Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Herbal Components for the Treatment of Alzheimer's Disease

Author(s): Tanu Bisht, Sonali Sundram*, Rishabha Malviya and Akanksha Pandey

Volume 13, Issue 7, 2023

Published on: 02 March, 2023

Article ID: e230123213001 Pages: 18

DOI: 10.2174/2210315513666230123111541

Price: $65

Abstract

Globally, there are around 50 million Alzheimer's disease sufferers worldwide, a number that is expected to double every five years and reach 152 million by 2050. Traditional drugs for cognitive impairment are only palliative and do not cure the disease. Alzheimer's disease is characterised by memory and language loss, as well as difficulties with visual orientation and greater executive function. The present study aimed to examine various causes, mechanisms, and roles of different herbal components in the treatment of Alzheimer’s disease. Since ancient times, several different plants have been utilised to improve memory and treat various dementia-related issues. These anti-AD plants include a wide taxonomic range due to acetyl choline esterase inhibition, antioxidant capacity, neuroprotection, mitochondrial energy restoration, and/or precipitated protein clearance. Secondary metabolites of these medicinal plants may be used to treat AD. AADvac1 is an active vaccination that stimulates an immune response by attacking numerous critical epitopes in pathogenic tau variants, thereby preventing tau aggregation and reducing the development of neurofibrillary tangles. Herbal plants are widely used because of their perceived effectiveness, safety, and low cost. To summarise, the evidence supporting the use of herbal components is promising, but more work is needed.

Graphical Abstract

[1]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789]
[2]
Kuller, L.H. Hormone replacement therapy and its potential relationship to dementia. J. Am. Geriatr. Soc., 1996, 44(7), 878-880.
[http://dx.doi.org/10.1111/j.1532-5415.1996.tb03753.x]
[3]
Brenowitz, W.D.; Xiang, Y.; McEvoy, C.T.; Yang, C.; Yaffe, K.; Le, W.D.; Leng, Y. Current Alzheimer disease research highlights: Evidence for novel risk factors. Chin. Med. J., 2021, 134(18), 2150-2159.
[http://dx.doi.org/10.1097/CM9.0000000000001706]
[4]
Kamran, M.; Kousar, R.; Ullah, S.; Khan, S.; Umer, M.F.; Rashid, H.U.; Khan, Z.; Khattak, M.I.; Rehman, M.U. Taxonomic distribution of medicinal plants for Alzheimer’s disease: A cue to novel drugs. Int. J. Alzheimers Dis., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/7603015]
[5]
Davis, K.L. Future therapeutic approaches to Alzheimer’s disease. J. Clin. Psychiatry, 1998, 59(11), 14-16.
[6]
Schachter, A.S.; Davis, K.L. Alzheimer’s disease. Dialogues Clin. Neurosci., 2000, 2(2), 91-100.
[http://dx.doi.org/10.31887/DCNS.2000.2.2/asschachter]
[7]
Sucher, N.J.; Awobuluyi, M.; Choi, Y.B.; Lipton, S.A. NMDA receptors: From genes to channels. Trends Pharmacol. Sci., 1996, 17(10), 348-355.
[http://dx.doi.org/10.1016/S0165-6147(96)80008-3]
[8]
Greenamyre, J.T.; Young, A.B. Excitatory amino acids and Alzheimer’s disease. Neurobiol. Aging, 1989, 10(5), 593-602.
[http://dx.doi.org/10.1016/0197-4580(89)90143-7]
[9]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341.
[http://dx.doi.org/10.1056/NEJMoa013128]
[10]
scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7]
[11]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766]
[12]
Novak, P.; Kontsekova, E.; Zilka, N.; Novak, M. Ten years of tautargeted immunotherapy: The path walked and the roads ahead. Front. Neurosci., 2018, 12, 798.
[http://dx.doi.org/10.3389/fnins.2018.00798]
[13]
Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in Alzheimer’s disease. Cell. Mol. Neurobiol., 2018, 38(5), 965-980.
[http://dx.doi.org/10.1007/s10571-017-0574-1]
[14]
Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today, 2019, 24(2), 606-615.
[http://dx.doi.org/10.1016/j.drudis.2018.11.007]
[15]
Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci., 2020, 27(1), 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7]
[16]
Fagan, A.M.; Xiong, C.; Jasielec, M.S.; Bateman, R.J.; Goate, A.M.; Benzinger, T.L.S.; Ghetti, B.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Salloway, S.; Schofield, P.R.; Sperling, R.A.; Marcus, D.; Cairns, N.J.; Buckles, V.D.; Ladenson, J.H.; Morris, J.C.; Holtzman, D.M. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med., 2014, 6(226), 226ra30.
[http://dx.doi.org/10.1126/scitranslmed.3007901]
[17]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008]
[18]
Hane, F.T.; Robinson, M.; Lee, B.Y.; Bai, O.; Leonenko, Z.; Albert, M.S. Recent progress in Alzheimer’s disease research, Part 3: Diagnosis and treatment. J. Alzheimers Dis., 2017, 57(3), 645-665.
[http://dx.doi.org/10.3233/JAD-160907]
[19]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003]
[20]
Wang, J.; Tan, L.; Yu, J. Prevention trials in Alzheimer’s disease: Current status and future perspectives. J. Alzheimers Dis., 2016, 50(4), 927-945.
[http://dx.doi.org/10.3233/JAD-150826]
[21]
Alisi, I.O.; Uzairu, A.; Abechi, S.E.; Idris, S.O. Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. J. Adv. Res., 2018, 12, 47-54.
[http://dx.doi.org/10.1016/j.jare.2018.03.003]
[22]
Dende, C.; Meena, J.; Nagarajan, P.; Nagaraj, V.A.; Panda, A.K.; Padmanaban, G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci. Rep., 2017, 7(1), 10062.
[http://dx.doi.org/10.1038/s41598-017-10672-9]
[23]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220]
[24]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512]
[25]
Wang, Y.; Yin, H.; Lou, J.; Han, B.; Qin, X.; Meng, F.; Geng, S.; Liu, Y. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer’s disease. Neural Regen. Res., 2011, 6(24), 1845.
[26]
Yanagisawa, D.; Ibrahim, N.F.; Taguchi, H.; Morikawa, S.; Hirao, K.; Shirai, N.; Sogabe, T.; Tooyama, I. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol. Aging, 2015, 36(1), 201-210.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.041]
[27]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525]
[28]
Bhat, B.A.; Almilaibary, A.; Mir, R.A.; Aljarallah, B.M.; Mir, W.R.; Ahmad, F.; Mir, M.A. Natural therapeutics in aid of treating alzheimer’s disease: A green gateway toward ending quest for treating neurological disorders. Front. Neurosci., 2022, 16, 884345.
[http://dx.doi.org/10.3389/fnins.2022.884345]
[29]
Nam, S.M.; Choi, J.H.; Yoo, D.Y.; Kim, W.; Jung, H.Y.; Kim, J.W.; Yoo, M.; Lee, S.; Kim, C.J.; Yoon, Y.S.; Hwang, I.K. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J. Med. Food, 2014, 17(6), 641-649.
[http://dx.doi.org/10.1089/jmf.2013.2965]
[30]
Agrawal, R.; Mishra, B.; Tyagi, E.; Nath, C.; Shukla, R. Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol. Res., 2010, 61(3), 247-252.
[http://dx.doi.org/10.1016/j.phrs.2009.12.008]
[31]
Banji, D.; Banji, O.J.F.; Dasaroju, S.; Annamalai, A.R. Piperine and curcumin exhibit synergism in attenuating d-galactose induced senescence in rats. Eur. J. Pharmacol., 2013, 703(1-3), 91-99.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.018]
[32]
Banji, D.; Banji, O.J.F.; Dasaroju, S.; Kumar, CH, K. Curcumin and piperine abrogate lipid and protein oxidation induced by d-galactose in rat brain. Brain Res., 2013, 1515, 1-11.
[http://dx.doi.org/10.1016/j.brainres.2013.03.023]
[33]
Banji, O.J.F.; Banji, D.; Ch, K. Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain. Food Chem. Toxicol., 2014, 74, 51-59.
[http://dx.doi.org/10.1016/j.fct.2014.08.020]
[34]
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Cóppola-Segovia, V.; Zanata, S.M.; Oliveira, R.M.M.W.; Vital, M.A.B.F. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res., 2017, 335, 41-54.
[http://dx.doi.org/10.1016/j.bbr.2017.08.014]
[35]
Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.R.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144.
[http://dx.doi.org/10.1016/j.nlm.2013.08.001]
[36]
Ishrat, T.; Hoda, M.N.; Khan, M.B.; Yousuf, S.; Ahmad, M.; Khan, M.M.; Ahmad, A.; Islam, F. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur. Neuropsychopharmacol., 2009, 19(9), 636-647.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002]
[37]
Kumar, A.; Prakash, A.; Dogra, S. Protective effect of curcumin (Curcuma longa) against D-galactose-induced senescence in mice. J. Asian Nat. Prod. Res., 2011, 13(1), 42-55.
[http://dx.doi.org/10.1080/10286020.2010.544253]
[38]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y]
[39]
Singh, S.; Kumar, P. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats. Inflammopharmacology, 2017, 25(1), 69-79.
[http://dx.doi.org/10.1007/s10787-016-0297-9]
[40]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093]
[41]
Baum, L.; Lam, C.W.K.; Cheung, S.K.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.K.; Goggins, W.B.; Zee, B.C-Y.; Cheng, K.F.; Fong, C.Y.S.; Wong, A.; Mok, H.; Chow, M.S.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.L.; Chan, M-H.; Szeto, S.; Chan, I.H.S.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c]
[42]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146]
[43]
Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29(5), 642-651.
[http://dx.doi.org/10.1177/0269881114552744]
[44]
Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr., 2016, 115(12), 2106-2113.
[http://dx.doi.org/10.1017/S0007114516001203]
[45]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S-C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010]
[46]
Voulgaropoulou, S.D.; van Amelsvoort, T.A.M.J.; Prickaerts, J.; Vingerhoets, C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res., 2019, 1725, 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476]
[47]
Asaduzzaman, M.; Uddin, M.J.; Kader, M.A.; Alam, A.H.; Rahman, A.A.; Rashid, M.; Kato, K.; Tanaka, T.; Takeda, M.; Sadik, G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: Implications for the treatment of Alzheimer’s disease. Psychoger., 2014, 14(1), 1-0.
[48]
Dhalwal, K.; Shinde, V.M.; Namdeo, A.G.; Mahadik, K.R. Antioxidant profile and HPTLC-densitometric analysis of umbelliferone and psoralen in Aegle marmelos. Pharm. Biol., 2008, 46(4), 266-272.
[http://dx.doi.org/10.1080/13880200701741088]
[49]
Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytothe. Res.: An Int. J. Devo. Pharmaco. &. Toxico. Eva. of Nat. Prod. Deriva, 2007, 21(7), 615-621.
[50]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9]
[51]
Uddin, M.J.; Alam, M.N.; Biswas, K.; Rahman, M.A. In vitro antioxidative and cholinesterase inhibitory properties of Thunbergia grandiflora leaf extract. Cogent Food Agric., 2016, 2(1), 1256929.
[http://dx.doi.org/10.1080/23311932.2016.1256929]
[52]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Pro. of the Nat. Acta Scientiarum, 2012, 109(9), 3510-3515.
[53]
Jayaprakasam, B.; Padmanabhan, K.; Nair, M.G. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease. Phytother. Res., 2010, 24(6), 859-863.
[http://dx.doi.org/10.1002/ptr.3033]
[54]
Kumar, S.; Harris, R.J.; Seal, C.J.; Okello, E.J. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother. Res., 2012, 26(1), 113-117.
[http://dx.doi.org/10.1002/ptr.3512]
[55]
Schliebs, R.; Liebmann, A.; Bhattacharya, S.; Kumar, A.; Ghosal, S.; Bigl, V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem. Int., 1997, 30(2), 181-190.
[http://dx.doi.org/10.1016/S0197-0186(96)00025-3]
[56]
Roy, A. Role of medicinal plants against Alzheimer’s disease. Int. J. Complement. Altern. Med., 2018, 11(4), 205-208.
[http://dx.doi.org/10.15406/ijcam.2018.11.00398]
[57]
Mehla, J.; Gupta, P.; Pahuja, M.; Diwan, D.; Diksha, D. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sci., 2020, 10(12), 964.
[http://dx.doi.org/10.3390/brainsci10120964]
[58]
Shinomol, G.K.; Bharath, M.M. Exploring the role of “Brahmi”(Bacopa monnieri and Centella asiatica) in brain function and therapy. Rec. Pat. Endo. Meta. Imm. Drug Dis., 2011, 5(1), 33-49.
[59]
Dhanasekaran, M.; Holcomb, L.A.; Hitt, A.R.; Tharakan, B.; Porter, J.W.; Young, K.A.; Manyam, B.V. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytothe. Res.: An Int. J. Devo. Pharmaco. Toxico. Eva. Nat. Prod. Deriva., 2009, 23(1), 14-19.
[60]
Cervenka, F.; Jahodar, L. Plant metabolites as nootropics and cognitives. Ceska. Slov. Farm., 2006, 55(5), 219-229.
[61]
Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res. Ther., 2012, 4(3), 22.
[http://dx.doi.org/10.1186/alzrt125]
[62]
Veerendra, K.M.H.; Gupta, Y.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J. Ethnopharmacol., 2002, 79(2), 253-260.
[http://dx.doi.org/10.1016/S0378-8741(01)00394-4]
[63]
Panda, S.S.; Jhanji, N. Natural products as potential anti-Alzheimer agents. Curr. Med. Chem., 2020, 27(35), 5887-5917.
[http://dx.doi.org/10.2174/0929867326666190618113613]
[64]
Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol., 2008, 116(2), 325-332.
[http://dx.doi.org/10.1016/j.jep.2007.11.038]
[65]
Singh, H.K.; Dhawan, B.N. Effect of Bacopa monniera Linn. (Brāhmi) extract on avoidance responses in rat. J. Ethnopharmacol., 1982, 5(2), 205-214.
[http://dx.doi.org/10.1016/0378-8741(82)90044-7]
[66]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056]
[67]
Bhattacharya, S.K.; Bhattacharya, A.; Kumar, A.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res., 2000, 14(3), 174-179.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O]
[68]
Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol., 2008, 120(1), 112-117.
[http://dx.doi.org/10.1016/j.jep.2008.07.039]
[69]
Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive effect of nootropic drug brahmi Bacopa monnieri in Alzheimer’s disease. Ann. Neurosci., 2017, 24(2), 111-122.
[http://dx.doi.org/10.1159/000475900]
[70]
Jyoti, A.; Sethi, P.; Sharma, D. Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J. Ethnopharmacol., 2007, 111(1), 56-62.
[http://dx.doi.org/10.1016/j.jep.2006.10.037]
[71]
Holcomb, L.A.; Dhanasekaran, M.; Hitt, A.R.; Young, K.A.; Riggs, M.; Manyam, B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimers Dis., 2006, 9(3), 243-251.
[http://dx.doi.org/10.3233/JAD-2006-9303]
[72]
Rai, K.S.; Murthy, K.D.; Karanth, K.S.; Nalini, K.; Rao, M.S.; Srinivasan, K.K. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia, 2002, 73(7-8), 685-689.
[http://dx.doi.org/10.1016/S0367-326X(02)00249-6]
[73]
Taranalli, A.D.; Cheeramkuzhy, T.C. Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm. Biol., 2000, 38(1), 51-56.
[http://dx.doi.org/10.1076/1388-0209(200001)3811-BFT051]
[74]
Rai, K.S.; Murthy, K.D.; Karantha, K.S.; Rao, M.S. Clitoria ternatea (Linn) root extract treatment during growth spurt period enhances learning and memory in rats. Indian J. Physiol. Pharmacol., 2001, 45(3), 305-313.
[75]
Rai, K.S.; Murthy, K.D.; Rao, M.S.; Karanth, K.S. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract. Phytothe. Res.: Int. J. Devo. Pharmaco. Toxico. Eva. Nat. Prod. Deriva, 2005, 19(7), 592-598.
[76]
Mehla, J.; Pahuja, M.; Gupta, Y.K. Streptozotocin-induced sporadic Alzheimer’s disease: Selection of appropriate dose. J. Alzheimers Dis., 2012, 33(1), 17-21.
[http://dx.doi.org/10.3233/JAD-2012-120958]
[77]
Yao, Z.; Drieu, K.; Papadopoulos, V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from β-amyloid-induced cell death by inhibiting the formation of β-amyloid-derived diffusible neurotoxic ligands. Brain Res., 2001, 889(1-2), 181-190.
[http://dx.doi.org/10.1016/S0006-8993(00)03131-0]
[78]
Stackman, R.W.; Eckenstein, F.; Frei, B.; Kulhanek, D.; Nowlin, J.; Quinn, J.F. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp. Neurol., 2003, 184(1), 510-520.
[http://dx.doi.org/10.1016/S0014-4886(03)00399-6]
[79]
Bate, C.; Tayebi, M.; Williams, A. Ginkgolides protect against amyloid-β1-42-mediated synapse damage in vitro. Mol. Neurodegener., 2008, 3(1), 1-9.
[http://dx.doi.org/10.1186/1750-1326-3-1]
[80]
Tchantchou, F.; Xu, Y.; Wu, Y.; Christen, Y.; Luo, Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J., 2007, 21(10), 2400-2408.
[http://dx.doi.org/10.1096/fj.06-7649com]
[81]
Omar, S. Ginkgolides and neuroprotective effects. Natural products: Phytochemistry, botany, metabolism of alkaloids, phenolics and terpenes; Springer: Heidelberg, 2013, pp. 3697-3741.
[http://dx.doi.org/10.1007/978-3-642-22144-6_146]
[82]
Wang, Y.; Huang, L.; Tang, X.; Zhang, H. Retrospect and prospect of active principles from Chinese herbs in the treatment of dementia. Acta Pharmacol. Sin., 2010, 31(6), 649-664.
[http://dx.doi.org/10.1038/aps.2010.46]
[83]
Howes, M.J.R.; Houghton, P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav., 2003, 75(3), 513-527.
[http://dx.doi.org/10.1016/S0091-3057(03)00128-X]
[84]
Zhang, H.Y.; Zheng, C.Y.; Yan, H.; Wang, Z.F.; Tang, L.L.; Gao, X.; Tang, X.C. Potential therapeutic targets of huperzine a for Alzheimer’s disease and vascular dementia. Chem. Biol. Interact., 2008, 175(1-3), 396-402.
[http://dx.doi.org/10.1016/j.cbi.2008.04.049]
[85]
Wang, B.; Wang, H.; Wei, Z.; Song, Y.; Zhang, L.; Chen, H. Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: An updated meta-analysis. J. Neural Transm., 2009, 116(4), 457-465.
[http://dx.doi.org/10.1007/s00702-009-0189-x]
[86]
Chang, D.; Liu, J.; Bilinski, K.; Xu, L.; Steiner, G.Z.; Seto, S.W.; Bensoussan, A. Herbal medicine for the treatment of vascular dementia: An overview of scientific evidence; Evid. Based Compl. Alt. Med., 2016, p. 16.
[87]
Xiao, X.Q.; Zhang, H.Y.; Tang, X.C. Huperzine a attenuates amyloid? -peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res., 2002, 67(1), 30-36.
[http://dx.doi.org/10.1002/jnr.10075]
[88]
Peng, Y.; Jiang, L.; Lee, D.Y.W.; Schachter, S.C.; Ma, Z.; Lemere, C.A. Effects of huperzine A on amyloid precursor protein processing and β-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J. Neurosci. Res., 2006, 84(4), 903-911.
[http://dx.doi.org/10.1002/jnr.20987]
[89]
Xu, S.S.; Gao, Z.X.; Weng, Z.; Du, Z.M.; Xu, W.A.; Yang, J.S.; Zhang, M.L.; Tong, Z.H.; Fang, Y.S.; Chai, X.S. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Yao Xue Xue Bao, 1995, 16(5), 391-395.
[90]
Xu, S.S.; Cai, Z.Y.; Qu, Z.W.; Yang, R.M.; Cai, Y.L.; Wang, G.Q.; Su, X.Q.; Zhong, X.S.; Cheng, R.Y.; Xu, W.A.; Li, J.X. Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Yao Xue Xue Bao, 1999, 20(6), 486-490.
[91]
Rafii, M.S.; Walsh, S.; Little, J.T.; Behan, K.; Reynolds, B.; Ward, C.; Jin, S.; Thomas, R.; Aisen, P.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology, 2011, 76(16), 1389-1394.
[http://dx.doi.org/10.1212/WNL.0b013e318216eb7b]
[92]
Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313.
[http://dx.doi.org/10.3390/ijms20092313]
[93]
Yalla, R.Y.; Mohana, L.S.; Saravana, K.A. Review on effect of natural memory enhancing drugs on dementia. Int. J. Phytopharmacol., 2010, 1, 1-7.
[94]
Singhal, A.; Bangar, O.P.; Naithani, V. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(2), 84-91.
[http://dx.doi.org/10.4103/2231-0738.95927]
[95]
Shin, S.J.; Nam, Y.; Park, Y.H.; Kim, M.J.; Lee, E.; Jeon, S.G.; Bae, B.S.; Seo, J.; Shim, S.L.; Kim, J.S.; Han, C.K.; Kim, S.; Lee, Y.Y.; Moon, M. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease. Free Radic. Biol. Med., 2021, 164, 233-248.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.454]
[96]
Yang, Y.; Liang, X.; Jin, P.; Li, N.; Zhang, Q.; Yan, W.; Zhang, H.; Sun, J. Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)‐LC‐ESI‐MS2. Phytochem. Anal., 2019, 30(1), 26-33.
[http://dx.doi.org/10.1002/pca.2787]
[97]
Green, R.C.; Schneider, L.S.; Amato, D.A.; Beelen, A.P.; Wilcock, G.; Swabb, E.A.; Zavitz, K.H. Tarenflurbil phase 3 study group. effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA, 2009, 302(23), 2557-2564.
[http://dx.doi.org/10.1001/jama.2009.1866]
[98]
Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol., 2021, 67, 126779.
[http://dx.doi.org/10.1016/j.jtemb.2021.126779]
[99]
Hwang, S.H.; Shin, E.J.; Shin, T.J.; Lee, B.H.; Choi, S.H.; Kang, J.; Kim, H.J.; Kwon, S.H.; Jang, C.G.; Lee, J.H.; Kim, H.C.; Nah, SY. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: Involvement of non-amyloidogenic processing. J. Alzheimers Dis., 2012, 31(1), 207-223.
[http://dx.doi.org/10.3233/JAD-2012-120439]
[100]
Kim, H.J.; Shin, E.J.; Lee, B.H.; Choi, S.H.; Jung, S.W.; Cho, I.H.; Hwang, S.H.; Kim, J.Y.; Han, J.S.; Chung, C.; Jang, C.G.; Rhim, H.; Kim, H-C.; Nah, S-Y. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-β protein, and mouse model of Alzheimer’s disease. Mol. Cells, 2015, 38(9), 796-805.
[http://dx.doi.org/10.14348/molcells.2015.0116]
[101]
John, O.O.; Amarachi, I.S.; Chinazom, A.P.; Adaeze, E.; Kale, M.B.; Umare, M.D.; Upaganlawar, A.B. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmaco. Res.: Zhongguo Xiandai Zhongyao, 2021, 100030.
[102]
Ahn, J.Y.; Kim, S.; Jung, S.E.; Ha, T.Y. Effect of licorice (Glycyrrhiza uralensis fisch) on amyloid-β-induced neurotoxicity in PC12 cells. Food Sci. Biotechnol., 2010, 19(5), 1391-1395.
[http://dx.doi.org/10.1007/s10068-010-0198-4]
[103]
Chen, F.; Eckman, E.A.; Eckman, C.B. Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB J., 2006, 20(8), 1269-1271.
[104]
Li, W.; Chu, Y.; Zhang, L.; Yin, L.; Li, L. Ginsenoside Rg1 attenuates tau phosphorylation in SK-N-SH induced by Aβ‐stimulated THP-1 supernatant and the involvement of p38 pathway activation. Life Sci., 2012, 91(15-16), 809-815.
[http://dx.doi.org/10.1016/j.lfs.2012.08.028]
[105]
Kim, J.; Shim, J.; Lee, S.; Cho, W.H.; Hong, E.; Lee, J.H.; Han, J.S.; Lee, H.J.; Lee, K.W. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC Complement. Altern. Med., 2016, 16(1), 66.
[http://dx.doi.org/10.1186/s12906-016-1050-z]
[106]
Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci., 2018, 10, 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003]
[107]
Zhang, G.; Liu, A.; Zhou, Y.; San, X.; Jin, T.; Jin, Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol., 2008, 115(3), 441-448.
[http://dx.doi.org/10.1016/j.jep.2007.10.026]
[108]
Chu, S.; Gu, J.; Feng, L.; Liu, J.; Zhang, M.; Jia, X.; Liu, M.; Yao, D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int. Immunopharmacol., 2014, 19(2), 317-326.
[http://dx.doi.org/10.1016/j.intimp.2014.01.018]
[109]
Alzobaidi, N.; Quasimi, H.; Emad, N.A.; Alhalmi, A.; Naqvi, M. Bioactive compounds and traditional herbal medicine: promising approaches for the treatment of dementia. Degener. Neurol. Neuromuscul. Dis., 2021, 11, 1-14.
[http://dx.doi.org/10.2147/DNND.S299589]
[110]
Lee, S.T.; Chu, K.; Sim, J.Y.; Heo, J.H.; Kim, M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2008, 22(3), 222-226.
[http://dx.doi.org/10.1097/WAD.0b013e31816c92e6]
[111]
Heo, J.H.; Lee, S.T.; Oh, M.J.; Park, H.J.; Shim, J.Y.; Chu, K.; Kim, M.H. Improvement of cognitive deficit in Alzheimer’s disease patients by long term treatment with Korean red ginseng. J. Ginseng Res., 2011, 35(4), 457-461.
[http://dx.doi.org/10.5142/jgr.2011.35.4.457]
[112]
Heo, J.H.; Lee, S.T.; Chu, K.; Oh, M.J.; Park, H.J.; Shim, J.Y.; Kim, M. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimers disease. Eur. J. Neurol., 2008, 15(8), 865-868.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02157.x]
[113]
Chan, P.C.; Xia, Q.; Fu, P.P. Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2007, 25(3), 211-244.
[http://dx.doi.org/10.1080/10590500701569414]
[114]
Scholey, A.B.; Kennedy, D.O. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: Differential interactions with cognitive demand. Hum. Psychopharmacol., 2002, 17(1), 35-44.
[http://dx.doi.org/10.1002/hup.352]
[115]
Steiner, G.Z.; Yeung, A.; Liu, J.X.; Camfield, D.A.; Blasio, F.M.; Pipingas, A.; Scholey, A.B.; Stough, C.; Chang, D.H. The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: A randomised, double-blind, placebo controlled crossover pilot trial. BMC Complement. Altern. Med., 2015, 16(1), 15.
[http://dx.doi.org/10.1186/s12906-016-0989-0]
[116]
Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Differential, dose dependent changes in cognitive performance following acute administration of a Ginkgo biloba/Panax ginseng combination to healthy young volunteers. Nutr. Neurosci., 2001, 4(5), 399-412.
[http://dx.doi.org/10.1080/1028415X.2001.11747376]
[117]
Mittal, S.; Dhiman, M.; Padala, P.R.; Perez‐Polo, R.; Mantha, A.K. Indian herbs and their therapeutic potential against Alzheimer’s disease and other neurological disorders. In: Neuroprotective Effects of Phytochemicals in Neurological Disorders; Tahira, F.; Akhlaq, A.F., Eds.; John Wiley & Sons, Inc: New Jersey, 2017.
[118]
Bihaqi, S.; Tiwari, M.; Singh, A.P. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J. Pharmacol., 2011, 43(5), 520-525.
[http://dx.doi.org/10.4103/0253-7613.84958]
[119]
Sethiya, N.K.; Nahata, A.; Mishra, S.H.; Dixit, V.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J. Chin. Integr. Med., 2009, 7(11), 1001-1022.
[http://dx.doi.org/10.3736/jcim20091101]
[120]
Nahata, A.; Patil, U.K.; Dixit, V.K. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents. Nat. Prod. Res., 2008, 22(16), 1472-1482.
[http://dx.doi.org/10.1080/14786410802214199]
[121]
Dubey, G.P.; Pathak, S.R.; Gupta, B.S. Combined effect of Brahmi (Bacopa monniera) and Shankhpushpi (Convolvulus pluricaulis) on cognitive functions. Pharmacopsychoecol, 1994, 7(3), 249-251.
[122]
Malik, J.; Karan, M.; Vasisht, K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm. Biol., 2011, 49(12), 1234-1242.
[http://dx.doi.org/10.3109/13880209.2011.584539]
[123]
Sharma, K.; Bhatnagar, M.; Kulkarni, S.K. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation. Indian J. Exp. Biol., 2010, 48(5), 479-485.
[124]
Asthana, S.; Greig, N.H.; Holloway, H.W.; Raffaele, K.C.; Berardi, A.; Schapiro, M.B.; Rapoport, S.I.; Soncrant, T.T. Clinical pharmacokinetics of arecoline in subjects with Alzheimer’s disease. Clin. Pharmacol. Ther., 1996, 60(3), 276-282.
[http://dx.doi.org/10.1016/S0009-9236(96)90054-5]
[125]
Mirzaev, Y.R.; Aripova, S.F. Neuro- and psychopharmacological investigation of the alkaloids convolvine and atropine. Chem. Nat. Compd., 1998, 34(1), 56-58.
[http://dx.doi.org/10.1007/BF02249687]
[126]
Bihaqi, S.W.; Sharma, M.; Singh, A.P.; Tiwari, M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J. Ethnopharmacol., 2009, 124(3), 409-415.
[http://dx.doi.org/10.1016/j.jep.2009.05.038]
[127]
Malik, J.; Karan, M.; Vasisht, K. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice. Nat. Prod. Res., 2016, 30(5), 578-582.
[http://dx.doi.org/10.1080/14786419.2015.1025398]
[128]
Hosseini, M.; Mohammadpour, T.; Karami, R.; Rajaei, Z.; Reza Sadeghnia, H.; Soukhtanloo, M. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin. J. Integr. Med., 2015, 21(6), 438-444.
[http://dx.doi.org/10.1007/s11655-014-1742-5]
[129]
Khazdair, M.R. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J. Toxico, 2015, 841823.
[130]
Cascella, M.; Bimonte, S.; Barbieri, A.; Del Vecchio, V.; Muzio, M.R.; Vitale, A.; Benincasa, G.; Ferriello, A.B.; Azzariti, A.; Arra, C.; Cuomo, A. Dissecting the potential roles of Nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 16.
[http://dx.doi.org/10.3389/fnagi.2018.00016]
[131]
Rajabian, A.; Hosseinzadeh, H. Dermatological effects of Nigella sativa and its constituent, thymoquinone: A review.Nuts and Seeds in Health and Disease Preven; , 2020, pp. 329-355.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00024-3]
[132]
Azizi, Z.; Ebrahimi, S.; Saadatfar, E.; Kamalinejad, M.; Majlessi, N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav. Pharmacol., 2012, 23(3), 241-249.
[http://dx.doi.org/10.1097/FBP.0b013e3283534301]
[133]
Rendeiro, C.; Foley, A.; Lau, V.C.; Ring, R.; Rodriguez-Mateos, A.; Vauzour, D.; Williams, C.M.; Regan, C.; Spencer, J.P.E. A role for hippocampal PSA-NCAM and NMDA-NR2B receptor function in flavonoid-induced spatial memory improvements in young rats. Neuropharmacology, 2014, 79, 335-344.
[http://dx.doi.org/10.1016/j.neuropharm.2013.12.003]
[134]
Khan, A.; Khuwaja, G.; Khan, M.B. Effects of thymoquinone on streptozotocin model of cognitive impairment in rats. Ann. Neurosci., 2008, 15, 94.
[135]
Alhebshi, A.H.; Gotoh, M.; Suzuki, I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem. Biophys. Res. Commun., 2013, 433(4), 362-367.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.139]
[136]
Bin Sayeed, M.S.; Shams, T.; Fahim Hossain, S.; Rahman, M.R.; Mostofa, A.G.M.; Fahim Kadir, M.; Mahmood, S.; Asaduzzaman, M. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males. J. Ethnopharmacol., 2014, 152(1), 156-162.
[http://dx.doi.org/10.1016/j.jep.2013.12.050]
[137]
Bathaie, S.Z.; Mousavi, S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food Sci. Nutr., 2010, 50(8), 761-786.
[http://dx.doi.org/10.1080/10408390902773003]
[138]
Akhondzadeh, S.; Shafiee Sabet, M.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; Rezazadeh, S.A.; Yousefi, A.; Zare, F.; Moradi, A.; Vossoughi, A. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology, 2010, 207(4), 637-643.
[http://dx.doi.org/10.1007/s00213-009-1706-1]
[139]
Khazdair, M.R.; Anaeigoudari, A.; Hashemzehi, M.; Mohebbati, R. Neuroprotective potency of some spice herbs, a literature review. J. Tradit. Complement. Med., 2019, 9(2), 98-105.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.002]
[140]
Finley, J.W.; Gao, S. A perspective on Crocus sativus L. (Saffron) constituent crocin: A potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J. Agric. Food Chem., 2017, 65(5), 1005-1020.
[http://dx.doi.org/10.1021/acs.jafc.6b04398]
[141]
Akhondzadeh, S.; Sabet, M.S.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; Zare, F.; Moradi, A. ORIGINAL ARTICLE: Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J. Clin. Pharm. Ther., 2010, 35(5), 581-588.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01133.x]
[142]
Amin, B.; Abnous, K.; Motamedshariaty, V.; Hosseinzadeh, H. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An. Acad. Bras. Cienc., 2014, 86(4), 1821-1832.
[http://dx.doi.org/10.1590/0001-3765201420140067]
[143]
Abe, K.; Saito, H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother. Res., 2000, 14(3), 149-152.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5]
[144]
Hosseinzadeh, H.; Ziaei, T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J. of Medi. Plants, 2006, 5(19), 40-50.
[145]
Hosseinzadeh, H.; Sadeghnia, H.R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J. Pharm. Pharm. Sci., 2005, 8(3), 394-399.
[146]
Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s disease. Cells, 2021, 10(6), 1309.
[http://dx.doi.org/10.3390/cells10061309]
[147]
Malik, J.; Karan, M.; Dogra, R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharm. Biol., 2017, 55(1), 980-990.
[http://dx.doi.org/10.1080/13880209.2017.1285945]
[148]
Jakka, A.L. A study on nootropic activity of Celastrus paniculata wild whole plant methanolic extract in rats. Asian J. Pharm. Clin. Res., 2016, 9, 336-341.
[149]
Lekha, G.; Bhagya, P.; Kumar, S.; Rao, N.; Irudaya, A.; Karthik, M. Cognitive enhancement and neuroprotective effect of Celastrus paniculatus Willd. seed oil (jyothismati oil) on male wistar rats. J. Pharm. Sci. Technol., 2010, 2, 130-138.
[150]
Karanth, K.S.; Haridas, K.K.; Gunasundari, S.; Guruswami, M.N. Effect of Celastrus paniculatus on learning process. Arogya, 1980, 6, 137-139.
[151]
Chakraborty, B.; Mukerjee, N.; Maitra, S.; Zehravi, M.; Mukherjee, D.; Ghosh, A.; Massoud, E.E.S.; Rahman, M.H. Therapeutic potential of different natural products for the treatment of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/6873874]
[152]
Gattu, M.; Boss, K.L.; Terry, A.V., Jr; Buccafusco, J.J. Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacol. Biochem. Behav., 1997, 57(4), 793-799.
[http://dx.doi.org/10.1016/S0091-3057(96)00391-7]
[153]
Bhanumathy, M.; Harish, M.S.; Shivaprasad, H.N.; Sushma, G. Nootropic activity of Celastrus paniculatus seed. Pharm. Biol., 2010, 48(3), 324-327.
[http://dx.doi.org/10.3109/13880200903127391]
[154]
Jadhav, K.; Marathe, P.; Rege, N.; Raut, S.; Parekar, R. Effect of Jyotiṣmatī seed oil on spatial and fear memory using scopolamine induced amnesia in mice. Anc. Sci. Life, 2015, 34(3), 130-133.
[http://dx.doi.org/10.4103/0257-7941.157149]
[155]
Divino da Rocha, M.; Pereira Dias Viegas, F.; Cristina Campos, H.; Carolina Nicastro, P.; Calve Fossaluzza, P.; Alberto Manssour Fraga, C.; Barreiro, J.E.; Viegas, C. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurolo. Disorders-Drug Tar., 2011, 10(2), 251-270.
[http://dx.doi.org/10.2174/187152711794480429]
[156]
Godkar, P.; Gordon, R.K.; Ravindran, A.; Doctor, B.P. Celastrus paniculatus seed water soluble extracts protect cultured rat forebrain neuronal cells from hydrogen peroxide-induced oxidative injury. Fitoterapia, 2003, 74(7-8), 658-669.
[http://dx.doi.org/10.1016/S0367-326X(03)00190-4]
[157]
Kumar, M.H.V.; Gupta, Y.K. Antioxidant property of Celastrus paniculatus Willd.: a possible mechanism in enhancing cognition. Phytomedicine, 2002, 9(4), 302-311.
[http://dx.doi.org/10.1078/0944-7113-00136]
[158]
Andrade, S.; Loureiro, J.A.; Coelho, M.A.N.; Pereira, M.D.C. Interaction studies of amyloid beta-peptide with the natural compound resveratrol. Proceedings of the 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal2015, pp. 1-3.
[http://dx.doi.org/10.1109/ENBENG.2015.7088833]
[159]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[http://dx.doi.org/10.1074/jbc.M508246200]
[160]
Ladiwala, A.R.A.; Lin, J.C.; Bale, S.S.; Marcelino-Cruz, A.M.; Bhattacharya, M.; Dordick, J.S.; Tessier, P.M. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J. Biol. Chem., 2010, 285(31), 24228-24237.
[http://dx.doi.org/10.1074/jbc.M110.133108]
[161]
Zhao, H.F.; Li, N.; Wang, Q.; Cheng, X.J.; Li, X.M.; Liu, T.T. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience, 2015, 310, 641-649.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.006]
[162]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008]
[163]
Ma, X.R.; Sun, Z.K.; Liu, Y.R.; Jia, Y.J.; Zhang, B.A.; Zhang, J.W. Resveratrol improves cognition and reduces oxidative stress in rats with vascular dementia. Neural Regen. Res., 2013, 8, 2050-2059.
[164]
He, X.; Li, Z.; Rizak, J.D.; Wu, S.; Wang, Z.; He, R.; Su, M.; Qin, D.; Wang, J.; Hu, X. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front. Neurosci., 2017, 10, 598.
[http://dx.doi.org/10.3389/fnins.2016.00598]
[165]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035]
[166]
Zhu, C.W.; Grossman, H.; Neugroschl, J.; Parker, S.; Burden, A.; Luo, X.; Sano, M. A randomized, double‐blind, placebo‐controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement. (N. Y.), 2018, 4(1), 609-616.
[http://dx.doi.org/10.1016/j.trci.2018.09.009]
[167]
Feng, Y.; Wang, X.; Yang, S.; Wang, Y.; Zhang, X.; Du, X.; Sun, X.; Zhao, M.; Huang, L.; Liu, R. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology, 2009, 30(6), 986-995.
[http://dx.doi.org/10.1016/j.neuro.2009.08.013]
[168]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biochem., 2010, 285(12), 9100-9113.
[169]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res.: Int. J. Devoted Pharmaco. Toxico. Eva. Nat. Pro. Der., 2008, 22(6), 709-724.
[170]
Yim, S.B.; Park, S.E.; Lee, C.S. Protective effect of glycyrrhizin on 1-methyl-4-phenylpyridinium-induced mitochondrial damage and cell death in differentiated PC12 cells. J. Pharmacol. Exp. Ther., 2007, 321(2), 816-822.
[http://dx.doi.org/10.1124/jpet.107.119602]
[171]
Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671.
[http://dx.doi.org/10.1016/S0301-0082(99)00060-X]
[172]
Saharan, S.; Mandal, P.K. The emerging role of glutathione in Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(3), 519-529.
[http://dx.doi.org/10.3233/JAD-132483]
[173]
Parle, M.; Dhingra, D.; Kulkarni, S.K. Memory-strengthening activity of Glycyrrhiza glabra in exteroceptive and interceptive behavioural models. J. Med. Food, 2004, 7(4), 462-466.
[http://dx.doi.org/10.1089/jmf.2004.7.462]
[174]
Hikino, H. Recent research on oriental medicinal plants.Economic and medicinal plant research; Wagner, H.; Hiroshi, H.; Norman, R.F., Eds.; , 1985.
[175]
Zhu, X.; Chen, C.; Ye, D.; Guan, D.; Ye, L.; Jin, J.; Zhao, H.; Chen, Y.; Wang, Z.; Wang, X.; Xu, Y. Diammonium glycyrrhizinate up regulates PGC-1α and protects against Aβ1-42-induced neurotoxicity. PLoS One, 2012, 7(4), e35823.
[http://dx.doi.org/10.1371/journal.pone.0035823]
[176]
Qiao, X.; Ji, S.; Yu, S.; Lin, X.; Jin, H.; Duan, Y.; Zhang, L.; Guo, D.; Ye, M. Identification of key licorice constituents which interact with cytochrome P450: evaluation by LC/MS/MS cocktail assay and metabolic profiling. AAPS J., 2014, 16(1), 101-113.
[http://dx.doi.org/10.1208/s12248-013-9544-9]
[177]
Mersereau, J.E.; Levy, N.; Staub, R.E.; Baggett, S.; Zogric, T.; Chow, S.; Ricke, W.A.; Tagliaferri, M.; Cohen, I.; Bjeldanes, L.F.; Leitman, D.C. Liquiritigenin is a plant-derived highly selective estrogen receptor β agonist. Mol. Cell. Endocrinol., 2008, 283(1-2), 49-57.
[http://dx.doi.org/10.1016/j.mce.2007.11.020]
[178]
Liu, R.; Zou, L.; Lü, Q. Liquiritigenin inhibits Aβ25–35-induced neurotoxicity and secretion of Aβ1-40 in rat hippocampal neurons. Acta Pharmacol. Sin., 2009, 30(7), 899-906.
[http://dx.doi.org/10.1038/aps.2009.74]
[179]
Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int. J. Geriatr. Psychiatry, 2003, 18(S1), S23-S32.
[http://dx.doi.org/10.1002/gps.938]
[180]
Dhingra, D.; Parle, M.; Kulkarni, S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol., 2004, 91(2-3), 361-365.
[http://dx.doi.org/10.1016/j.jep.2004.01.016]
[181]
Chakravarthi, K.; Avadhani, R. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. J. Nat. Sci. Biol. Med., 2013, 4(2), 420-425.
[http://dx.doi.org/10.4103/0976-9668.117025]
[182]
Tapia-Rojas, C.; Cabezas-Opazo, F.; Deaton, C.A.; Vergara, E.H.; Johnson, G.V.W.; Quintanilla, R.A. It’s all about tau. Prog. Neurobiol., 2019, 175, 54-76.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.005]
[183]
Anandhan, A.; Tamilselvam, K.; Radhiga, T.; Rao, S.; Essa, M.M.; Manivasagam, T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res., 2012, 1433, 104-113.
[http://dx.doi.org/10.1016/j.brainres.2011.11.021]
[184]
Liu, J.; Burdette, J.E.; Xu, H.; Gu, C.; van Breemen, R.B.; Bhat, K.P.L.; Booth, N.; Constantinou, A.I.; Pezzuto, J.M.; Fong, H.H.S.; Farnsworth, N.R.; Bolton, J.L. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agric. Food Chem., 2001, 49(5), 2472-2479.
[http://dx.doi.org/10.1021/jf0014157]
[185]
Bhatia, H.; Pal Sharma, Y.; Manhas, R.K.; Kumar, K. Traditional phytoremedies for the treatment of menstrual disorders in district Udhampur, J&K, India. J. Ethnopharmacol., 2015, 160, 202-210.
[http://dx.doi.org/10.1016/j.jep.2014.11.041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy