Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Renoprotective Effect of Thymoquinone against Streptozotocin-Induced Diabetic Nephropathy: Role of NOX2 and Nrf2 Signals

Author(s): Amal Hofni, Fares E.M. Ali*, Ahmed R. N. Ibrahim and Esam M. Aboubaker

Volume 16, Issue 8, 2023

Published on: 16 March, 2023

Article ID: e250123213146 Pages: 10

DOI: 10.2174/1874467216666230125150112

Price: $65

Abstract

Objective: Diabetic nephropathy is an unavoidable complication of chronic uncontrolled diabetes mellitus. The pathogenesis of diabetic nephropathy is multifactorial, and the development of an effective therapy remains to be elucidated. The aim of the present study was to assess the role of NOX2 and Nrf2 in the protective mechanism of thymoquinone (THQ) against streptozotocin (STZ)-induced diabetic nephropathy.

Methods: Rats were injected with STZ (55 mg/kg) to induce diabetes. The diabetic rats were orally treated with THQ (10 mg/kg/day) for eight weeks.

Results: STZ-treated rats exhibit an elevation of serum creatinine, serum urea, and creatinine clearance. The renal abnormalities were associated with increased NADPH oxidase isoform, NOX2 protein expression, and activity, along with elevated malondialdehyde (MDA). In addition, the tumor necrotic factor-alpha (TNF-α) level and nitric oxide (NO) bioavailability, as well as the transforming growth factor-beta (TGF)-β, were markedly increased. On the other hand, the nuclear factor-E2-related factor (Nrf2) protein expression was significantly reduced in diabetic rats compared to the control. However, treatment with THQ significantly reversed these alterations with subsequent ameliorating renal dysfunction and pathological abnormalities.

Conclusion: The present study demonstrates that THQ could protect against STZ-induced diabetic nephropathy by modulating the Nrf2/NOX2 signaling pathway.

Graphical Abstract

[1]
Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[2]
Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic. Biol. Med., 2018, 116, 50-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.040] [PMID: 29305106]
[3]
Al-Rasheed, N. M: Al-Rasheed, N.M: Bassiouni, Y.A; Hasan, I.H: Al-Amin, M.A; Al-Ajmi, H.N. Simvastatin ameliorates diabetic nephropa-thy by attenuating oxidative stress and apoptosis in a rat model of streptozotocin-induced type 1 diabetes. Biomed. Pharmacother., 2018, 105, 290-298.
[http://dx.doi.org/10.1016/j.biopha.2018.05.130]
[4]
Chou, C.H.; Chuang, L.Y.; Lu, C.Y.; Guh, J.Y. Interaction between TGF-β and ACE2-Ang-(1–7)-Mas pathway in high glucose-cultured NRK-52E cells. Mol. Cell. Endocrinol., 2013, 366(1), 21-30.
[http://dx.doi.org/10.1016/j.mce.2012.11.004] [PMID: 23174757]
[5]
Jiao, B.; Wang, Y.; Cheng, Y.; Gao, J.; Zhang, Q. Valsartan attenuated oxidative stress, decreased MCP-1 and TGF-β1 expression in glomer-ular mesangial and epithelial cells induced by high-glucose levels. Biosci. Trends, 2011, 5(4), 173-181.
[http://dx.doi.org/10.5582/bst.2011.v5.4.173] [PMID: 21914953]
[6]
Hofni, A.; El-Moselhy, M.A.; Taye, A.; Khalifa, M.M. Combination therapy with spironolactone and candesartan protects against strepto-zotocin-induced diabetic nephropathy in rats. Eur. J. Pharmacol., 2014, 744, 173-182.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.021] [PMID: 25446917]
[7]
Kanwar, Y.S.; Wada, J.; Sun, L.; Xie, P.; Wallner, E.I.; Chen, S.; Chugh, S.; Danesh, F.R. Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med. (Maywood), 2008, 233(1), 4-11.
[http://dx.doi.org/10.3181/0705-MR-134] [PMID: 18156300]
[8]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[9]
Marqués, J.; Cortés, A.; Pejenaute, Á.; Zalba, G. Implications of NADPH oxidase 5 in vascular diseases. Int. J. Biochem. Cell Biol., 2020, 128, 105851.
[http://dx.doi.org/10.1016/j.biocel.2020.105851] [PMID: 32949687]
[10]
Tian, R.; Peng, R.; Yang, Z.; Peng, Y.Y.; Lu, N. Supplementation of dietary nitrate attenuated oxidative stress and endothelial dysfunction in diabetic vasculature through inhibition of NADPH oxidase. Nitric Oxide, 2020, 96, 54-63.
[http://dx.doi.org/10.1016/j.niox.2020.01.007]
[11]
Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[12]
Holterman, C.E.; Read, N.C.; Kennedy, C.R. Nox and renal disease. Clin. Sci. , 2015, 128(8), 465-481.
[http://dx.doi.org/10.1042/CS20140361]
[13]
Hofni, A.; Shehata, M.B.A.; Mangoura, S.A. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(8), 801-811.
[http://dx.doi.org/10.1007/s00210-017-1379-y] [PMID: 28493050]
[14]
Chan, K.; Han, X.D.; Kan, Y.W. An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Proc. Natl. Acad. Sci., 2001, 98(8), 4611-4616.
[http://dx.doi.org/10.1073/pnas.081082098] [PMID: 11287661]
[15]
Magesh, S.; Chen, Y.; Hu, L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med. Res. Rev., 2012, 32(4), 687-726.
[http://dx.doi.org/10.1002/med.21257] [PMID: 22549716]
[16]
Olagnier, D.; Peri, S.; Steel, C.; van Montfoort, N.; Chiang, C.; Beljanski, V.; Slifker, M.; He, Z.; Nichols, C.N.; Lin, R.; Balachandran, S.; Hiscott, J. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog., 2014, 10(12), e1004566.
[http://dx.doi.org/10.1371/journal.ppat.1004566] [PMID: 25521078]
[17]
Perlman, A.S.; Chevalier, J.M.; Wilkinson, P.; Liu, H.; Parker, T.; Levine, D.M.; Sloan, B.J.; Gong, A.; Sherman, R.; Farrell, F.X. Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Ann. Clin. Lab. Sci., 2015, 45(3), 256-263.
[PMID: 26116588]
[18]
El-Far, A. Thymoquinone anticancer discovery: possible mechanisms. Curr. Drug Discov. Technol., 2015, 12(2), 80-89.
[http://dx.doi.org/10.2174/1570163812666150716111821] [PMID: 26264075]
[19]
He, Y.; Xu, H.; Liang, L.; Zhan, Z.; Yang, X.; Yu, X.; Ye, Y.; Sun, L. Antiinflammatory effect of Rho kinase blockade via inhibition of NF-κB activation in rheumatoid arthritis. Arthritis Rheum., 2008, 58(11), 3366-3376.
[http://dx.doi.org/10.1002/art.23986] [PMID: 18975348]
[20]
Dong, J.; Zhang, X.; Wang, S.; Xu, C.; Gao, M.; Liu, S.; Li, X.; Cheng, N.; Han, Y.; Wang, X.; Han, Y. Thymoquinone prevents dopaminer-gic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway. Front. Pharmacol., 2021, 11, 615598.
[http://dx.doi.org/10.3389/fphar.2020.615598] [PMID: 33519481]
[21]
Kaymak, E.; Akin, A.T.; Öztürk, E.; Karabulut, D.; Kuloğlu, N.; Yakan, B. Thymoquinone has a neuroprotective effect against inflamma-tion, oxidative stress, and endoplasmic reticulum stress in the brain cortex, medulla, and hippocampus due to doxorubicin. J. Biochem. Mol. Toxicol., 2021, 35(11), e22888.
[http://dx.doi.org/10.1002/jbt.22888] [PMID: 34392583]
[22]
Raut, P.K.; Lee, H.S.; Joo, S.H.; Chun, K.S. Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem. Toxicol., 2021, 157, 112604.
[http://dx.doi.org/10.1016/j.fct.2021.112604]
[23]
Khan, M.A.; Anwar, S.; Aljarbou, A.N.; Al-Orainy, M.; Aldebasi, Y.H.; Islam, S.; Younus, H. Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int. J. Biol. Macromol., 2014, 65, 16-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.001] [PMID: 24412154]
[24]
Moubarak, M.M.; Chanouha, N.; Abou, I.N.; Khalife, H.; Gali-Muhtasib, H. Thymoquinone anticancer activity is enhanced when com-bined with royal jelly in human breast cancer. World J. Clin. Oncol., 2021, 12(5), 342-354.
[http://dx.doi.org/10.5306/wjco.v12.i5.342] [PMID: 34131566]
[25]
Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas. Pharmacol. Res., 2005, 51(2), 117-123.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[26]
Sener, U.; Uygur, R.; Aktas, C.; Uygur, E.; Erboga, M.; Balkas, G.; Caglar, V.; Kumral, B.; Gurel, A.; Erdogan, H. Protective effects of thy-moquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren. Fail., 2016, 38(1), 117-123.
[http://dx.doi.org/10.3109/0886022X.2015.1103601] [PMID: 26513487]
[27]
Bartels, H.; Böhmer, M.; Heierli, C. Serum creatinine determination without protein precipitation. Int. J. Clin. Chem., 1972, 37, 193-197.
[http://dx.doi.org/10.1016/0009-8981(72)90432-9]
[28]
Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol., 1960, 13(2), 156-159.
[http://dx.doi.org/10.1136/jcp.13.2.156] [PMID: 13821779]
[29]
Payne, R.B.; Rosen, S.M.; Smith, P.H. Creatinine clearance tests. BMJ, 1972, 4(5839), 552-553.
[http://dx.doi.org/10.1136/bmj.4.5839.552-e] [PMID: 4642815]
[30]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci., 1979, 76(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[31]
Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86(1), 271-278.
[http://dx.doi.org/10.1016/0003-2697(78)90342-1] [PMID: 655387]
[32]
Montgomery, H; Dymock, Determination of nitrite in water; Royal Soc Chemistry Thomas Graham House: Milton Rd, Cambridge, 1961.
[33]
Van Weemen, B.K.; Schuurs, A.H.W.M. Immunoassay using antigen-enzyme conjugates. FEBS Lett., 1971, 15(3), 232-236.
[http://dx.doi.org/10.1016/0014-5793(71)80319-8] [PMID: 11945853]
[34]
Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed; Elsevier Health Science, 2008.
[35]
De Blasio, M.J.; Ramalingam, A.; Cao, A.H.; Prakoso, D.; Ye, J.M.; Pickering, R.; Watson, A.M.D.; de Haan, J.B.; Kaye, D.M.; Ritchie, R.H. The superoxide dismutase mimetic tempol blunts diabetes-induced upregulation of NADPH oxidase and endoplasmic reticulum stress in a rat model of diabetic nephropathy. Eur. J. Pharmacol., 2017, 807, 12-20.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.026] [PMID: 28438648]
[36]
Zheng, H.; Whitman, S.A.; Wu, W.; Wondrak, G.T.; Wong, P.K.; Fang, D.; Zhang, D.D. Therapeutic potential of Nrf2 activators in strepto-zotocin-induced diabetic nephropathy. Diabetes, 2011, 60(11), 3055-3066.
[http://dx.doi.org/10.2337/db11-0807] [PMID: 22025779]
[37]
Hajam, Y.A.; Rai, S.; Pandi-Perumal, S.R.; Brown, G.M.; Reiter, R.J.; Cardinali, D.P. Coadministration of melatonin and insulin improves diabetes-induced impairment of rat kidney function. Neuroendocrinology, 2021.
[http://dx.doi.org/10.1159/000520280] [PMID: 34673653]
[38]
Sanajou, D.; Ghorbani Haghjo, A.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Ahmad, S.N.S.; Ashrafi-Jigheh, Z.; Bahrambeigi, S.; Asiaee, F.; Rashedi, J.; Aslani, S. Reduction of renal tubular injury with a RAGE inhibitor FPS-ZM1, valsartan and their combination in streptozotocin-induced diabetes in the rat. Eur. J. Pharmacol., 2019, 842, 40-48.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.035] [PMID: 30393200]
[39]
Al-Trad, B.; Al-Batayneh, K.; El-Metwally, S.; Alhazimi, A.; Ginawi, I.; Alaraj, M.; Alkofahi, E.; Aljumaili, O.; Kosba, A. Nigella sativa oil and thymoquinone ameliorate albuminuria and renal extracellular matrix accumulation in the experimental diabetic rats. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(12), 2680-2688.
[PMID: 27383323]
[40]
Kanter, M. Protective effects of thymoquinone on streptozotocin-induced diabetic nephropathy. J. Mol. Histol., 2009, 40(2), 107-115.
[http://dx.doi.org/10.1007/s10735-009-9220-7] [PMID: 19484499]
[41]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[42]
You, Y.H.; Okada, S.; Ly, S.; Jandeleit-Dahm, K.; Barit, D.; Namikoshi, T.; Sharma, K. Role of Nox2 in diabetic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 304(7), F840-F848.
[http://dx.doi.org/10.1152/ajprenal.00511.2012] [PMID: 23389458]
[43]
Gumieniczek, A.; Hopkała, H.; Wójtowicz, Z.; Nikołajuk, J. Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim. Pol., 2002, 49(2), 529-535.
[http://dx.doi.org/10.18388/abp.2002_3812] [PMID: 12362995]
[44]
Singh, M.; Bhate, K.; Kulkarni, D.; Santhosh Kumar, S.N.; Kathariya, R. The effect of alloplastic bone graft and absorbable gelatin sponge in prevention of periodontal defects on the distal aspect of mandibular second molars, after surgical removal of impacted mandibular third molar: a comparative prospective study. J. Maxillofac. Oral Surg., 2015, 14(1), 101-106.
[http://dx.doi.org/10.1007/s12663-013-0599-z] [PMID: 25729233]
[45]
Cuevas, S.; Zhang, Y.; Yang, Y.; Escano, C.; Asico, L.; Jones, J.E.; Armando, I.; Jose, P.A. Role of renal DJ-1 in the pathogenesis of hyper-tension associated with increased reactive oxygen species production. Hypertension, 2012, 59(2), 446-452.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.185744] [PMID: 22215708]
[46]
Fukuda, M.; Nakamura, T.; Kataoka, K.; Nako, H.; Tokutomi, Y.; Dong, Y.F.; Ogawa, H.; Kim-Mitsuyama, S. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J. Hypertens., 2010, 28(2), 340-352.
[http://dx.doi.org/10.1097/HJH.0b013e32833366cd] [PMID: 19864959]
[47]
Minaz, N.; Razdan, R. Therapeutic insight into molsidomine, a nitric oxide donor in streptozotocin-induced diabetic nephropathy in rats. Indian J. Pharmacol., 2016, 48(5), 544-549.
[http://dx.doi.org/10.4103/0253-7613.190744] [PMID: 27721541]
[48]
Matzinger, M.; Fischhuber, K.; Heiss, E.H. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol. Adv., 2018, 36(6), 1738-1767.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015] [PMID: 29289692]
[49]
Wu, J.; Sun, X.; Jiang, Z.; Jiang, J.; Xu, L.; Tian, A.; Sun, X.; Meng, H.; Li, Y.; Huang, W.; Jia, Y.; Wu, H. Protective role of NRF2 in macro-vascular complications of diabetes. J. Cell. Mol. Med., 2020, 24(16), 8903-8917.
[http://dx.doi.org/10.1111/jcmm.15583] [PMID: 32628815]
[50]
Zhang, D.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev., 2006, 38(4), 769-789.
[http://dx.doi.org/10.1080/03602530600971974] [PMID: 17145701]
[51]
Jiang, T.; Huang, Z.; Lin, Y.; Zhang, Z.; Fang, D.; Zhang, D.D. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes, 2010, 59(4), 850-860.
[http://dx.doi.org/10.2337/db09-1342] [PMID: 20103708]
[52]
Elsherbiny, N.M.; El-Sherbiny, M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: Role of Nrf2 and NOX4. Chem. Biol. Interact., 2014, 223, 102-108.
[http://dx.doi.org/10.1016/j.cbi.2014.09.015] [PMID: 25268985]
[53]
Sabir, S.; Saleem, U.; Akash, M.S.H.; Qasim, M.; Chauhdary, Z. Thymoquinone induces Nrf2 mediated adaptive homeostasis: implication for mercuric chloride-induced nephrotoxicity. ACS Omega, 2022, 7(8), 7370-7379.
[http://dx.doi.org/10.1021/acsomega.2c00028] [PMID: 35252727]
[54]
Mezzano, S.; Droguett, A.; Burgos, M.E.; Ardiles, L.G.; Flores, C.A.; Aros, C.A.; Caorsi, I.; Vío, C.P.; Ruiz-Ortega, M.; Egido, J. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int., 2003, 64(86), S64-S70.
[http://dx.doi.org/10.1046/j.1523-1755.64.s86.12.x] [PMID: 12969130]
[55]
Taye, A.; Ibrahim, B.M. Activation of renal haeme oxygenase-1 alleviates gentamicin-induced acute nephrotoxicity in rats. J. Pharm. Pharmacol., 2013, 65(7), 995-1004.
[http://dx.doi.org/10.1111/jphp.12067] [PMID: 23738727]
[56]
Kim, Y.S.; Morgan, M.J.; Choksi, S.; Liu, Z. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell, 2007, 26(5), 675-687.
[http://dx.doi.org/10.1016/j.molcel.2007.04.021] [PMID: 17560373]
[57]
Chenevier-Gobeaux, C.; Simonneau, C.; Therond, P.; Bonnefont-Rousselot, D.; Poiraudeau, S.; Ekindjian, O.G.; Borderie, D. Implication of cytosolic phospholipase A2 (cPLA2) in the regulation of human synoviocyte NADPH oxidase (Nox2) activity. Life Sci., 2007, 81(13), 1050-1058.
[http://dx.doi.org/10.1016/j.lfs.2007.08.018] [PMID: 17869312]
[58]
Omran, O.M.; AlSheeha, M. Human papilloma virus early proteins E6 (HPV16/18-E6) and the cell cycle marker P16 (INK4a) are useful prognostic markers in uterine cervical carcinomas in Qassim Region Saudi Arabia. Pathol. Oncol. Res., 2015, 21(1), 157-166.
[http://dx.doi.org/10.1007/s12253-014-9801-y] [PMID: 24925218]
[59]
Huang, K.; Gao, X.; Wei, W. The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells. Exp. Cell Res., 2017, 361(1), 63-72.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.042] [PMID: 28986066]
[60]
Song, M.K.; Lee, J.H.; Ryoo, I.; Lee, S.; Ku, S.K.; Kwak, M.K. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radic. Biol. Med., 2019, 138, 33-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.033] [PMID: 31059771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy