Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Autophagy as an Anti-senescent in Aging Neurocytes

Author(s): Basheer Abdullah Marzoog*

Volume 24, Issue 2, 2024

Published on: 03 February, 2023

Page: [182 - 190] Pages: 9

DOI: 10.2174/1566524023666230120102718

Price: $65

Abstract

Neuron homeostasis is crucial for the organism, and its maintenance is multifactorial, including autophagy. The turnover of aberrant intracellular components is a fundamental pathogenetic mechanism for cell aging. Autophagy is involved in the acceleration of the neurocyte aging process and the modification of cell longevity. Neurocyte aging is a process of loss of cell identity through cellular and subcellular changes that include molecular loss of epigenetics, transcriptomic, proteomic, and autophagy dysfunction. Autophagy dysfunction is the hallmark of neurocyte aging. Cell aging is the credential feature of neurodegenerative diseases. Pathophysiologically, aged neurocytes are characterized by dysregulated autophagy and subsequently neurocyte metabolic stress, resulting in accelerated neurocyte aging. In particular, chaperone- mediated autophagy perturbation results in upregulated expression of aging and apoptosis genes. Aged neurocytes are also characterized by the down-regulation of autophagy-related genes, such as ATG5-ATG12, LC3-II / LC3-I ratio, Beclin-1, and p62. Slowing aging through autophagy targeting is sufficient to improve prognosis in neurodegenerative diseases. Three primary anti-senescent molecules are involved in the aging process: mTOR, AMPK, and Sirtuins. Autophagy therapeutic effects can be applied to reverse and slow aging. This article discusses current advances in the role of autophagy in neurocyte homeostasis, aging, and potential therapeutic strategies to reduce aging and increase cell longevity.

[1]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[2]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[3]
Friedman LG, Lachenmayer ML, Wang J, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci 2012; 32(22): 7585-93.
[http://dx.doi.org/10.1523/JNEUROSCI.5809-11.2012] [PMID: 22649237]
[4]
McCray BA, Taylor JP. The role of autophagy in age-related neurodegeneration. Neurosignals 2008; 16(1): 75-84.
[http://dx.doi.org/10.1159/000109761] [PMID: 18097162]
[5]
Richter-Landsberg C, Leyk J. Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration. Acta Neuropathol 2013; 126(6): 793-807.
[http://dx.doi.org/10.1007/s00401-013-1158-x] [PMID: 23912309]
[6]
Todorova V, Blokland A. Mitochondria and synaptic plasticity in the mature and aging nervous system. Curr Neuropharmacol 2017; 15(1): 166-73.
[http://dx.doi.org/10.2174/1570159X14666160414111821] [PMID: 27075203]
[7]
Pareja-Cajiao M, Gransee HM, Stowe JM, Rana S, Sieck GC, Mantilla CB. Age-related impairment of autophagy in cervical motor neurons. Exp Gerontol 2021; 144: 111193.
[http://dx.doi.org/10.1016/j.exger.2020.111193] [PMID: 33290859]
[8]
Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obes Metab 2022; 18(4): 465-70.
[http://dx.doi.org/10.14341/omet12778]
[9]
Marzoog BA. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr Cancer Drug Targets 2022; 22(9): 749-56.
[http://dx.doi.org/10.2174/1568009622666220428102741] [PMID: 36062863]
[10]
Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: a potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[11]
Marzoog BA. Coagulopathy and brain injury pathogenesis in Post-COVID-19 syndrome. Cardiovasc Hematol Agents Med Chem 2022; 20(3): 178-88.
[http://dx.doi.org/10.2174/1871525720666220405124021] [PMID: 35382728]
[12]
Kamihara T, Murohara T. Bioinformatics analysis of autophagy‐lysosomal degradation in cardiac aging. Geriatr Gerontol Int 2021; 21(1): 108-15.
[http://dx.doi.org/10.1111/ggi.14098] [PMID: 33233021]
[13]
Kandel ER. The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 2001; 21(5): 565-611.
[http://dx.doi.org/10.1023/A:1014775008533] [PMID: 12168768]
[14]
Viscomi MT, D’Amelio M. The “Janus-faced role” of autophagy in neuronal sickness: focus on neurodegeneration. Mol Neurobiol 2012; 46(2): 513-21.
[http://dx.doi.org/10.1007/s12035-012-8296-3] [PMID: 22773113]
[15]
Haynes KA, Smith TK, Preston CJ, Hegde AN. Proteasome inhibition augments new protein accumulation early in long-term synaptic plasticity and rescues adverse Aβ effects on protein synthesis. ACS Chem Neurosci 2015; 6(5): 695-700.
[http://dx.doi.org/10.1021/acschemneuro.5b00068] [PMID: 25775404]
[16]
Stavoe AKH, Holzbaur ELF. Autophagy in neurons. Annu Rev Cell Dev Biol 2019; 35(1): 477-500.
[http://dx.doi.org/10.1146/annurev-cellbio-100818-125242] [PMID: 31340124]
[17]
Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 2014; 206(5): 655-70.
[http://dx.doi.org/10.1083/jcb.201401070] [PMID: 25154397]
[18]
Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014; 205(2): 143-53.
[http://dx.doi.org/10.1083/jcb.201402104] [PMID: 24751536]
[19]
Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524(7565): 309-14.
[http://dx.doi.org/10.1038/nature14893] [PMID: 26266977]
[20]
Cai Q, Zakaria HM, Simone A, Sheng ZH. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 2012; 22(6): 545-52.
[http://dx.doi.org/10.1016/j.cub.2012.02.005] [PMID: 22342752]
[21]
Babbar M, Basu S, Yang B, Croteau DL, Bohr VA. Mitophagy and DNA damage signaling in human aging. Mech Ageing Dev 2020; 186: 111207.
[http://dx.doi.org/10.1016/j.mad.2020.111207] [PMID: 31923475]
[22]
Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 2012; 8(1): 77-87.
[http://dx.doi.org/10.4161/auto.8.1.18274] [PMID: 22113203]
[23]
Hu Z, Chen B, Zhang J, Ma Y. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J Biol Chem 2017; 292(44): 18062-74.
[http://dx.doi.org/10.1074/jbc.M116.764795] [PMID: 28928221]
[24]
Zhang Y, Li Q, Liu C, et al. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology 2016; 56: 139-49.
[http://dx.doi.org/10.1016/j.neuro.2016.07.004] [PMID: 27397902]
[25]
Chen G, Shan X, Li X, Tao H. Remote ischemic postconditioning protects the brain from focal ischemia/reperfusion injury by inhibiting autophagy through the mTOR/p70S6K pathway. Neurol Res 2018; 40(3): 182-8.
[http://dx.doi.org/10.1080/01616412.2018.1424696] [PMID: 29369005]
[26]
Ott C, König J, Höhn A, Jung T, Grune T. Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biol 2016; 10: 266-73.
[http://dx.doi.org/10.1016/j.redox.2016.10.015] [PMID: 27825071]
[27]
Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 2014; 8(6): 1767-80.
[http://dx.doi.org/10.1016/j.celrep.2014.08.006] [PMID: 25199830]
[28]
Wang J, Sun C, Li J, Jiang H, Qiu Y, Gong M. Knockdown of ETV4 promotes autophagy dependent apoptosis in GBM cells by reducing the transcriptional activation of EMP1. Oncol Lett 2021; 23(2): 41.
[http://dx.doi.org/10.3892/ol.2021.13159] [PMID: 34976153]
[29]
Azad MB, Chen Y, Henson ES, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008; 4(2): 195-204.
[http://dx.doi.org/10.4161/auto.5278] [PMID: 18059169]
[30]
Gao K, Zong H, Hou K, et al. p53N236S activates autophagy in response to hypoxic stress induced by DFO. Genes (Basel) 2022; 13(5): 763.
[http://dx.doi.org/10.3390/genes13050763] [PMID: 35627147]
[31]
Miki Y, Tanji K, Mori F, et al. Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci Lett 2018; 684: 35-41.
[http://dx.doi.org/10.1016/j.neulet.2018.06.052] [PMID: 29966750]
[32]
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115(5): 577-90.
[http://dx.doi.org/10.1016/S0092-8674(03)00929-2] [PMID: 14651849]
[33]
Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9(2): 218-24.
[http://dx.doi.org/10.1038/ncb1537] [PMID: 17237771]
[34]
Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell 2001; 107(7): 827-30.
[http://dx.doi.org/10.1016/S0092-8674(01)00623-7] [PMID: 11779459]
[35]
Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006; 4(12): e423.
[http://dx.doi.org/10.1371/journal.pbio.0040423] [PMID: 17132049]
[36]
Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15(9): 1460-71.
[http://dx.doi.org/10.1038/cdd.2008.81] [PMID: 18551133]
[37]
Audesse AJ, Dhakal S, Hassell LA, Gardell Z, Nemtsova Y, Webb AE. FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 2019; 15(4): e1008097.
[http://dx.doi.org/10.1371/journal.pgen.1008097] [PMID: 30973875]
[38]
Xu CY, Kang WY, Chen YM, et al. DJ-1 inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 2017; 9(SEP): 308.
[http://dx.doi.org/10.3389/fnagi.2017.00308] [PMID: 29021755]
[39]
Chua JP, Bedi K, Paulsen MT, et al. Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons. Curr Biol 2022; 32(12): 2581-2595.e6.
[http://dx.doi.org/10.1016/j.cub.2022.04.053] [PMID: 35580604]
[40]
Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008; 4(2): 176-84.
[http://dx.doi.org/10.4161/auto.5269] [PMID: 18059160]
[41]
Li MZ, Liu EJ, Zhou QZ, et al. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil Med Res 2022; 9(1): 38.
[http://dx.doi.org/10.1186/s40779-022-00396-x] [PMID: 35799293]
[42]
Bingol B, Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 2011; 69(1): 22-32.
[http://dx.doi.org/10.1016/j.neuron.2010.11.006] [PMID: 21220096]
[43]
Lie PPY, Nixon RA. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis 2019; 122: 94-105.
[http://dx.doi.org/10.1016/j.nbd.2018.05.015] [PMID: 29859318]
[44]
Winckler B, Faundez V, Maday S, Cai Q, Guimas Almeida C, Zhang H. The endolysosomal system and proteostasis: From development to degeneration. J Neurosci 2018; 38(44): 9364-74.
[http://dx.doi.org/10.1523/JNEUROSCI.1665-18.2018] [PMID: 30381428]
[45]
Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone. J Biol Chem 2018; 293(15): 5414-24.
[http://dx.doi.org/10.1074/jbc.R117.818237] [PMID: 29247007]
[46]
Ruan L, Zhou C, Jin E, et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 2017; 543(7645): 443-6.
[http://dx.doi.org/10.1038/nature21695] [PMID: 28241148]
[47]
Latini A, Pereira PJS, Couture R, Campos MM, Talbot S. Oxidative stress: Neuropathy, excitability, and neurodegeneration. Oxid Med Cell Longev 2019; 2019: 1-2.
[http://dx.doi.org/10.1155/2019/2715326] [PMID: 30723534]
[48]
Komirishetty P, Areti A, Yerra VG, et al. PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci 2016; 150: 50-60.
[http://dx.doi.org/10.1016/j.lfs.2016.02.085] [PMID: 26921631]
[49]
Cappelletti G, Tedeschi G, Maggioni MG, Negri A, Nonnis S, Maci R. The nitration of τ protein in neurone-like PC12 cells. FEBS Lett 2004; 562(1-3): 35-9.
[http://dx.doi.org/10.1016/S0014-5793(04)00173-5] [PMID: 15043998]
[50]
Landino LM, Skreslet TE, Alston JA. Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin reductase system. J Biol Chem 2004; 279(33): 35101-5.
[http://dx.doi.org/10.1074/jbc.M405471200] [PMID: 15184375]
[51]
Landino LM, Koumas MT, Mason CE, Alston JA. Modification of tubulin cysteines by nitric oxide and nitroxyl donors alters tubulin polymerization activity. Chem Res Toxicol 2007; 20(11): 1693-700.
[http://dx.doi.org/10.1021/tx7001492] [PMID: 17907787]
[52]
He Y, Yu W, Baas PW. Microtubule reconfiguration during axonal retraction induced by nitric oxide. J Neurosci 2002; 22(14): 5982-91.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-05982.2002] [PMID: 12122060]
[53]
Wang SM, Tsai HP, Huang JJ, Huang HC, Lin JL, Liu PH. Inhibition of nitric oxide synthase promotes facial axonal regeneration following neurorrhaphy. Exp Neurol 2009; 216(2): 499-510.
[http://dx.doi.org/10.1016/j.expneurol.2009.01.006] [PMID: 19320008]
[54]
Keilhoff G, Fansa H, Wolf G. Differences in peripheral nerve degeneration/regeneration between wild-type and neuronal nitric oxide synthase knockout mice. J Neurosci Res 2002; 68(4): 432-41.
[http://dx.doi.org/10.1002/jnr.10229] [PMID: 11992469]
[55]
Razzaq A, Hussain G, Rasul A, et al. Strychnos nux-vomica L. seed preparation promotes functional recovery and attenuates oxidative stress in a mouse model of sciatic nerve crush injury. BMC Complement Med Therap 2020; 20(1): 181.
[http://dx.doi.org/10.1186/s12906-020-02950-3] [PMID: 32527244]
[56]
Yadav A, Kumari R, Yadav A, Mishra JP, Srivatva JP, Prabha S. Antioxidants and its functions in human body - A review. Res Environ Life Sci 2016; 9(11): 1328-31.
[57]
Taşkale P, Topaloğlu I. The healing effects of vitamin E with corticosteroid and vitamin E alone on nerve healing in rats with traumatic facial palsy. Kulak Burun Bogaz Ihtis Derg 2010; 20(5): 255-9.
[PMID: 20815804]
[58]
Yildirim G, Kumral TL, Berkiten G, et al. The effect of coenzyme Q10 on the regeneration of crushed facial nerve. J Craniofac Surg 2015; 26(1): 277-80.
[http://dx.doi.org/10.1097/SCS.0000000000001201] [PMID: 25490571]
[59]
Jang CH, Cho YB, Choi CH. Effect of ginkgo biloba extract on recovery after facial nerve crush injury in the rat. Int J Pediatr Otorhinolaryngol 2012; 76(12): 1823-6.
[http://dx.doi.org/10.1016/j.ijporl.2012.09.009] [PMID: 23021527]
[60]
Bjelakovic G, Gluud C. Surviving antioxidant supplements. J Natl Cancer Inst 2007; 99(10): 742-3.
[http://dx.doi.org/10.1093/jnci/djk211] [PMID: 17505064]
[61]
Salganik RI. The benefits and hazards of antioxidants: Controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 2001; 20(sup5): 464S-72S.
[http://dx.doi.org/10.1080/07315724.2001.10719185]
[62]
Kobayashi Y, Matsuda S, Imamura K, Kobayashi H. Hydrogen generation by reaction of Si nanopowder with neutral water. J Nanopart Res 2017; 19(5): 176.
[http://dx.doi.org/10.1007/s11051-017-3873-z] [PMID: 28579914]
[63]
Kobayashi Y, Imamura R, Koyama Y, et al. Renoprotective and neuroprotective effects of enteric hydrogen generation from Si-based agent. Sci Rep 2020; 10(1): 5859.
[http://dx.doi.org/10.1038/s41598-020-62755-9] [PMID: 32246095]
[64]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[65]
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 2014; 144(1): 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.006] [PMID: 24769081]
[66]
Zhu Z, Liu Y, Li X, et al. GPNMB mitigates Alzheimer’s disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett 2022; 767: 136300.
[http://dx.doi.org/10.1016/j.neulet.2021.136300] [PMID: 34695452]
[67]
Wu LK, Agarwal S, Kuo CH, et al. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson’s disease. Phytomedicine 2022; 104: 154250.
[http://dx.doi.org/10.1016/j.phymed.2022.154250] [PMID: 35752074]
[68]
Arel-Dubeau AM, Longpré F, Bournival J, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/425496] [PMID: 25574337]
[69]
Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283(16): 10892-903.
[http://dx.doi.org/10.1074/jbc.M800102200] [PMID: 18281291]
[70]
Li H, Zheng T, Lian F, Xu T, Yin W, Jiang Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer’s disease. Nutrition 2022; 93: 111473.
[http://dx.doi.org/10.1016/j.nut.2021.111473] [PMID: 34739938]
[71]
Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 2016; 15(3): 522-30.
[http://dx.doi.org/10.1111/acel.12461] [PMID: 26970090]
[72]
Wang J, Cao B, Han D, Sun M, Feng J. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 2017; 8(1): 71-84.
[http://dx.doi.org/10.14336/AD.2016.0530] [PMID: 28203482]
[73]
Fontana CM, Locatello L, Sabatelli P, et al. epg5 knockout leads to the impairment of reproductive success and courtship behaviour in a zebrafish model of autophagy-related diseases. Biomed J 2022; 45(2): 377-86.
[http://dx.doi.org/10.1016/j.bj.2021.04.002] [PMID: 35562284]
[74]
Retnakumar SV, Geesala R, Bretin A, et al. Targeting the endo-lysosomal autophagy pathway to treat inflammatory bowel diseases. J Autoimmun 2022; 128: 102814.
[http://dx.doi.org/10.1016/j.jaut.2022.102814] [PMID: 35298976]
[75]
Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci 2018; 39(12): 1064-76.
[http://dx.doi.org/10.1016/j.tips.2018.10.005] [PMID: 30458935]
[76]
Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b‐mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell 2020; 19(8): e13187.
[http://dx.doi.org/10.1111/acel.13187] [PMID: 32627317]
[77]
Yu Y, Feng L, Li J, et al. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav Brain Res 2017; 334: 155-62.
[http://dx.doi.org/10.1016/j.bbr.2017.07.003] [PMID: 28688896]
[78]
Dai DF, Rabinovitch PS. Autophagy and proteostasis in cardiac aging. Transl Med (Sunnyvale) 2018; 171-86.
[http://dx.doi.org/10.1016/B978-0-12-805253-2.00015-8]
[79]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[80]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[81]
Lipinski MM, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 2010; 107(32): 14164-9.
[http://dx.doi.org/10.1073/pnas.1009485107] [PMID: 20660724]
[82]
Yan DY, Liu C, Tan X, et al. Mn-induced neurocytes injury and autophagy dysfunction in alpha-synuclein wild-type and knock-out mice: Highlighting the role of alpha-synuclein. Neurotox Res 2019; 36(1): 66-80.
[http://dx.doi.org/10.1007/s12640-019-00016-y] [PMID: 30796692]
[83]
Auzmendi-Iriarte J, Matheu A. Impact of chaperone-mediated autophagy in brain aging: Neurodegenerative diseases and glioblastoma. Front Aging Neurosci 2021; 12: 630743.
[http://dx.doi.org/10.3389/fnagi.2020.630743] [PMID: 33633561]
[84]
Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24(1): 92-104.
[http://dx.doi.org/10.1038/cr.2013.153] [PMID: 24281265]
[85]
Liao Z, Wang B, Liu W, et al. Dysfunction of chaperone-mediated autophagy in human diseases. Mol Cell Biochem 2021; 476(3): 1439-54.
[http://dx.doi.org/10.1007/s11010-020-04006-z] [PMID: 33389491]
[86]
Ho PWL, Leung CT, Liu H, et al. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy 2020; 16(2): 347-70.
[http://dx.doi.org/10.1080/15548627.2019.1603545] [PMID: 30983487]
[87]
Kiffin R, Kaushik S, Zeng M, et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 2007; 120(5): 782-91.
[http://dx.doi.org/10.1242/jcs.001073] [PMID: 17284523]
[88]
Kanno H, Handa K, Murakami T, Aizawa T, Ozawa H. Chaperone-mediated autophagy in neurodegenerative diseases and acute neurological insults in the central nervous system 2022; 11(7): 1205.
[89]
Dohi E, Tanaka S, Seki T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 2012; 60(4): 431-42.
[http://dx.doi.org/10.1016/j.neuint.2012.01.020] [PMID: 22306777]
[90]
Cordeiro LM, Machado ML, da Silva AF, et al. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem Toxicol 2020; 141: 111323.
[http://dx.doi.org/10.1016/j.fct.2020.111323] [PMID: 32278002]
[91]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[92]
Zhang Y, He J, Saris PJG, et al. Multifunctional photoresponsive organic molecule for electric field sensing and modulation. J Mater Chem C Mater Opt Electron Devices 2022; 10(4): 1204-11.
[http://dx.doi.org/10.1039/D1TC05065F]
[93]
Kim J. Probing nanomechanical responses of cell membranes. Sci Reports 2020; 10(1): 1-11.
[http://dx.doi.org/10.1038/s41598-020-59030-2]
[94]
Kulkarni A, Chen J, Maday S. Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr Opin Neurobiol 2018; 51: 29-36.
[http://dx.doi.org/10.1016/j.conb.2018.02.008] [PMID: 29529415]
[95]
Suzuki C, Yamaguchi J, Sanada T, et al. Lack of Cathepsin D in the central nervous system results in microglia and astrocyte activation and the accumulation of proteinopathy-related proteins. Sci Rep 2022; 12(1): 11662.
[http://dx.doi.org/10.1038/s41598-022-15805-3] [PMID: 35804072]
[96]
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and microglia: Novel partners in neurodegeneration and aging. Int J Mol Sci 2017; 18(3): 598.
[http://dx.doi.org/10.3390/ijms18030598] [PMID: 28282924]
[97]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[98]
Cozzi M, Ferrari V. Autophagy dysfunction in ALS: From transport to protein degradation. J Mol Neurosci 2022; 72(7): 1456-81.
[http://dx.doi.org/10.1007/s12031-022-02029-3] [PMID: 35708843]
[99]
Goiran T, Eldeeb MA, Zorca CE, Fon EA. Hallmarks and molecular tools for the study of mitophagy in Parkinson’s disease. Cells 2022; 11(13): 2097.
[http://dx.doi.org/10.3390/cells11132097] [PMID: 35805181]
[100]
Luo F, Sandhu AF, Rungratanawanich W, et al. Melatonin and autophagy in aging-related neurodegenerative diseases. Int J Mol Sci 2020; 21(19): 7174.
[http://dx.doi.org/10.3390/ijms21197174] [PMID: 32998479]
[101]
Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19(8): 983-97.
[http://dx.doi.org/10.1038/nm.3232] [PMID: 23921753]
[102]
Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 2018; 28(1): 3-13.
[http://dx.doi.org/10.1111/bpa.12545] [PMID: 28703923]
[103]
Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. Nat Aging 2021; 1(8): 634-50.
[http://dx.doi.org/10.1038/s43587-021-00098-4]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy