Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Effect of Bacterial Composition Shifts in the Oral Microbiota on Alzheimer's Disease

Author(s): Majid Taati Moghadam, Ali Mojtahedi, Babak Bakhshayesh, Sajad Babakhani, Parisa Ajorloo, Aref Shariati, Mehrnaz Mirzaei, Siamak Heidarzadeh and Faramarz Masjedian Jazi*

Volume 24, Issue 2, 2024

Published on: 03 October, 2022

Page: [167 - 181] Pages: 15

DOI: 10.2174/1566524023666220819140748

Price: $65

Abstract

Alzheimer's disease (AD), a neurological disorder, despite significant advances in medical science, has not yet been definitively cured, and the exact causes of the disease remain unclear. Due to the importance of AD in the clinic, large expenses are spent annually to deal with this neurological disorder, and neurologists warn of an increase in this disease in elderly in the near future. It has been believed that microbiota dysbiosis leads to Alzheimer’s as a multi-step disease. In this regard, the presence of footprints of perturbations in the oral microbiome and the predominance of pathogenic bacteria and their effect on the nervous system, especially AD, is a very interesting topic that has been considered by researchers in the last decade. Some studies have looked at the mechanisms by which oral microbiota cause AD. However, many aspects of this interaction are still unclear as to how oral microbiota composition can contribute to this disease. Understanding this interaction requires extensive collaboration by interdisciplinary researchers to explore all aspects of the issue. In order to reveal the link between the composition of the oral microbiota and this disease, researchers from various domains have sought to explain the mechanisms of shift in oral microbiota in AD in this review.

Keywords: Oral microbiome, Alzheimer's disease, gut microbiota, dysbiosis, periodontitis, microbial.

[1]
Baumann P, Moran NA. Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie van Leeuwenhoek 1997; 72(1): 39-48.
[http://dx.doi.org/10.1023/A:1000239108771] [PMID: 9296262]
[2]
Cho I, Blaser MJ. The human microbiome: At the interface of health and disease. Nat Rev Genet 2012; 13(4): 260-70.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[3]
He J, Li Y, Cao Y, Xue J, Zhou X. The oral microbiome diversity and its relation to human diseases. Folia Microbiol (Praha) 2015; 60(1): 69-80.
[http://dx.doi.org/10.1007/s12223-014-0342-2] [PMID: 25147055]
[4]
Łanowy P, Bichalski M, Komasa J, Mocny-Pachońska K, Tanasiewicz M. Oral microbiota and systemic disease. J Educ Health Sport 2019; 9(8): 811-22.
[5]
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449(7164): 804-10.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[6]
Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[7]
Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother 2018; 99: 883-93.
[http://dx.doi.org/10.1016/j.biopha.2018.01.146] [PMID: 29710488]
[8]
Sampaio-Maia B, Caldas I, Pereira M, Perez-Mongiovi D, Araujo R. The oral microbiome in health and its implication in oral and systemic diseases. Advances in applied microbiology 97. Elsevier 2016; pp. 171-210.
[9]
Mihaila D, Donegan J, Barns S, et al. The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS One 2019; 14(6): e0218252.
[http://dx.doi.org/10.1371/journal.pone.0218252] [PMID: 31247001]
[10]
Shoemark DK, Allen SJ. The microbiome and disease: Reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis 2015; 43(3): 725-38.
[http://dx.doi.org/10.3233/JAD-141170] [PMID: 25125469]
[11]
Xu Y, Teng F, Huang S, et al. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy. Arch Oral Biol 2014; 59(2): 176-86.
[http://dx.doi.org/10.1016/j.archoralbio.2013.10.011] [PMID: 24370189]
[12]
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, microbiomes and their role in Alzheimer’s disease. Front Aging Neurosci 2017; 9: 336.
[http://dx.doi.org/10.3389/fnagi.2017.00336] [PMID: 29114218]
[13]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[14]
Ilievski V, Zuchowska PK, Green SJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One 2018; 13(10): e0204941.
[http://dx.doi.org/10.1371/journal.pone.0204941] [PMID: 30281647]
[15]
Leblhuber F, Huemer J, Steiner K, Gostner JM, Fuchs D. Knock-on effect of periodontitis to the pathogenesis of Alzheimer’s disease? Wien Klin Wochenschr 2020; 132(17-18): 493-8.
[16]
Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 2002; 17(2): 113-8.
[http://dx.doi.org/10.1046/j.0902-0055.2001.00100.x] [PMID: 11929559]
[17]
Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 2013; 36(4): 665-77.
[http://dx.doi.org/10.3233/JAD-121918] [PMID: 23666172]
[18]
Bäuerl C, Collado MC, Diaz Cuevas A, Viña J, Pérez Martínez G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett Appl Microbiol 2018; 66(6): 464-71.
[http://dx.doi.org/10.1111/lam.12882] [PMID: 29575030]
[19]
Sureda A, Daglia M, Argüelles Castilla S, et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol Res 2020; 151: 104582.
[http://dx.doi.org/10.1016/j.phrs.2019.104582] [PMID: 31794871]
[20]
Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis 2012; 18(2): 109-20.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01851.x] [PMID: 21902769]
[21]
Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and industrial revolutions. Nat Genet 2013; 45(4): 450-55.455e1
[http://dx.doi.org/10.1038/ng.2536] [PMID: 23416520]
[22]
Gazzani G, Daglia M, Papetti A. Food components with anticaries activity. Curr Opin Biotechnol 2012; 23(2): 153-9.
[http://dx.doi.org/10.1016/j.copbio.2011.09.003] [PMID: 22030309]
[23]
Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol 2018; 200(4): 525-40.
[http://dx.doi.org/10.1007/s00203-018-1505-3] [PMID: 29572583]
[24]
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008; 6(10): 776-88.
[http://dx.doi.org/10.1038/nrmicro1978] [PMID: 18794915]
[25]
Morris SC, Peel JS. The earliest annelids: Lower cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontol Pol 2008; 53(1): 137-48.
[http://dx.doi.org/10.4202/app.2008.0110]
[26]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[27]
Krom BP, Kidwai S, Ten Cate JM. Candida and other fungal species: Forgotten players of healthy oral microbiota. J Dent Res 2014; 93(5): 445-51.
[http://dx.doi.org/10.1177/0022034514521814] [PMID: 24487378]
[28]
Ochman H, Worobey M, Kuo C-H, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 2010; 8(11): e1000546.
[http://dx.doi.org/10.1371/journal.pbio.1000546] [PMID: 21103409]
[29]
Li Y, Ismail AI, Ge Y, Tellez M, Sohn W. Similarity of bacterial populations in saliva from African-American mother-child dyads. J Clin Microbiol 2007; 45(9): 3082-5.
[http://dx.doi.org/10.1128/JCM.00771-07] [PMID: 17634300]
[30]
Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 2008; 105(6): 2117-22.
[http://dx.doi.org/10.1073/pnas.0712038105] [PMID: 18252821]
[31]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[32]
Grönlund MM, Lehtonen O-P, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: Permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999; 28(1): 19-25.
[http://dx.doi.org/10.1097/00005176-199901000-00007] [PMID: 9890463]
[33]
Li Y, Caufield PW, Dasanayake AP, Wiener HW, Vermund SH. Mode of delivery and other maternal factors influence the acquisition of Streptococcus mutans in infants. J Dent Res 2005; 84(9): 806-11.
[http://dx.doi.org/10.1177/154405910508400905] [PMID: 16109988]
[34]
Lif Holgerson P, Harnevik L, Hernell O, Tanner AC, Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res 2011; 90(10): 1183-8.
[http://dx.doi.org/10.1177/0022034511418973] [PMID: 21828355]
[35]
Raymond J, Thiberg JM, Chevalier C, et al. Genetic and transmission analysis of Helicobacter pylori strains within a family. Emerg Infect Dis 2004; 10(10): 1816-21.
[http://dx.doi.org/10.3201/eid1010.040042] [PMID: 15504269]
[36]
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011; 480(7376): 241-4.
[http://dx.doi.org/10.1038/nature10571] [PMID: 22037308]
[37]
Baca P, Castillo AM, Liébana MJ, Castillo F, Martín-Platero A, Liébana J. Horizontal transmission of Streptococcus mutans in schoolchildren. Med Oral Patol Oral Cir Bucal 2012; 17(3): e495-500.
[http://dx.doi.org/10.4317/medoral.17592] [PMID: 22143733]
[38]
Stahringer SS, Clemente JC, Corley RP, et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res 2012; 22(11): 2146-52.
[http://dx.doi.org/10.1101/gr.140608.112] [PMID: 23064750]
[39]
Holgerson PL, Vestman NR, Claesson R, et al. Oral microbial profile discriminates breast-fed from formula-fed infants. J Pediatr Gastroenterol Nutr 2013; 56(2): 127-36.
[http://dx.doi.org/10.1097/MPG.0b013e31826f2bc6] [PMID: 22955450]
[40]
Vestman NR, Timby N, Holgerson PL, et al. Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol 2013; 13(1): 193.
[http://dx.doi.org/10.1186/1471-2180-13-193] [PMID: 23945215]
[41]
Zaura E, Nicu EA, Krom BP, Keijser BJ. Acquiring and maintaining a normal oral microbiome: Current perspective. Front Cell Infect Microbiol 2014; 4: 85.
[http://dx.doi.org/10.3389/fcimb.2014.00085] [PMID: 25019064]
[42]
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Trans Med 2014; 6(237): 237-65.
[http://dx.doi.org/10.1126/scitranslmed.3008599]
[43]
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep 2017; 7(1): 2860.
[http://dx.doi.org/10.1038/s41598-017-03066-4] [PMID: 28588199]
[44]
Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci USA 2014; 111(28): E2875-84.
[http://dx.doi.org/10.1073/pnas.1409644111] [PMID: 24965363]
[45]
Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 2014; 162 (2 Pt A): 22-38.
[http://dx.doi.org/10.1016/j.imlet.2014.08.017] [PMID: 25447398]
[46]
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018; 9(5): 488-500.
[http://dx.doi.org/10.1007/s13238-018-0548-1] [PMID: 29736705]
[47]
Butler RR III, Soomer-James JTA, Frenette M, Pombert J-F. Complete genome sequences of two human oral microbiome commensals: Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945. Genome Announc 2017; 5(24): e00536-17.
[http://dx.doi.org/10.1128/genomeA.00536-17] [PMID: 28619805]
[48]
Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013; 69(1): 137-43.
[http://dx.doi.org/10.1016/j.phrs.2012.11.006] [PMID: 23201354]
[49]
Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 2019; 23(1): 122-8.
[PMID: 31110428]
[50]
Weiss EI, Shenitzki B, Leibusor R. Microbial coaggregation in the oral cavity.Toward Anti-Adhesion Therapy for Microbial Diseases. Springer 1996; pp. 233-40.
[http://dx.doi.org/10.1007/978-1-4613-0415-9_28]
[51]
Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 2010; 4(8): 962-74.
[http://dx.doi.org/10.1038/ismej.2010.30] [PMID: 20336157]
[52]
Palmer RJ Jr. Composition and development of oral bacterial communities. Periodontol 2000 2014; 64(1): 20-39.
[http://dx.doi.org/10.1111/j.1600-0757.2012.00453.x] [PMID: 24320954]
[53]
Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One 2013; 8(5): e63139.
[http://dx.doi.org/10.1371/journal.pone.0063139] [PMID: 23671663]
[54]
Petersen PE. The world oral health report 2003: Continuous improvement of oral health in the 21st century-the approach of the WHO global oral health programme. Community Dent Oral Epidemiol 2003; 31 (Suppl. 1): 3-23.
[http://dx.doi.org/10.1046/j..2003.com122.x] [PMID: 15015736]
[55]
Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol 2010; 192(19): 5002-17.
[http://dx.doi.org/10.1128/JB.00542-10] [PMID: 20656903]
[56]
Alzeimer Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[57]
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of bipolar disorder and Alzheimer’s disease: Pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt A): 34-53.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.033] [PMID: 28476640]
[58]
Kazor CE, Mitchell PM, Lee AM, et al. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 2003; 41(2): 558-63.
[http://dx.doi.org/10.1128/JCM.41.2.558-563.2003] [PMID: 12574246]
[59]
Xu H, Hao W, Zhou Q, et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One 2014; 9(2): e89269.
[http://dx.doi.org/10.1371/journal.pone.0089269] [PMID: 24586647]
[60]
Scholz F, Badgley BD, Sadowsky MJ, Kaplan DH. Immune mediated shaping of microflora community composition depends on barrier site. PLoS One 2014; 9(1): e84019.
[http://dx.doi.org/10.1371/journal.pone.0084019] [PMID: 24416190]
[61]
Sutmuller RP, Den Brok MH, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006; 116(2): 485-94.
[http://dx.doi.org/10.1172/JCI25439] [PMID: 16424940]
[62]
Hall JA, Bouladoux N, Sun CM, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008; 29(4): 637-49.
[http://dx.doi.org/10.1016/j.immuni.2008.08.009] [PMID: 18835196]
[63]
Janardhanam SB, Prakasam S, Swaminathan VT, Kodumudi KN, Zunt SL, Srinivasan M. Differential expression of TLR-2 and TLR-4 in the epithelial cells in oral lichen planus. Arch Oral Biol 2012; 57(5): 495-502.
[http://dx.doi.org/10.1016/j.archoralbio.2011.10.013] [PMID: 22119043]
[64]
Feller L, Altini M, Khammissa RA, Chandran R, Bouckaert M, Lemmer J. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116(5): 576-83.
[http://dx.doi.org/10.1016/j.oooo.2013.07.013] [PMID: 24119522]
[65]
Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: A review. J Dent 2005; 33(3): 223-33.
[http://dx.doi.org/10.1016/j.jdent.2004.10.009] [PMID: 15725522]
[66]
Lai KSP, Liu CS, Rau A, et al. Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 2017; 88(10): 876-82.
[http://dx.doi.org/10.1136/jnnp-2017-316201] [PMID: 28794151]
[67]
Gaugler JE, Burgio LD. Caregiving for individuals with Alzheimer’s disease and related disorders. The spectrum of family caregiving for adults and elders with chronic illness 2016; 15-57.
[http://dx.doi.org/10.1093/med:psych/9780199828036.003.0002]
[68]
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol 2015; 7(1): 29143.
[http://dx.doi.org/10.3402/jom.v7.29143] [PMID: 26385886]
[69]
World Health Organization. Global action plan on the public health response to dementia 2017–2025.
[70]
Balin BJ, Hudson AP. Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr Allergy Asthma Rep 2014; 14(3): 417.
[http://dx.doi.org/10.1007/s11882-013-0417-1] [PMID: 24429902]
[71]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[72]
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between wine consumption, diet and microbiome modulation in Alzheimer’s disease. Nutrients 2020; 12(10): 3082.
[http://dx.doi.org/10.3390/nu12103082] [PMID: 33050383]
[73]
Fox M, Knorr DA, Haptonstall KM. Alzheimer’s disease and symbiotic microbiota: An evolutionary medicine perspective. Ann N Y Acad Sci 2019; 1449(1): 3-24.
[http://dx.doi.org/10.1111/nyas.14129] [PMID: 31180143]
[74]
Shao W, Peng D, Wang X. Genetics of Alzheimer’s disease: From pathogenesis to clinical usage. J Clin Neurosci 2017; 45: 1-8.
[http://dx.doi.org/10.1016/j.jocn.2017.06.074] [PMID: 28869135]
[75]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[76]
Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol 2019; 56(9): 6156-67.
[http://dx.doi.org/10.1007/s12035-019-1500-y] [PMID: 30734227]
[77]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[78]
Ohm TG, Müller H, Braak H, Bohl J. Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 1995; 64(1): 209-17.
[http://dx.doi.org/10.1016/0306-4522(95)90397-P] [PMID: 7708206]
[79]
Thambisetty M, An Y, Nalls M, et al. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biol Psychiatry 2013; 73(5): 422-8.
[http://dx.doi.org/10.1016/j.biopsych.2012.08.015] [PMID: 23022416]
[80]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010; 9(1): 119-28.
[http://dx.doi.org/10.1016/S1474-4422(09)70299-6] [PMID: 20083042]
[81]
Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 2006; 26(22): 6011-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1189-06.2006] [PMID: 16738244]
[82]
Glabe CC. Amyloid accumulation and pathogensis of Alzheimer’s disease: Significance of monomeric, oligomeric and fibrillar A β Alzheimer’ s Disease. Springer 2005; pp. 167-77.
[83]
Silva MVF, Loures CMG, Alves LCV, De Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[84]
Pasinetti GM. Towards prevention and therapy of Alzheimer’s disease. Mol Aspects Med 2015; 43-44: 1-2.
[http://dx.doi.org/10.1016/j.mam.2015.09.001] [PMID: 26449935]
[85]
Manji F, Dahlen G, Fejerskov O. Caries and periodontitis: Contesting the conventional wisdom on their aetiology. Caries Res 2018; 52(6): 548-64.
[http://dx.doi.org/10.1159/000488948] [PMID: 29694978]
[86]
Nascimento MM. Oral microbiota transplant: A potential new therapy for oral diseases. J Calif Dent Assoc 2017; 45(10): 565-8.
[PMID: 29497269]
[87]
Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; A review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[88]
Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci 2019; 13: 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[89]
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord Chem Rev 2016; 327: 287-303.
[http://dx.doi.org/10.1016/j.ccr.2016.04.013]
[90]
Alcolea-Palafox M, Posada-Moreno P, Ortuño-Soriano I, et al. Research strategies developed for the treatment of Alzheimer’s disease. Reversible and pseudo-irreversible inhibitors of acetylcholinesterase: Structure-activity relationships and drug design. Drug Design and Discovery in Alzheimer’s Disease. Elsevier 2014; pp. 426-77.
[91]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer's disease. Int J Alzheimers Dis 2012; 2012: 728983.
[http://dx.doi.org/10.1155/2012/728983]
[92]
DeFina PA, Moser RS, Glenn M, Lichtenstein JD, Fellus J. Alzheimer's disease clinical and research update for health care practitioners. J Aging Res 2013; 2013: 207178.
[http://dx.doi.org/10.1155/2013/207178]
[93]
Watanabe Y, Arai H, Hirano H, et al. Oral function as an indexing parameter for mild cognitive impairment in older adults. Geriatr Gerontol Int 2018; 18(5): 790-8.
[http://dx.doi.org/10.1111/ggi.13259] [PMID: 29380503]
[94]
Kondo K, Niino M, Shido K. A case-control study of Alzheimer’s disease in Japan-significance of life-styles. Dementia 1994; 5(6): 314-26.
[PMID: 7866485]
[95]
Zhan X, Stamova B, Jin L-W, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer’s disease pathology. Neurology 2016; 87(22): 2324-32.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[96]
Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci 2017; 9: 195.
[http://dx.doi.org/10.3389/fnagi.2017.00195] [PMID: 28676754]
[97]
Harding A, Robinson S, Crean S, Singhrao SK. Can better management of periodontal disease delay the onset and progression of Alzheimer’s disease? J Alzheimers Dis 2017; 58(2): 337-48.
[http://dx.doi.org/10.3233/JAD-170046] [PMID: 28453484]
[98]
Kamer AR, Craig RG, Pirraglia E, et al. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 2009; 216(1-2): 92-7.
[http://dx.doi.org/10.1016/j.jneuroim.2009.08.013] [PMID: 19767111]
[99]
Sparks Stein P, Steffen MJ, Smith C, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement 2012; 8(3): 196-203.
[http://dx.doi.org/10.1016/j.jalz.2011.04.006] [PMID: 22546352]
[100]
Beydoun MA, Beydoun HA, Weiss J, Hossain S, El-Hajj ZW, Zonderman AB. Helicobacter pylori, periodontal pathogens, and their interactive association with incident all-cause and Alzheimer’s disease dementia in a large national survey. Mol Psychiatry 2021; 26(10): 6038-53.
[PMID: 32366948]
[101]
Na HS, Jung NY, Choi S, et al. Analysis of oral microbiome in chronic periodontitis with Alzheimer’s disease: Pilot study.Res Square. 2020; p. 2020.
[102]
Noble JM, Borrell LN, Papapanou PN, Elkind MS, Scarmeas N, Wright CB. Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-III. J Neurol Neurosurg Psychiatry 2009; 80(11): 1206-11.
[http://dx.doi.org/10.1136/jnnp.2009.174029] [PMID: 19419981]
[103]
Siddiqui H, Eribe ER, Singhrao SK, Olsen I. High throughput sequencing detect gingivitis and periodontal oral bacteria in Alzheimer’s disease autopsy brains. J Neurosci Res 2019; 1(3)
[104]
Leblhuber F, Huemer J, Steiner K, Fuchs D. On the potential role of periodontitis in the pathogenesis of Alzheimer’s. Acta Microbiol Bulg 2020; 132(17-18): 493-8.
[105]
Choi S, Kim K, Chang J, et al. Association of chronic periodontitis on Alzheimer’s disease or vascular dementia. J Am Geriatr Soc 2019; 67(6): 1234-9.
[http://dx.doi.org/10.1111/jgs.15828] [PMID: 30874308]
[106]
De Oliveira Araújo R, Villoria GEM, Luiz RR, Esteves JC, Leão ATT, Feres-Filho EJ. Association between periodontitis and Alzheimer’s disease and its impact on the self-perceived oral health status: A case-control study. Clin Oral Investig 2021; 25(2): 555-62.
[PMID: 32772327]
[107]
Wu YF, Lee WF, Salamanca E, et al. Oral microbiota changes in elderly patients, an indicator of Alzheimer’s disease. Int J Environ Res Public Health 2021; 18(8): 4211.
[http://dx.doi.org/10.3390/ijerph18084211] [PMID: 33921182]
[108]
Singhrao SK, Harding A, Simmons T, Robinson S, Kesavalu L, Crean S. Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer’s disease. J Alzheimers Dis 2014; 42(3): 723-37.
[http://dx.doi.org/10.3233/JAD-140387] [PMID: 24946875]
[109]
Olsen I. Update on bacteraemia related to dental procedures. Transfus Apheresis Sci 2008; 39(2): 173-8.
[http://dx.doi.org/10.1016/j.transci.2008.06.008] [PMID: 18753008]
[110]
Tomás I, Diz P, Tobías A, Scully C, Donos N. Periodontal health status and bacteraemia from daily oral activities: Systematic review/meta-analysis. J Clin Periodontol 2012; 39(3): 213-28.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01784.x] [PMID: 22092606]
[111]
Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol 2010; 25(1): 25-37.
[http://dx.doi.org/10.1111/j.2041-1014.2009.00562.x] [PMID: 20305805]
[112]
Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The nun study. JAMA 1997; 277(10): 813-7.
[http://dx.doi.org/10.1001/jama.1997.03540340047031] [PMID: 9052711]
[113]
Soscia S, Kirby J, Washicosky K, Tucker S, Ingelsson M. The Alzheimer’s disease-associated amyloid b-protein is an antimicrobial. PloS One 2010; 5(3): e9505.
[114]
Iqbal K, Grundke-Iqbal I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol Neurobiol 1991; 5(2-4): 399-410.
[http://dx.doi.org/10.1007/BF02935561] [PMID: 1726645]
[115]
Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol 2000 2016; 72(1): 153-75.
[http://dx.doi.org/10.1111/prd.12129] [PMID: 27501498]
[116]
Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 1993; 43(1): 192-7.
[http://dx.doi.org/10.1212/WNL.43.1_Part_1.192] [PMID: 8423884]
[117]
Jia W, Rajani C, Kaddurah-Daouk R, Li H. Expert insights: The potential role of the gut microbiome-bile acid-brain axis in the development and progression of Alzheimer’s disease and hepatic encephalopathy. Med Res Rev 2020; 40(4): 1496-507.
[http://dx.doi.org/10.1002/med.21653] [PMID: 31808182]
[118]
Olsen I. Possible link between Porphyromonas gingivalis and amyloidosis in the pathogenesis of Alzheimer’s and Parkinson’s disease. Int J Pathol 2020; 1(1): 1-12.
[119]
Hanisch UK. Microglia as a source and target of cytokines. Glia 2002; 40(2): 140-55.
[http://dx.doi.org/10.1002/glia.10161] [PMID: 12379902]
[120]
Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 1998; 9(3-4): 259-75.
[http://dx.doi.org/10.1016/S1359-6101(98)00015-X] [PMID: 9918124]
[121]
Gasque P. Complement: A unique innate immune sensor for danger signals. Mol Immunol 2004; 41(11): 1089-98.
[http://dx.doi.org/10.1016/j.molimm.2004.06.011] [PMID: 15476920]
[122]
Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009; 41(10): 1088-93.
[http://dx.doi.org/10.1038/ng.440] [PMID: 19734902]
[123]
Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[124]
Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1β, and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74(6): 788-9.
[http://dx.doi.org/10.1136/jnnp.74.6.788] [PMID: 12754353]
[125]
Dunn N, Mullee M, Perry VH, Holmes C. Association between dementia and infectious disease: Evidence from a case-control study. Alzheimer Dis Assoc Disord 2005; 19(2): 91-4.
[http://dx.doi.org/10.1097/01.wad.0000165511.52746.1f] [PMID: 15942327]
[126]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[127]
Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut? J Oral Microbiol 2019; 11(1): 1586422.
[http://dx.doi.org/10.1080/20002297.2019.1586422] [PMID: 30911359]
[128]
Koliarakis I, Messaritakis I, Nikolouzakis TK, Hamilos G, Souglakos J, Tsiaoussis J. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int J Mol Sci 2019; 20(17): 4146.
[http://dx.doi.org/10.3390/ijms20174146] [PMID: 31450675]
[129]
Olsen I. From the acta prize lecture 2014: The periodontal-systemic connection seen from a microbiological standpoint: Summary of the Acta Odontologica Scandinavia Price lecture 2014 presented at the meeting of the IADR/Pan European region in Dubrovnik, September 10–13. 2014. Acta Odontol Scand 2015; 73(8): 563-8.
[http://dx.doi.org/10.3109/00016357.2015.1007480] [PMID: 25891035]
[130]
Seedorf H, Griffin NW, Ridaura VK, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014; 159(2): 253-66.
[http://dx.doi.org/10.1016/j.cell.2014.09.008] [PMID: 25284151]
[131]
Atarashi K, Suda W, Luo C, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 2017; 358(6361): 359-65.
[http://dx.doi.org/10.1126/science.aan4526] [PMID: 29051379]
[132]
Watts A, Crimmins EM, Gatz M. Inflammation as a potential mediator for the association between periodontal disease and Alzheimer’s disease. Neuropsychiatr Dis Treat 2008; 4(5): 865-76.
[http://dx.doi.org/10.2147/NDT.S3610] [PMID: 19183779]
[133]
Loesche WJ, Lopatin DE. Interactions between periodontal disease, medical diseases and immunity in the older individual. Periodontol 2000 1998; 16(1): 80-105.
[http://dx.doi.org/10.1111/j.1600-0757.1998.tb00117.x] [PMID: 10337306]
[134]
Offenbacher S. Periodontal diseases: Pathogenesis. Ann Periodontol 1996; 1(1): 821-78.
[http://dx.doi.org/10.1902/annals.1996.1.1.821] [PMID: 9118282]
[135]
Hauss-Wegrzyniak B, Vraniak PD, Wenk GL. LPS-induced neuroinflammatory effects do not recover with time. Neuroreport 2000; 11(8): 1759-63.
[http://dx.doi.org/10.1097/00001756-200006050-00032] [PMID: 10852239]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy