Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Editorial

Green Synthesis of Bioactive Heterocycles - Part 1B

Author(s): Bubun Banerjee

Volume 10, Issue 1, 2023

Published on: 06 April, 2023

Page: [3 - 4] Pages: 2

DOI: 10.2174/221334611001230406103842

Price: $65

[1]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7, 5-22.
[2]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35, 1-14.
[3]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35, 15-35.
[4]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S-heterocycles. Synth. Commun., 2021, 51, 3209-3236.
[5]
Banerjee, B. Recent developments on ultrasound-assisted organic synthesis in aqueous medium. J. Serb. Chem. Soc., 2017, 82, 755-790.
[6]
Banerjee, B. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4, 2181-2199.
[7]
Banerjee, B.; Tajti, A.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds. In: ‘Organophosphorus chemistry: novel developments; Eds by György Keglevich, De Gruyter: Berlin, Boston, 2018; pp. 248-263.
[http://dx.doi.org/10.1515/9783110535839-013]
[8]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50, 1545-1560.
[9]
Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: a decade update. ChemistrySelect, 2018, 3, 9892-9910.
[10]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83, 1071-1097.
[11]
Banerjee, B. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2017, 2, 8362-8376.
[12]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: An ideal combination for organic transformations. ChemistrySelect, 2018, 3, 5283-5295.
[13]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[14]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3, 12918-12936.
[15]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[16]
Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V.K.; Banerjee, B. Mandelic Acid: An efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal., 2021, 8, 147-159.
[17]
Banerjee, B. Recent developments on organo-bycyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[18]
Banerjee, B.; Kaur, G. Recent advances in photo-irradiated synthesis of bioactive heterocycles in; Green Sustainable Process for Chemical and Environmental Engineering and Science, 2020, pp. 407-452.
[http://dx.doi.org/10.1016/B978-0-12-819539-0.00016-6]
[19]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: Versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4, 2181-2199.
[20]
Banerjee, B. Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; , 2020; pp. 153-190.
[http://dx.doi.org/10.1016/B978-0-12-819542-0.00005-1]
[21]
Banik, B.K.; Banerjee, B. Heterocyclic anticancer agents; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9783110735772]
[22]
Banerjee, B. Role of the heterocycles to design anti-cancer agents. Anticancer. Agents Med. Chem., 2022, 22, 3194-3195.
[23]
Banerjee, B. Organic transformations by following green credentials - Part 1(A). Curr. Green Chem., 2019, 6, 154.
[24]
Banerjee, B. Organic transformations by following green credentials - Part 1(B). Curr. Green Chem., 2020, 7, 3-4.
[25]
Banerjee, B. Organic transformations by following green credentials - Part 2. Curr. Green Chem., 2021, 8, 3-4.
[26]
Kaur, N.; Devi, M.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Ahlawat, N.; Jangid, N.K. Photochemical synthesis of fused five-membered O-heterocycles. Curr. Green Chem., 2019, 6, 155-183.
[27]
Sarkar, R.; Mukhopadhyay, C. Carbon-hydrogen bond functionalization in aqueous medium: A brief review. Curr. Green Chem., 2019, 6, 184-197.
[28]
Singh, P.; Nath, M. A concise account on eco-friendly synthetic strategies for pyrazole heterocycles. Curr. Green Chem., 2019, 6, 198-209.
[29]
Deepthi, A.; Thomas, N.V.; Sathi, V. Green protocols for the synthesis of 3,3′-spirooxindoles- 2016- mid 2019. Curr. Green Chem., 2019, 6, 210-225.
[30]
Mukherjee, A.; Ghosal, N.C.; Zyryanov, G.V.; Majee, A.; Santra, S. An updated library on the synthesis of aziridines. Curr. Green Chem., 2019, 6, 226-241.
[31]
Das, A.; Sarkar, S.; Chakraborty, B.; K. Abhishek; Jana, U. Catalytic alkyne/alkene-carbonyl metathesis: Towards the development of green organic synthesis. Curr. Green Chem., 2020, 7, 5-39.
[32]
Biswas, K.; Ghosh, S.; Basu, B. Ion-exchange resins and polypeptide supported catalysts: A critical review. Curr. Green Chem., 2020, 7, 40-52.
[33]
Saha, M.; and Das, A.R. Nanocrystalline ZnO: A competent and reusable catalyst for the preparation of pharmacology relevant heterocycles in the aqueous medium. Curr. Green Chem., 2020, 7, 53-104.
[34]
Padvi, S.A.; Dalal, D.S. Task-specific ionic liquids as a green catalysts and solvents for organic synthesis. Curr. Green Chem., 2020, 7, 105-119.
[35]
Kumar, M.; Kumar, R.; Rana, N.; Prasad, A.K. Chemo-enzymatic synthesis of 3-azido/-amino-C-4-spirooxetano-xylo nucleosides. Curr. Green Chem., 2020, 7, 120-127.
[36]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7, 128-140.
[37]
Mukhopadhyay, C.; Pal, R. Significant organic transformations using catalysts in water: A greener way to combat environmental hazards. Curr. Green Chem., 2021, 8, 5-16.
[38]
Meshram, J.S.; Raghuvanshi, D.S. Role of zeolites and zeotypes in green chemistry. Curr. Green Chem., 2021, 8, 17-27.
[39]
Basak, P.; Ghosh, P. Green organic transformations: Novelty of graphene oxide (GO) and sulfonated graphene oxide (SGO). Curr. Green Chem., 2021, 8, 28-45.
[40]
Bagdi, A.K.; Sikdar, P. Rhodamines as photocatalyst in organic synthesis. Curr. Green Chem., 2021, 8, 46-61.
[41]
Komar, M.; Prašnikar, F.; Kraljević, T.G.; Aladić, K.; Molnar, M. 3-Amino-2-methylquinazolin-4-(3H)-one schiff bases synthesis - A green chemistry approach - A comparison of microwave and ultrasound promoted synthesis with mechanosynthesis. Curr. Green Chem., 2021, 8, 62-69.
[42]
Banerjee, B. Green synthesis of bioactive heterocycles - Part 1A. Curr. Green Chem., 2022, 9, 124-126.
[43]
Majhi, S.; Saha, I. Visible light-promoted synthesis of bioactive N,N-heterocycles. Curr. Green Chem., 2022, 9, 127-144.
[44]
Prakash, C.; Singh, R. Microwave-assisted synthesis of fluorinated heterocycles. Curr. Green Chem., 2022, 9, 145-161.
[45]
Banerjee, B.; Kaur, M.; Sharma, A.; Singh, A.; Priya, A.; Gupta, V.K.; Jaitak, V. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions. Curr. Green Chem., 2022, 9, 162-173.
[46]
Karmakar, R.; Mukhopadhyay, C. Green Synthetic Approach: A well-organized eco-friendly tool for synthesis of bioactive fused heterocyclic compounds. Curr. Green Chem., 2023, 10, 5-24.
[47]
Kamanna, K.; Badiger, K.B.; Kamath, A. A decenary update on the deep eutectic solvents in heterocyclic scaffold synthesis-A green solvent approach. Curr. Green Chem., 2023, 10, 25-41.
[48]
Afridha, M.S.H.F.; Aazath, K.; Roopan, S.M.; Simplica, S.J.A. Bioactive heterocycles: green synthesis and its anti-alzheimer activity. Curr. Green Chem., 2023, 10, 42-56.
[49]
Kamboj, M.; Bajpai, S.; Yadav, M.; Singh, S. Microwave radiations: A green approach to the synthesis of five-membered heterocyclic compounds. Curr. Green Chem., 2023, 10, 57-72.
[50]
Wagh, Y.B.; Tayade, Y.A.; Mahulikar, P.P.; Dalal, D.S. Citric acid promoted green synthesis of bioactive heterocycles. Curr. Green Chem., 2023, 10, 73-91.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy