Abstract
Background: Heterocyclic chemistry is a highly significant and exciting segment of organic chemistry because of its high biological and pharmacological activities. An environmentally benign and synthetically proficient way of synthesis of fused heterocycles is the major goal of modern organic synthesis by developing greener synthetic strategies. Green synthetic approaches address our future challenges for the development of a bioactive heterocycle framework with maximum productivity and minimum side products. A few decades ago, novel tools for manufacturing fused heterocycles had a huge impact on organic chemistry. Subsequently, the preparation of fused heterocycles through a synthetically efficient and environmentally benign route is the important purpose of modern synthetic chemistry.
Methods: This review consists of green synthetic strategies for the synthesis of N/O-containing various bio-active fused heterocyclic compounds using modern organic transformations including: cyclocondensation, cycloaddition, one-pot, multi-components, and other modular reactions. Some greener unconventional techniques such as ultrasound and microwave-assisted method, green solvent and solventfree reaction medium are important modes adopted towards sustainability.
Objective: This review aims to reflect the sustainability scope in green approaches to the synthesis of N/O-containing bio-active fused heterocyclic compounds so that economically and environmentally viable synthetic methodologies may be selectively identified and applied in academia and industries.
Conclusion: In this review, we have discussed the recent advancements in green and eco-friendly tools for the synthesis of N/O-based bio-active fused heterocyclic compounds that will lead to further research in this field.
Graphical Abstract
[http://dx.doi.org/10.1016/j.ejmech.2019.05.072] [PMID: 31185410]
[http://dx.doi.org/10.1021/acsomega.2c05015] [PMID: 36340130]
[http://dx.doi.org/10.1002/slct.202103139]
[http://dx.doi.org/10.1016/j.bmcl.2011.04.021] [PMID: 21530250]
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666]
[http://dx.doi.org/10.1002/ejoc.200300050]
[http://dx.doi.org/10.1080/00397911.2010.517413]
[http://dx.doi.org/10.2174/157017806779468068]
[http://dx.doi.org/10.1039/c3ra43745k]
[http://dx.doi.org/10.1016/j.bmc.2005.04.061] [PMID: 15896965]
[http://dx.doi.org/10.1021/jm049448r] [PMID: 15588088]
[http://dx.doi.org/10.1016/j.bmcl.2005.08.053] [PMID: 16171994]
[http://dx.doi.org/10.1016/j.tetlet.2011.12.128]
[http://dx.doi.org/10.5012/bkcs.2004.25.1.119]
[http://dx.doi.org/10.1016/j.bmcl.2009.04.029] [PMID: 19403307]
[http://dx.doi.org/10.1016/j.tetlet.2012.09.033]
[http://dx.doi.org/10.1016/j.tetlet.2010.11.054]
[http://dx.doi.org/10.1016/j.tet.2011.05.002] [PMID: 21731115]
[http://dx.doi.org/10.1039/c001350a] [PMID: 20386812]
[http://dx.doi.org/10.1016/j.jscs.2012.02.009]
b) Kamal, A.; Sattur, P.B. Synthesis and biological activity of 1- substituted-5-aryl-s- triazolo (4,3-a) quinazolines. Indian J. Chem. Sect. B, 1984, 23B, 1293-1294.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.066]
b) Buron, F.; Mérour, J.Y.; Akssira, M.; Guillaumet, G.; Routier, S. Recent advances in the chemistry and biology of pyridopyrimidines. Eur. J. Med. Chem., 2015, 95, 76-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.029] [PMID: 25794791];
c) Elansary, A.K.; Moneer, A.A.; Kadry, H.H.; Gedawy, E.M. Synthesis and antitumour activity of certain pyrido[2,3- d] pyrimidine and 1,8-naphthyridine derivatives. J. Chem. Res., 2014, 38(3), 147-153. http://dx.doi.org/10.3184/174751914X13910886393992;
d) Saikia, L.; Das, B.; Bharali, P.; Thakur, A.J. A convenient synthesis of novel 5-aryl-pyrido[2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Tetrahedron Lett., 2014, 55(10), 1796-1801. http://dx.doi.org/10.1016/j.tetlet.2014.01.128;
e) Gangjee, A.; Namjoshi, O.A.; Raghavan, S.; Queener, S.F.; Kisliuk, R.L.; Cody, V. Design, synthesis, and molecular modeling of novel pyrido[2,3-d]pyrimidine analogues as antifolates; application of Buchwald-Hartwig aminations of heterocycles. J. Med. Chem., 2013, 56(11), 4422-4441.
[http://dx.doi.org/10.1021/jm400086g] [PMID: 23627352];
f) Dinakaran, V.S.; Bomma, B.; Srinivasan, K.K. Fused pyrimidines: The heterocycle of diverse biological and pharmacological significance. Pharma Chem., 2012, 4, 255-265.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.084] [PMID: 16621547]
(b) Boschelli, D.H. Small molecule inhibitors of receptor tyrosine kinases. Drugs Future, 1999, 24(5), 515-537.
[http://dx.doi.org/10.1358/dof.1999.024.05.858622]
[http://dx.doi.org/10.1016/j.ejmech.2011.02.055] [PMID: 21429629]
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[http://dx.doi.org/10.1039/C5NJ01938A]
[http://dx.doi.org/10.1016/j.bmc.2013.03.058] [PMID: 23602518]
[http://dx.doi.org/10.1016/S0040-4039(03)01306-6]
[http://dx.doi.org/10.1016/j.ultsonch.2007.03.002] [PMID: 17466564]
[http://dx.doi.org/10.1016/j.ultsonch.2008.08.008] [PMID: 18848799]
[PMID: 8321884];
b) Chollet, J.F.; Bonnemain, J.L.; Miginiac, L.; Rohr, O. Fungicidal activity of a series of 1-substituted-1-aryl-2-triazol-1-yl-ethanols. Pestic. Sci., 1990, 29(4), 427-435.
[http://dx.doi.org/10.1002/ps.2780290407]
[http://dx.doi.org/10.1021/jm00345a021] [PMID: 6461764];
b) Modzelewska-Banachiewicz, B.; Kalabun, J. Synthesis and biological action of 5-oxo-1,2,4-triazine derivatives. Pharmazie, 1999, 54(7), 503-505.
[PMID: 10445245]
[http://dx.doi.org/10.1021/jm00172a015] [PMID: 2170646]
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[http://dx.doi.org/10.1016/S0021-9258(17)43459-4] [PMID: 6420412]
[http://dx.doi.org/10.3762/bjoc.8.236] [PMID: 23243471]
[http://dx.doi.org/10.1080/17518253.2011.560126]
[http://dx.doi.org/10.1002/ardp.200500176] [PMID: 16528794];
b) Krall, R.L.; Penry, J.K.; White, B.G.; Kupferberg, H.J.; Swinyard, E.A. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia, 1978, 19(4), 409-428.
[http://dx.doi.org/10.1111/j.1528-1157.1978.tb04507.x] [PMID: 699894];
c) Gundersen, L.L.; Charnock, C.; Negussie, A.H.; Rise, F.; Teklu, S. Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur. J. Pharm. Sci., 2007, 30(1), 26-35.
[http://dx.doi.org/10.1016/j.ejps.2006.09.006] [PMID: 17079120];
d) Gundersen, L.L.; Negussie, A.H.; Rise, F.; Østby, O.B. Antimycobacterial activity of 1-substituted indolizines. Arch. Pharm., 2003, 336(3), 191-195.
[http://dx.doi.org/10.1002/ardp.200390019] [PMID: 12822185];
e) Smith, S.C.; Clarke, E.D.; Ridley, S.M.; Bartlett, D.; Greenhow, D.T.; Glithro, H.; Klong, A.Y.; Mitchell, G.; Mullier, G.W. Herbicidal indolizine-5,8-diones: photosystem I redox mediators. Pest Manag. Sci., 2005, 61(1), 16-24.
[http://dx.doi.org/10.1002/ps.980] [PMID: 15593080];
f) Poty, C.; Gibon, V.; Evrard, G.; Norberg, B.; Vercauteren, D.P.; Gubin, J.; Chatelain, P.; Durant, F. 1-[[4- (Aminoalkoxy)phenyl]sulfonyl]indolizines: a novel class of calcium entry blockers. Relationships between chemical structure, stereoelectronic properties and anticalcic activity. Eur. J. Org. Chem., 1994, 29, 911-923.;
g) Østby, O.B.; Dalhus, B.; Gundersen, L.L.; Rise, F.; Bast, A.; Haenen, G.R.M.M. Synthesis of 1-substituted 7-cyano-2,3-diphenylindolizines and evaluation of antioxidant properties. Eur. J. Org. Chem., 2000, 2000(22), 3763-3770. http://dx.doi.org/10.1002/1099-0690(200011)2000:22<3763:AID-EJOC3763>3.0.CO;2-S;
h) Chai, W.; Breitenbucher, J.G.; Kwok, A.; Li, X.; Wong, V.; Carruthers, N.I.; Lovenberg, T.W.; Mazur, C.; Wilson, S.J.; Axe, F.U.; Jones, T.K. Non-imidazole heterocyclic histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2003, 13(10), 1767-1770.
[http://dx.doi.org/10.1016/S0960-894X(03)00299-3] [PMID: 12729661];
i) Gmeiner, P.; Huebner, H.; Bettinetti, L.; Schlotter, K. WO 015737, 2006.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.113]
[http://dx.doi.org/10.1007/s11434-012-5081-7]
[http://dx.doi.org/10.1016/j.tetlet.2012.04.083]
[http://dx.doi.org/10.1002/jhet.974]
[http://dx.doi.org/10.1002/jhet.5570380108]
[http://dx.doi.org/10.1016/j.bmcl.2008.09.040] [PMID: 18818075]
[http://dx.doi.org/10.1021/jm00224a013] [PMID: 1249806]
[http://dx.doi.org/10.1016/j.ultsonch.2009.08.001] [PMID: 19720550]
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[http://dx.doi.org/10.1016/j.molcata.2013.04.014]
[http://dx.doi.org/10.1016/j.tetlet.2013.09.138]
[http://dx.doi.org/10.1016/j.tetlet.2010.12.036]
[http://dx.doi.org/10.1039/C2OB27072B] [PMID: 23223887]
[http://dx.doi.org/10.1021/jo300457m] [PMID: 22480382]
[http://dx.doi.org/10.1039/c2gc16425f]
[http://dx.doi.org/10.1021/acssuschemeng.5b01669]
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[http://dx.doi.org/10.1039/C5RA23417D]
[http://dx.doi.org/10.1039/C7RA11305F]
[PMID: 4350013];
b) Pershin, G.N.; Shcherbakova, L.I.; Zykova, T.N.; Sokolova, V.N. Antibacterial activity of pyrimidine and pyrrolo-(3,2-d)-pyrimidine derivatives. Farmakol. Toksikol., 1972, 35(4), 466-471.
[PMID: 4626161];
c) Metolcsy, G. Structure-activity correlations and mode of action of some selected types of antifungal compounds. World Rev. Pest Contr, 1971, 10, 50-59.
[http://dx.doi.org/10.3184/0308234054213672]
[http://dx.doi.org/10.1016/j.ultsonch.2012.07.007] [PMID: 22939001]
[http://dx.doi.org/10.1021/acs.joc.7b00129] [PMID: 28296402]
[http://dx.doi.org/10.1021/jo800825c] [PMID: 18512991]
[http://dx.doi.org/10.1021/acs.joc.5b00067] [PMID: 25692388]