Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Green Synthetic Approach: A Well-organized Eco-friendly Tool for Synthesis of Bio-active Fused Heterocyclic Compounds

Author(s): Rajiv Karmakar* and Chhanda Mukhopadhyay*

Volume 10, Issue 1, 2023

Published on: 02 March, 2023

Page: [5 - 24] Pages: 20

DOI: 10.2174/2213346110666230120154516

Price: $65

Abstract

Background: Heterocyclic chemistry is a highly significant and exciting segment of organic chemistry because of its high biological and pharmacological activities. An environmentally benign and synthetically proficient way of synthesis of fused heterocycles is the major goal of modern organic synthesis by developing greener synthetic strategies. Green synthetic approaches address our future challenges for the development of a bioactive heterocycle framework with maximum productivity and minimum side products. A few decades ago, novel tools for manufacturing fused heterocycles had a huge impact on organic chemistry. Subsequently, the preparation of fused heterocycles through a synthetically efficient and environmentally benign route is the important purpose of modern synthetic chemistry.

Methods: This review consists of green synthetic strategies for the synthesis of N/O-containing various bio-active fused heterocyclic compounds using modern organic transformations including: cyclocondensation, cycloaddition, one-pot, multi-components, and other modular reactions. Some greener unconventional techniques such as ultrasound and microwave-assisted method, green solvent and solventfree reaction medium are important modes adopted towards sustainability.

Objective: This review aims to reflect the sustainability scope in green approaches to the synthesis of N/O-containing bio-active fused heterocyclic compounds so that economically and environmentally viable synthetic methodologies may be selectively identified and applied in academia and industries.

Conclusion: In this review, we have discussed the recent advancements in green and eco-friendly tools for the synthesis of N/O-based bio-active fused heterocyclic compounds that will lead to further research in this field.

Graphical Abstract

[1]
Parikh, P.; Marvaniya, H.; Sen, J. Chemistry of bioactive tricyclic fused heterocyclic ring having one heteroatom. Int. J. Drug Dev. Res, 2011, 3, 44-50.
[2]
Saini, M.; Kumar, A.; Dwivedi, J.; Singh, R. A review: biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4, 66-70.
[3]
Goyal, A.; Jain, S. Synthesis and antibacterial screening of some 1-phenyl-3-(4-(3-propanoloxy) phenyl)-5-aryl-1h-pyrazoles. Derchemica sinica, 2012, 3, 249-254.
[4]
Lapointe, G.; Mergo, W.; Moser, H.E.; Rivkin, A.; Skepper, C.K.; Williams, S.L. Preparation of tricyclic 2-quinolinones as antibacterials. Chem. Abstr., 2018, 169515481
[5]
Gao, F.; Liang, Y.; Zhou, P.; Cheng, J.; Ding, K.; Wang, Y. Design, synthesis, antitumor activities and biological studies of novel diaryl substituted fused heterocycles as dual ligands targeting tubulin and katanin. Eur. J. Med. Chem., 2019, 178, 177-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.072] [PMID: 31185410]
[6]
Pasuparthy, S.D.; Maiti, B. [CMMIM][BF4–] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d]pyrido[1,2- a]pyrimidin-6-ones: Evaluation of their photophysical properties and theoretical calculations. ACS Omega, 2022, 7(43), 39147-39158.
[http://dx.doi.org/10.1021/acsomega.2c05015] [PMID: 36340130]
[7]
Jangir, N.; Poonam; Dhadda, S.; Jangid, D.K. Recent advances in the synthesis of five‐ and six‐membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect, 2022, 7(6)e202103139
[http://dx.doi.org/10.1002/slct.202103139]
[8]
Allcock, R.W.; Blakli, H.; Jiang, Z.; Johnston, K.A.; Morgan, K.M.; Rosair, G.M.; Iwase, K.; Kohno, Y.; Adams, D.R. Phosphodiesterase inhibitors. Part 1: Synthesis and structure–activity relationships of pyrazolopyridine–pyridazinone PDE inhibitors developed from ibudilast. Bioorg. Med. Chem. Lett., 2011, 21(11), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.021] [PMID: 21530250]
[9]
Al-Harbi, N.O.; Bahashwan, S.A.; Fayed, A.A.; Aboonq, M.S.; Amr, A.E.G.E. Anti-parkinsonism, hypoglycemic and anti-microbial activities of new poly fused ring heterocyclic candidates. Int. J. Biol. Macromol., 2013, 57, 165-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666]
[10]
Padwa, A.; Pearson, W.H. In: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley Interscience: New York, 2002, 59, p. 960.
[11]
Marti, C.; Carreira, E.M.; Carreira, E.M. Construction of spiro [pyrrolidine-3, 3′-oxindoles]-Recent application to the synthesis of oxindolealkaloids. Eur. J. Org. Chem., 2003, 2003(12), 2209-2219.
[http://dx.doi.org/10.1002/ejoc.200300050]
[12]
Chen, H.; Wang, S.Y.; Xu, X.P.; Ji, S.J. Facile three-component synthesis of spirooxindolepyrrololine ring systems via 1,3-dipolar cycloaddition with 1,4- naphthoquinone. Synth. Commun., 2011, 41(22), 3280-3288.
[http://dx.doi.org/10.1080/00397911.2010.517413]
[13]
Azizian, J.; Saffar-Teluri, A.; Asadi, A. A facile one-pot synthesis of new spiro pyrrolidine-oxindoles under ultrasonic irradiation in DMSO-H2O. Lett. Org. Chem., 2006, 3(12), 887-890.
[http://dx.doi.org/10.2174/157017806779468068]
[14]
Dandia, A.; Singh, R.; Joshi, J.; Maheshwari, S.; Soni, P. Ultrasound promoted catalyst-free and selective synthesis of spiro[indole-3,4′-pyrazolo[3,4-e][1,4]thiazepines] in aqueous media and evaluation of their anti-hyperglycemic activity. RSC Adv., 2013, 3(41), 18992-19001.
[http://dx.doi.org/10.1039/c3ra43745k]
[15]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13(15), 4645-4650.
[http://dx.doi.org/10.1016/j.bmc.2005.04.061] [PMID: 15896965]
[16]
Bailey, J.P.; Giles, M.B.; Pass, M. 2,4,6-Trisubstituted pyrimidines as phosphotidylinositol (pi) 3-kinase inhibitors and their use in the treatment of cancer. Patent WO 2006005914 A1, 2006.
[17]
Chang, L.C.W.; Spanjersberg, R.F.; von Frijtag Drabbe Künzel, J.K.; Mulder-Krieger, T.; van den Hout, G.; Beukers, M.W.; Brussee, J.; IJzerman, A.P. 2,4,6-trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists. J. Med. Chem., 2004, 47(26), 6529-6540.
[http://dx.doi.org/10.1021/jm049448r] [PMID: 15588088]
[18]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Sinha, S.; Chauhan, P.M.S. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2005, 15(23), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.053] [PMID: 16171994]
[19]
Jiang, B.; Xue, L.Y.; Wang, X.H.; Tu, M.S.; Liu, Y.P.; Tu, S.J. Microwave-assisted multicomponent reaction of aryl amidines: regiospecific synthesis of new polysubstituted thiopyrano-, and pyrano[4,3-d]pyrimidines. Tetrahedron Lett., 2012, 53(10), 1261-1264.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.128]
[20]
Thompson, M.J.; Hurst, J.M.; Chen, B. Regioselective, solvent-free synthesis of 3- aminoimidazo[1,2-a]pyrimidines under microwave irradiation promoted by zeolite HY. Synlett, 2008, 20, 3183-3187.
[21]
Kidwai, M.; Rastogi, S.; Mohan, R. novel route to new bis (benzopyrano) fused dihydro- pyridines using dry media. Bull. Korean Chem. Soc., 2004, 25(1), 119-121.
[http://dx.doi.org/10.5012/bkcs.2004.25.1.119]
[22]
Karthikeyan, S.V.; Perumal, S.; Shetty, K.A.; Yogeeswari, P.; Sriram, D. A microwave-assisted facile regioselective Fischer indole synthesis and antitubercular evaluation of novel 2-aryl-3,4-dihydro-2H-thieno[3,2-b]indoles. Bioorg. Med. Chem. Lett., 2009, 19(11), 3006-3009.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.029] [PMID: 19403307]
[23]
Mondal, S.; Maity, A.; Paira, R.; Banerjee, M.; Bharitkar, Y.P.; Hazra, A.; Banerjee, S.; Mondal, N.B. Efficient synthesis of novel tetrahydropyrrolo[3′,4′:3.4]pyrrolo[2.1-a] isoquinoline derivatives via simple and convenient MCR in aqueous micellar system. Tetrahedron Lett., 2012, 53, 1288-1291.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.033]
[24]
Rodrigues-Santos, C.E.; Echevarria, A. Convenient syntheses of pyrazolo[3,4-b]pyridin-6-ones using either microwave or ultrasound irradiation. Tetrahedron Lett., 2011, 52(2), 336-340.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.054]
[25]
Wang, S.L.; Cheng, C.; Wu, F.Y.; Jiang, B.; Shi, F.; Tu, S.J.; Rajale, T.; Li, G. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67(25), 4485-4493.
[http://dx.doi.org/10.1016/j.tet.2011.05.002] [PMID: 21731115]
[26]
Waldmann, H.; Eberhardt, L.; Wittstein, K.; Kumar, K. Silver catalyzed cascade synthesis of alkaloid ring systems: concise total synthesis of fascaplysin, homofascaplysin C and analogues. Chem. Commun., 2010, 46(25), 4622-4624.
[http://dx.doi.org/10.1039/c001350a] [PMID: 20386812]
[27]
Safari, J.; Gandomi-Ravandi, S.; Ghotbinejad, M. Ultrasound-promoted synthesis of novel fused heterocycles by criss-cross cycloaddition. J. Saudi Chem. Soc., 2016, 20(1), 20-23.
[http://dx.doi.org/10.1016/j.jscs.2012.02.009]
[28]
Deshpande, D.S. Synthesis of some substituted s-triazola (3,4-b) benzothiazoles as potent antibacterials. Acta Cienc. Indica. (Ser). Chem, 1980, 6, 80-82.
[29]
a) Paget, C.J.; Wikl, J.H. s-Triazolo (3,4-b) benzothiazoles. G Often, 1975, 2, 509-843.;
b) Kamal, A.; Sattur, P.B. Synthesis and biological activity of 1- substituted-5-aryl-s- triazolo (4,3-a) quinazolines. Indian J. Chem. Sect. B, 1984, 23B, 1293-1294.
[30]
Prasad, A.R.; Ramalingam, T.; Rao, A.B.; Diwan, P.V.; Sattur, P.B. Synthesis and biological activity of 2-(aryloxyalkyl)-5-(3,4- methylene dioxyphenyl)-s-triazolo (3,4-b)- 1,3,4-thiadiazoles. Indian J. Chem. Sect. B, 1986, 25B, 566-668.
[31]
Moran, D.B.; Dusza, J.P.; Albright, J.D. 6-and-8-heteroarylstriazolo(4,3-b) pyridazines. US Patent Appl., 1981, 4, 260-756.
[32]
Ramesh, E.; Raghunathan, R. A facile synthesis of chromeno[4,3-b]pyrroles derived from allyl derivatives of Baylis–Hillman adducts through intramolecular 1,3-dipolar cycloaddition using ultrasonication. Tetrahedron Lett., 2008, 49(7), 1125-1128.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.066]
[33]
(a) Elagamey, A.G.; Sattar, S.A.; El-Taweel, F.; Said, S. An efficient synthesis and antibacterial activity of pyrido[2,3- d]pyrimidine, chromeno[3,4- c]pyridine, pyridine, pyrimido[2,3- c]pyridazine, enediamines, and pyridazine derivatives. J. Heterocycl. Chem., 2016, 53(6), 1801-1806. http://dx.doi.org/10.1002/jhet.2487;
b) Buron, F.; Mérour, J.Y.; Akssira, M.; Guillaumet, G.; Routier, S. Recent advances in the chemistry and biology of pyridopyrimidines. Eur. J. Med. Chem., 2015, 95, 76-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.029] [PMID: 25794791];
c) Elansary, A.K.; Moneer, A.A.; Kadry, H.H.; Gedawy, E.M. Synthesis and antitumour activity of certain pyrido[2,3- d] pyrimidine and 1,8-naphthyridine derivatives. J. Chem. Res., 2014, 38(3), 147-153. http://dx.doi.org/10.3184/174751914X13910886393992;
d) Saikia, L.; Das, B.; Bharali, P.; Thakur, A.J. A convenient synthesis of novel 5-aryl-pyrido[2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Tetrahedron Lett., 2014, 55(10), 1796-1801. http://dx.doi.org/10.1016/j.tetlet.2014.01.128;
e) Gangjee, A.; Namjoshi, O.A.; Raghavan, S.; Queener, S.F.; Kisliuk, R.L.; Cody, V. Design, synthesis, and molecular modeling of novel pyrido[2,3-d]pyrimidine analogues as antifolates; application of Buchwald-Hartwig aminations of heterocycles. J. Med. Chem., 2013, 56(11), 4422-4441.
[http://dx.doi.org/10.1021/jm400086g] [PMID: 23627352];
f) Dinakaran, V.S.; Bomma, B.; Srinivasan, K.K. Fused pyrimidines: The heterocycle of diverse biological and pharmacological significance. Pharma Chem., 2012, 4, 255-265.
[34]
Tu, S.; Zhang, J.; Zhu, X.; Xu, J.; Zhang, Y.; Wang, Q.; Jia, R.; Jiang, B.; Zhang, J. New potential inhibitors of cyclin-dependent kinase 4: Design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation. Bioorg. Med. Chem. Lett., 2006, 16(13), 3578-3581.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.084] [PMID: 16621547]
[35]
a) Ciardiello, F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs, 2000, 60(S1), 25-32. http://dx.doi.org/10.2165/00003495-200060001-00003 PMID:11129169;
(b) Boschelli, D.H. Small molecule inhibitors of receptor tyrosine kinases. Drugs Future, 1999, 24(5), 515-537.
[http://dx.doi.org/10.1358/dof.1999.024.05.858622]
[36]
El-Nassan, H.B. Synthesis and antitumor activity of novel pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-one derivatives. Eur. J. Med. Chem., 2011, 46(6), 2031-2036.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.055] [PMID: 21429629]
[37]
Edupuganti, R.; Wang, Q.; Tavares, C.D.J.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg. Med. Chem., 2014, 22(17), 4910-4916.
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[38]
Singh, S.; Saquib, M.; Singh, M.; Tiwari, J.; Tufail, F.; Singh, J.; Singh, J. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J. Chem., 2016, 40(1), 63-67.
[http://dx.doi.org/10.1039/C5NJ01938A]
[39]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Ali, M.A. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives. Bioorg. Med. Chem., 2013, 21(11), 3022-3031.
[http://dx.doi.org/10.1016/j.bmc.2013.03.058] [PMID: 23602518]
[40]
Shu-Jiang, T.; Zhang, Y.; Jiang, H.; Jiang, B.; Jun-Yong, Z.; Run-Hong, J.; Shi, F. A simple synthesis of furo[3,4:5,6]pyrido[2,3-d]pyrimidine derivatives through multicomponent reactions in water. Eur. J. Org. Chem., 2007, 9, 1522-1528.
[41]
Mont, N.; Teixidó, J.; Borrell, J.I.; Kappe, C.O. A three-component synthesis of pyrido[2,3-d]pyrimidines. Tetrahedron Lett., 2003, 44(29), 5385-5387.
[http://dx.doi.org/10.1016/S0040-4039(03)01306-6]
[42]
Tu, S.; Cao, L.; Zhang, Y.; Shao, Q.; Zhou, D.; Li, C. An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason. Sonochem., 2008, 15(3), 217-221.
[http://dx.doi.org/10.1016/j.ultsonch.2007.03.002] [PMID: 17466564]
[43]
Ge, S.Q.; Hua, Y.Y.; Xia, M. Ultrasound-promoted synthesis of novel dispirocyclic frameworks from aza-Claisen rearrangements of Baylis–Hillman amines. Ultrason. Sonochem., 2009, 16(2), 232-236.
[http://dx.doi.org/10.1016/j.ultsonch.2008.08.008] [PMID: 18848799]
[44]
a) Rollas, S.; Kalyoncuoğlu, N.; Sur-Altiner, D.; Yeğenoğlu, Y. 5-(4-aminophenyl)-4-substituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones: synthesis and antibacterial and antifungal activities. Pharmazie, 1993, 48(4), 308-309.
[PMID: 8321884];
b) Chollet, J.F.; Bonnemain, J.L.; Miginiac, L.; Rohr, O. Fungicidal activity of a series of 1-substituted-1-aryl-2-triazol-1-yl-ethanols. Pestic. Sci., 1990, 29(4), 427-435.
[http://dx.doi.org/10.1002/ps.2780290407]
[45]
a) Wade, P.C.; Vogt, B.R.; Kissick, T.P.; Simpkins, L.M.; Palmer, D.M.; Millonig, R.C. 1-Acyltriazoles as antiinflammatory agents. J. Med. Chem., 1982, 25(3), 331-333.
[http://dx.doi.org/10.1021/jm00345a021] [PMID: 6461764];
b) Modzelewska-Banachiewicz, B.; Kalabun, J. Synthesis and biological action of 5-oxo-1,2,4-triazine derivatives. Pharmazie, 1999, 54(7), 503-505.
[PMID: 10445245]
[46]
Kane, J.M.; Baron, B.M.; Dudley, M.W.; Sorensen, S.M.; Staeger, M.A.; Miller, F.P. 2,4-Dihydro-3H-1,2,4-triazol-3-ones as anticonvulsant agents. J. Med. Chem., 1990, 33(10), 2772-2777.
[http://dx.doi.org/10.1021/jm00172a015] [PMID: 2170646]
[47]
Shivarama Holla, B.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38(7-8), 759-767.
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[48]
Aoyama, Y.; Yoshida, Y.; Sato, R. Yeast cytochrome P-450 catalyzing lanosterol 14a-demethylation. J. Biol. Chem., 1984, 259, 1661-1666.
[http://dx.doi.org/10.1016/S0021-9258(17)43459-4] [PMID: 6420412]
[49]
Gladkov, E.S.; Gura, K.A.; Sirko, S.M.; Desenko, S.M.; Groth, U.; Chebanov, V.A. Features of the behavior of 4-amino-5-carboxamido-1,2,3-triazole in multicomponent heterocyclizations with carbonyl compounds. Beilstein J. Org. Chem., 2012, 8, 2100-2105.
[http://dx.doi.org/10.3762/bjoc.8.236] [PMID: 23243471]
[50]
Rajanarendar, E.; Govardhan Reddy, K.; Nagi Reddy, M.; Raju, S.; Rama Murthy, K. Polyethylene glycol (PEG) mediated synthesis of pyrrolo-[2,3- d]isoxazoles by using NaOCl reagent – a green chemistry approach. Green Chem. Lett. Rev., 2011, 4(3), 257-260.
[http://dx.doi.org/10.1080/17518253.2011.560126]
[51]
a) Dawood, K.M.; Abdel-Gawad, H.; Ellithey, M.; Mohamed, H.A.; Hegazi, B. Synthesis, anticonvulsant, and anti-inflammatory activities of some new benzofuran-based heterocycles. Arch. Pharm., 2006, 339(3), 133-140.
[http://dx.doi.org/10.1002/ardp.200500176] [PMID: 16528794];
b) Krall, R.L.; Penry, J.K.; White, B.G.; Kupferberg, H.J.; Swinyard, E.A. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia, 1978, 19(4), 409-428.
[http://dx.doi.org/10.1111/j.1528-1157.1978.tb04507.x] [PMID: 699894];
c) Gundersen, L.L.; Charnock, C.; Negussie, A.H.; Rise, F.; Teklu, S. Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur. J. Pharm. Sci., 2007, 30(1), 26-35.
[http://dx.doi.org/10.1016/j.ejps.2006.09.006] [PMID: 17079120];
d) Gundersen, L.L.; Negussie, A.H.; Rise, F.; Østby, O.B. Antimycobacterial activity of 1-substituted indolizines. Arch. Pharm., 2003, 336(3), 191-195.
[http://dx.doi.org/10.1002/ardp.200390019] [PMID: 12822185];
e) Smith, S.C.; Clarke, E.D.; Ridley, S.M.; Bartlett, D.; Greenhow, D.T.; Glithro, H.; Klong, A.Y.; Mitchell, G.; Mullier, G.W. Herbicidal indolizine-5,8-diones: photosystem I redox mediators. Pest Manag. Sci., 2005, 61(1), 16-24.
[http://dx.doi.org/10.1002/ps.980] [PMID: 15593080];
f) Poty, C.; Gibon, V.; Evrard, G.; Norberg, B.; Vercauteren, D.P.; Gubin, J.; Chatelain, P.; Durant, F. 1-[[4- (Aminoalkoxy)phenyl]sulfonyl]indolizines: a novel class of calcium entry blockers. Relationships between chemical structure, stereoelectronic properties and anticalcic activity. Eur. J. Org. Chem., 1994, 29, 911-923.;
g) Østby, O.B.; Dalhus, B.; Gundersen, L.L.; Rise, F.; Bast, A.; Haenen, G.R.M.M. Synthesis of 1-substituted 7-cyano-2,3-diphenylindolizines and evaluation of antioxidant properties. Eur. J. Org. Chem., 2000, 2000(22), 3763-3770. http://dx.doi.org/10.1002/1099-0690(200011)2000:22<3763:AID-EJOC3763>3.0.CO;2-S;
h) Chai, W.; Breitenbucher, J.G.; Kwok, A.; Li, X.; Wong, V.; Carruthers, N.I.; Lovenberg, T.W.; Mazur, C.; Wilson, S.J.; Axe, F.U.; Jones, T.K. Non-imidazole heterocyclic histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2003, 13(10), 1767-1770.
[http://dx.doi.org/10.1016/S0960-894X(03)00299-3] [PMID: 12729661];
i) Gmeiner, P.; Huebner, H.; Bettinetti, L.; Schlotter, K. WO 015737, 2006.
[52]
Mishra, S.; Naskar, B.; Ghosh, R. CuCl catalyzed green and efficient one-pot synthesis of aminoindolizine frameworks via three-component reactions of aldehydes, secondary amines, and terminal alkynes in PEG. Tetrahedron Lett., 2012, 53(41), 5483-5487.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.113]
[53]
Mazaahir, K.; Ritika, C.; Anwar, J. Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b] phthalazine-1,6,11-triones: An eco-friendly protocol. Chin. Sci. Bull., 2012, 57(18), 2273-2279.
[http://dx.doi.org/10.1007/s11434-012-5081-7]
[54]
Quiroga, J.; Sánchez, N.E.; Acosta, P.; Insuasty, B.; Abonia, R. Microwave-assisted synthesis of fused pyrazolo[3,4-b]pyrazines by the reaction of ortho-aminonitrosopyrazoles and cyclic β-diketones. Tetrahedron Lett., 2012, 53(25), 3181-3187.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.083]
[55]
Insuasty, H.; Estrada, S.; Quiroga, J.; Insuasty, B.; Abonia, R.; Nogueras, M.; Cobo, J. Solvent-free microwave-assisted synthesis of novel 4-hetarylpyrazolo[1,5-a][1,3,5]triazines. J. Heterocycl. Chem., 2012, 49(6), 1339-1345.
[http://dx.doi.org/10.1002/jhet.974]
[56]
Quiroga, J.; Cruz, S.; Insuasty, B.; Abonia, R.; Cobo, J.; Sánchez, A.; Nogueras, M.; Low, J.N. Synthesis and structural analysis of 5-cyanodihydropyrazolo[3,4- b]pyridines. J. Heterocycl. Chem., 2001, 38(1), 53-60.
[http://dx.doi.org/10.1002/jhet.5570380108]
[57]
Cheung, M.; Harris, P.A.; Badiang, J.G.; Peckham, G.E.; Chamberlain, S.D.; Alberti, M.J.; Jung, D.K.; Harris, S.S.; Bramson, N.H.; Epperly, A.H.; Stimpson, S.A.; Peel, M.R. The identification of pyrazolo[1,5-a]pyridines as potent p38 kinase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(20), 5428-5430.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.040] [PMID: 18818075]
[58]
Crenshaw, R.R.; Luke, G.M.; Siminoff, P. Interferon inducing activities of derivatives of 1,3-dimethyl-4-(3-dimethylaminopropylamino)-1H-pyrazolo[3,4-b]quinoline and related compounds. J. Med. Chem., 1976, 19(2), 262-275.
[http://dx.doi.org/10.1021/jm00224a013] [PMID: 1249806]
[59]
Saggar, S.A.; Sisko, J.T.; Tucker, T.J.; Tynebor, R.M.; Su, D.S.; Anthony, N.J. HIV reverse transcriptase inhibitors. US Patent no. US20070021442A1, 2007.
[60]
Nikpassand, M.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K. A convenient ultrasound-promoted regioselective synthesis of fused polycyclic 4-aryl-3-methyl-4,7-dihydro-1H-pyrazolo[3,4-b]pyridines. Ultrason. Sonochem., 2010, 17(2), 301-305.
[http://dx.doi.org/10.1016/j.ultsonch.2009.08.001] [PMID: 19720550]
[61]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[62]
Kidwai, M.; Chauhan, R. Nafion-H® catalyzed efficient one-pot synthesis of triazolo[5,1-b]quinazolinones and triazolo[1,5-a]pyrimidines: A green strategy. J. Mol. Catal. Chem., 2013, 377, 1-6.
[http://dx.doi.org/10.1016/j.molcata.2013.04.014]
[63]
Reddy, G.R.; Reddy, T.R.; Chary, R.G.; Joseph, S.C.; Mukherjee, S.; Pal, M. β-Cyclodextrin mediated MCR in water: synthesis of dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives under microwave irradiation. Tetrahedron Lett., 2013, 54(49), 6744-6746.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.138]
[64]
Gogoi, S.; Dutta, M.; Gogoi, J.; Boruah, R.C. Microwave promoted synthesis of cycl[3.2.2]azines in water via a new three-component reaction. Tetrahedron Lett., 2011, 52(7), 813-816.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.036]
[65]
Mancebo-Aracil, J.; Nájera, C.; Sansano, J.M. Microwave-assisted multicomponent diastereoselective 1,3-dipolar cycloaddition of ethyl glyoxylate derived azomethine ylides. Org. Biomol. Chem., 2013, 11(4), 662-675.
[http://dx.doi.org/10.1039/C2OB27072B] [PMID: 23223887]
[66]
Alizadeh, A.; Rezvanian, A.; Zhu, L.G. Synthesis of heterocyclic [3.3.3]propellanes via a sequential four-component reaction. J. Org. Chem., 2012, 77(9), 4385-4390.
[http://dx.doi.org/10.1021/jo300457m] [PMID: 22480382]
[67]
Srivastava, M.; Singh, J.; Singh, S.B.; Tiwari, K.; Pathak, V.K.; Singh, J. Synthesis of novel fused heterocycle-oxa-aza-phenanthrene and anthracene derivatives via sequential one-pot synthesis in aqueous micellar system. Green Chem., 2012, 14(4), 901-905.
[http://dx.doi.org/10.1039/c2gc16425f]
[68]
Kumar, P.; Singh, A.K.; Bahadur, V.; Len, C.; Richards, N.G.J.; Parmar, V.S.; Van der Eycken, E.V.; Singh, B.K. Microwave-assisted, metal-free, base-mediated C-N bond Formation/cleavage: Synthesis of benzimidazo[1,2-a]quinazoline derivatives. ACS Sustain. Chem.& Eng., 2016, 4(4), 2206-2210.
[http://dx.doi.org/10.1021/acssuschemeng.5b01669]
[69]
Ismail, Z.H.; Aly, G.M.; El-Degwi, M.S.; Heiba, H.I.; Ghorab, M.M. Synthesis and insecticidal activity of some new pyranopyrazoles, pyrazolopyranopyrimidines, and pyrazolopyranopyridines. Egypt. J. Biotechnol., 2003, 13, 73-82.
[70]
El-Tamany, E.S.; El-Shahed, F.A.; Mohamed, B.H. Synthesis and biological activity of some pyrazole derivatives. J. Serb. Chem. Soc., 1999, 64, 9-18.
[71]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch. Pharm. (Weinheim), 2006, 339(8), 456-460.
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[72]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(3), 708-712.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[73]
Bassoude, I.; Tber, Z.; Essassi, E.M.; Guillaumet, G.; Berteina-Raboin, S. A one-pot process for the microwave-assisted synthesis of 7-substituted pyrazolo[1,5-a]pyrimidine. RSC Advances, 2016, 6(4), 3301-3306.
[http://dx.doi.org/10.1039/C5RA23417D]
[74]
Lim, F.P.L.; Low, S.T.; Ho, E.L.K.; Halcovitch, N.R.; Tiekink, E.R.T.; Dolzhenko, A.V. A multicomponent reaction of 2-aminoimidazoles: microwave-assisted synthesis of novel 5-aza-7-deaza-adenines. RSC Advances, 2017, 7(81), 51062-51068.
[http://dx.doi.org/10.1039/C7RA11305F]
[75]
a) Sugiura, K.; Schmid, F.A.; Schmid, M.M.; Brown, G.F. Effect of compounds on a spectrum of rat tumors. Cancer Chemother. Rep. 2, 1972, 3(1), 231-308.
[PMID: 4350013];
b) Pershin, G.N.; Shcherbakova, L.I.; Zykova, T.N.; Sokolova, V.N. Antibacterial activity of pyrimidine and pyrrolo-(3,2-d)-pyrimidine derivatives. Farmakol. Toksikol., 1972, 35(4), 466-471.
[PMID: 4626161];
c) Metolcsy, G. Structure-activity correlations and mode of action of some selected types of antifungal compounds. World Rev. Pest Contr, 1971, 10, 50-59.
[76]
Jin, T.S.; Liu, L.B.; Zhao, Y.; Li, T.S. A clean one-pot synthesis of 7-amino-5-aryl-6-cyano-1,5-dihydro-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-diones in aqueous media under ultrasonic irradiation. J. Chem. Res., 2005, 2005(3), 162-163.
[http://dx.doi.org/10.3184/0308234054213672]
[77]
Banitaba, S.H.; Safari, J.; Khalili, S.D. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem., 2013, 20(1), 401-407.
[http://dx.doi.org/10.1016/j.ultsonch.2012.07.007] [PMID: 22939001]
[78]
Wang, L.; Shi, L.X.; Liu, L.; Li, Z.X.; Xu, T.; Hao, W.J.; Li, G.; Tu, S.J.; Jiang, B. Synthesis of DiastereoenrichedOxazolo[5,4-b]indoles via Catalyst-Free Multicomponent Bicyclizations. J. Org. Chem., 2017, 82(7), 3605-3611.
[http://dx.doi.org/10.1021/acs.joc.7b00129] [PMID: 28296402]
[79]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Knyazeva, I.V.; Groth, U.; Glasnov, T.N.; Kappe, C.O. Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J. Org. Chem., 2008, 73(13), 5110-5118.
[http://dx.doi.org/10.1021/jo800825c] [PMID: 18512991]
[80]
Shaabani, A.; Rahmati, A.; Farhangi, E.; Rezayan, A.H. One-step synthesis of 3,4- dihydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones in an ionic liquid. Monatsh. Chem., 2007, 138(6), 615-618.
[81]
Yang, Z.; Hao, W.J.; Xu, H.W.; Wang, S.L.; Jiang, B.; Li, G.; Tu, S.J. Base-promoted transannulation of heterocyclic enamines and 2,3-epoxypropan-1-ones: regio- and stereoselective synthesis of fused pyridines and pyrroles. J. Org. Chem., 2015, 80(5), 2781-2789.
[http://dx.doi.org/10.1021/acs.joc.5b00067] [PMID: 25692388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy