http://dx.doi.org/10.1038/nature10867] [PMID: 22358844]
[108]
Suomivuori, C.M.; Latorraca, N.R.; Wingler, L.M.; Eismann, S.; King, M.C.; Kleinhenz, A.L.W.; Skiba, M.A.; Staus, D.P.; Kruse, A.C.; Lefkowitz, R.J.; Dror, R.O. Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science, 2020, 367(6480), 881-887.
[http://dx.doi.org/10.1126/science.aaz0326] [PMID: 32079767]
[109]
Li, M.; Bao, Y.; Xu, R.; La, H.; Guo, J. Critical extracellular Ca 2+ dependence of the binding between PTH1R and a G-protein peptide revealed by MD simulations. ACS Chem. Neurosci., 2022, 13(11), 1666-1674.
[http://dx.doi.org/10.1021/acschemneuro.2c00176] [PMID: 35543321]
[110]
Wootten, D.; Simms, J.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 5211-5216.
[http://dx.doi.org/10.1073/pnas.1221585110] [PMID: 23479653]
[111]
Guo, J.; Zhou, H.X. Protein allostery and conformational dynamics. Chem. Rev., 2016, 116(11), 6503-6515.
[http://dx.doi.org/10.1021/acs.chemrev.5b00590] [PMID: 26876046]
[112]
Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, 2015, 1850(5), 872-877.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.019] [PMID: 25450171]
[113]
Yang, Y.I.; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y.Q. Enhanced sampling in molecular dynamics. J. Chem. Phys., 2019, 151(7), 070902.
[http://dx.doi.org/10.1063/1.5109531] [PMID: 31438687]
[114]
Ahmad, K.; Rizzi, A.; Capelli, R.; Mandelli, D.; Lyu, W.; Carloni, P. Enhanced-sampling simulations for the estimation of ligand binding kinetics: Current status and perspective. Front. Mol. Biosci., 2022, 9, 899805.
[http://dx.doi.org/10.3389/fmolb.2022.899805] [PMID: 35755817]
[115]
Harpole, T.J.; Delemotte, L. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim. Biophys. Acta Biomembr., 2018, 1860(4), 909-926.
[http://dx.doi.org/10.1016/j.bbamem.2017.10.033] [PMID: 29113819]
[116]
Bergonzo, C.; Campbell, A.J.; Walker, R.C.; Simmerling, C. A partial nudged elastic band implementation for use with large or explicitly solvated systems. Int. J. Quantum Chem., 2009, 109(15), 3781-3790.
[http://dx.doi.org/10.1002/qua.22405] [PMID: 20148191]
[117]
Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J. Chem. Phys., 2004, 120(24), 11919-11929.
[http://dx.doi.org/10.1063/1.1755656] [PMID: 15268227]
[118]
Miao, Y.; Goldfeld, D.A.; Moo, E.V.; Sexton, P.M.; Christopoulos, A.; McCammon, J.A.; Valant, C. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5675-E5684.
[http://dx.doi.org/10.1073/pnas.1612353113] [PMID: 27601651]
[119]
Miao, Y.; Nichols, S.E.; Gasper, P.M.; Metzger, V.T.; McCammon, J.A. Activation and dynamic network of the M2 muscarinic receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(27), 10982-10987.
[http://dx.doi.org/10.1073/pnas.1309755110] [PMID: 23781107]
[120]
Miao, Y.; Caliman, A.D.; McCammon, J.A. Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor. Biophys. J., 2015, 108(7), 1796-1806.
[http://dx.doi.org/10.1016/j.bpj.2015.03.003] [PMID: 25863070]
[121]
Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12562-12566.
[http://dx.doi.org/10.1073/pnas.202427399] [PMID: 12271136]
[122]
Lückmann, M.; Trauelsen, M.; Bentsen, M.A.; Nissen, T.A.D.; Martins, J.; Fallah, Z.; Nygaard, M.M.; Papaleo, E.; Lindorff-Larsen, K.; Schwartz, T.W.; Frimurer, T.M. Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. Proc. Natl. Acad. Sci. USA, 2019, 116(14), 7123-7128.
[http://dx.doi.org/10.1073/pnas.1811066116] [PMID: 30872479]
[123]
Cong, X.; Zhang, X.; Liang, X.; He, X.; Tang, Y.; Zheng, X.; Lu, S.; Zhang, J.; Chen, T. Delineating the conformational landscape and intrinsic properties of the angiotensin II type 2 receptor using a computational study. Comput. Struct. Biotechnol. J., 2022, 20, 2268-2279.
[http://dx.doi.org/10.1016/j.csbj.2022.05.012] [PMID: 35615027]
[124]
Lu, S.; He, X.; Yang, Z.; Chai, Z.; Zhou, S.; Wang, J.; Rehman, A.U.; Ni, D.; Pu, J.; Sun, J.; Zhang, J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun., 2021, 12(1), 4721.
[http://dx.doi.org/10.1038/s41467-021-25020-9] [PMID: 34354057]
[125]
Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(6), 932-942.
[http://dx.doi.org/10.1002/wcms.66]
[126]
Agostino, M.; Pohl, S.Ö.G. Activation barriers in Class F G protein-coupled receptors revealed by umbrella sampling simulations. Org. Biomol. Chem., 2020, 18(48), 9816-9825.
[http://dx.doi.org/10.1039/D0OB02175J] [PMID: 33290484]
[127]
Paila, Y.D.; Jindal, E.; Goswami, S.K.; Chattopadhyay, A. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim. Biophys. Acta Biomembr., 2011, 1808(1), 461-465.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.006] [PMID: 20851100]
[128]
Soubias, O.; Gawrisch, K. The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim. Biophys. Acta Biomembr., 2012, 1818(2), 234-240.
[http://dx.doi.org/10.1016/j.bbamem.2011.08.034] [PMID: 21924236]
[129]
Ansell, T.B.; Song, W.; Sansom, M.S.P. The glycosphingolipid GM3 modulates conformational dynamics of the glucagon receptor. Biophys. J., 2020, 119(2), 300-313.
[http://dx.doi.org/10.1016/j.bpj.2020.06.009] [PMID: 32610088]
[130]
Hanson, M.A.; Cherezov, V.; Griffith, M.T.; Roth, C.B.; Jaakola, V.P.; Chien, E.Y.T.; Velasquez, J.; Kuhn, P.; Stevens, R.C. A specific cholesterol binding site is established by the 2.8 A structure of the human β2-adrenergic receptor. Structure, 2008, 16(6), 897-905.
[http://dx.doi.org/10.1016/j.str.2008.05.001] [PMID: 18547522]
[131]
Prasanna, X.; Chattopadhyay, A.; Sengupta, D. Cholesterol modulates the dimer interface of the β-adrenergic receptor via cholesterol occupancy sites. Biophys. J., 2014, 106(6), 1290-1300.
[http://dx.doi.org/10.1016/j.bpj.2014.02.002] [PMID: 24655504]
[132]
Song, W.; Yen, H.Y.; Robinson, C.V.; Sansom, M.S.P. State-dependent lipid interactions with the A2a receptor revealed by MD simulations using in vivo-mimetic membranes. Structure, 2019, 27(2), 392-403.e3.
[http://dx.doi.org/10.1016/j.str.2018.10.024] [PMID: 30581046]
[133]
Wingler, L.M.; Elgeti, M.; Hilger, D.; Latorraca, N.R.; Lerch, M.T.; Staus, D.P.; Dror, R.O.; Kobilka, B.K.; Hubbell, W.L.; Lefkowitz, R.J. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell, 2019, 176(3), 468-478.e11.
[http://dx.doi.org/10.1016/j.cell.2018.12.005] [PMID: 30639099]
[134]
Yang, L.; Yang, D.; de Graaf, C.; Moeller, A.; West, G.M.; Dharmarajan, V.; Wang, C.; Siu, F.Y.; Song, G.; Reedtz-Runge, S.; Pascal, B.D.; Wu, B.; Potter, C.S.; Zhou, H.; Griffin, P.R.; Carragher, B.; Yang, H.; Wang, M.W.; Stevens, R.C.; Jiang, H. Conformational states of the full-length glucagon receptor. Nat. Commun., 2015, 6(1), 7859.
[http://dx.doi.org/10.1038/ncomms8859] [PMID: 26227798]
[135]
Zhang, J.; Bai, Q.; Pérez-Sánchez, H.; Shang, S.; An, X.; Yao, X. Investigation of ECD conformational transition mechanism of GLP-1R by molecular dynamics simulations and Markov state model. Phys. Chem. Chem. Phys., 2019, 21(16), 8470-8481.
[http://dx.doi.org/10.1039/C9CP00080A] [PMID: 30957116]
[136]
Torrens-Fontanals, M.; Stepniewski, T.M.; Aranda-García, D.; Morales-Pastor, A.; Medel-Lacruz, B.; Selent, J. How do molecular dynamics data complement static structural data of GPCRs. Int. J. Mol. Sci., 2020, 21(16), 5933.
[http://dx.doi.org/10.3390/ijms21165933] [PMID: 32824756]
[137]
Cao, S.; Montoya-Castillo, A.; Wang, W.; Markland, T.E.; Huang, X. On the advantages of exploiting memory in Markov state models for biomolecular dynamics. J. Chem. Phys., 2020, 153(1), 014105.
[http://dx.doi.org/10.1063/5.0010787] [PMID: 32640825]
[138]
Konovalov, K.A.; Unarta, I.C.; Cao, S.; Goonetilleke, E.C.; Huang, X. Markov state models to study the functional dynamics of proteins in the wake of machine learning. JACS Au, 2021, 1(9), 1330-1341.
[http://dx.doi.org/10.1021/jacsau.1c00254] [PMID: 34604842]
[139]
Schultze, S.; Grubmüller, H. Time-lagged independent component analysis of random walks and protein dynamics. J. Chem. Theory Comput., 2021, 17(9), 5766-5776.
[http://dx.doi.org/10.1021/acs.jctc.1c00273] [PMID: 34449229]
[140]
Kohlhoff, K.J.; Shukla, D.; Lawrenz, M.; Bowman, G.R.; Konerding, D.E.; Belov, D.; Altman, R.B.; Pande, V.S. Cloud-based simulations on google exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem., 2014, 6(1), 15-21.
[http://dx.doi.org/10.1038/nchem.1821] [PMID: 24345941]
[141]
Wang, Y.; Li, M.; Liang, W.; Shi, X.; Fan, J.; Kong, R.; Liu, Y.; Zhang, J.; Chen, T.; Lu, S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput. Struct. Biotechnol. J., 2022, 20, 628-639.
[http://dx.doi.org/10.1016/j.csbj.2022.01.015] [PMID: 35140883]
[142]
Taylor, B.C.; Lee, C.T.; Amaro, R.E. Structural basis for ligand modulation of the CCR2 conformational landscape. Proc. Natl. Acad. Sci. USA, 2019, 116(17), 8131-8136.
[http://dx.doi.org/10.1073/pnas.1814131116] [PMID: 30975755]
[143]
Wingler, L.M.; Lefkowitz, R.J. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol., 2020, 30(9), 736-747.
[http://dx.doi.org/10.1016/j.tcb.2020.06.002] [PMID: 32622699]
[144]
Morales-Pastor, A.; Nerín-Fonz, F.; Aranda-García, D.; Dieguez-Eceolaza, M.; Medel-Lacruz, B.; Torrens-Fontanals, M.; Peralta-García, A.; Selent, J. In silico study of allosteric communication networks in GPCR signaling bias. Int. J. Mol. Sci., 2022, 23(14), 7809.
[http://dx.doi.org/10.3390/ijms23147809] [PMID: 35887157]
[145]
Eyal, E.; Lum, G.; Bahar, I. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics, 2015, 31(9), 1487-1489.
[http://dx.doi.org/10.1093/bioinformatics/btu847] [PMID: 25568280]
[146]
Daily, M.D.; Upadhyaya, T.J.; Gray, J.J. Contact rearrangements form coupled networks from local motions in allosteric proteins. Proteins, 2008, 71(1), 455-466.
[http://dx.doi.org/10.1002/prot.21800] [PMID: 17957766]
[147]
Bhattacharya, S.; Vaidehi, N. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys. J., 2014, 107(2), 422-434.
[http://dx.doi.org/10.1016/j.bpj.2014.06.015] [PMID: 25028884]
[148]
Bhattacharya, S.; Salomon-Ferrer, R.; Lee, S.; Vaidehi, N. Conserved mechanism of conformational stability and dynamics in G-protein-coupled receptors. J. Chem. Theory Comput., 2016, 12(11), 5575-5584.
[http://dx.doi.org/10.1021/acs.jctc.6b00618] [PMID: 27709935]
[149]
Ma, N.; Nivedha, A.K.; Vaidehi, N. Allosteric communication regulates ligand-specific GPCR activity. FEBS J., 2021, 288(8), 2502-2512.
[http://dx.doi.org/10.1111/febs.15826] [PMID: 33738925]
[150]
Atilgan, A.R.; Durell, S.R.; Jernigan, R.L.; Demirel, M.C.; Keskin, O.; Bahar, I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J., 2001, 80(1), 505-515.
[http://dx.doi.org/10.1016/S0006-3495(01)76033-X] [PMID: 11159421]
[151]
Isin, B.; Rader, A.J.; Dhiman, H.K.; Klein-Seetharaman, J.; Bahar, I. Predisposition of the dark state of rhodopsin to functional changes in structure. Proteins, 2006, 65(4), 970-983.
[http://dx.doi.org/10.1002/prot.21158] [PMID: 17009319]
[152]
Yanamala, N.; Tirupula, K.C.; Klein-Seetharaman, J. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors. BMC Bioinformatics, 2008, 9(S1), S16.
[http://dx.doi.org/10.1186/1471-2105-9-S1-S16] [PMID: 18315847]
[153]
Clark, L.J.; Krieger, J.; White, A.D.; Bondarenko, V.; Lei, S.; Fang, F.; Lee, J.Y.; Doruker, P.; Böttke, T.; Jean-Alphonse, F.; Tang, P.; Gardella, T.J.; Xiao, K.; Sutkeviciute, I.; Coin, I.; Bahar, I.; Vilardaga, J.P. Allosteric interactions in the parathyroid hormone GPCR–arrestin complex formation. Nat. Chem. Biol., 2020, 16(10), 1096-1104.
[http://dx.doi.org/10.1038/s41589-020-0567-0] [PMID: 32632293]
[154]
Cong, Z.; Liang, Y.L.; Zhou, Q.; Darbalaei, S.; Zhao, F.; Feng, W.; Zhao, L.; Xu, H.E.; Yang, D.; Wang, M.W. Structural perspective of class B1 GPCR signaling. Trends Pharmacol. Sci., 2022, 43(4), 321-334.
[http://dx.doi.org/10.1016/j.tips.2022.01.002] [PMID: 35078643]
[155]
Liu, L.; Fan, Z.; Rovira, X.; Xue, L.; Roux, S.; Brabet, I.; Xin, M.; Pin, J.P.; Rondard, P.; Liu, J. Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface. eLife, 2021, 10, e70188.
[http://dx.doi.org/10.7554/eLife.70188] [PMID: 34866572]
[156]
Dror, R.O.; Jensen, M.Ø.; Borhani, D.W.; Shaw, D.E. Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J. Gen. Physiol., 2010, 135(6), 555-562.
[http://dx.doi.org/10.1085/jgp.200910373] [PMID: 20513757]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy