Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Automatic Detection of Benign/Malignant Tumor in Breast Ultrasound Images using Optimal Features

Author(s): Yanyan Yang*, Qiaojian Liu, Ting Dai and Haijun Zhang*

Volume 19, Issue 13, 2023

Published on: 03 March, 2023

Article ID: e200123212931 Pages: 10

DOI: 10.2174/1573405619666230120101512

Price: $65

Abstract

Background: Breast cancer (BC) is one of the most severe diseases in women. Therefore, a premature diagnosis is necessary for timely detection and treatment execution. Clinical-level diagnosis of BC is normally performed with imaging techniques, and Ultrasound-Imaging (UI) is one of the noninvasive imaging techniques frequently executed to diagnose BC.

Aims: This research aims to develop an efficient deep-learning framework to detect BC from UI with better accuracy.

Methods: The executed method consists of the following stages: (i) Data collection and preprocessing, (ii) Deep-features mining with pre-trained VGG16, (iii) Image enhancement using Discrete Wavelet Transform (DWT) and Local Binary Pattern (LBP), (iv) Firefly-algorithm (FA) supported feature reduction, and (v) Feature integration and classification.

Results: The proposed work is tested and executed using 1680 test images (840 benign and 840 malignant) of dimension pixels and implements a binary classifier with 5-fold cross-validation to separate the UI database into the healthy/cancer class.

Conclusion: This work implemented FA-supported feature reduction. Moreover, it was found that this scheme helps to achieve a classification accuracy of 98.21% with the KNN classifier.

[1]
Dorling L, Carvalho S, Allen J, et al. Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. N Engl J Med 2021; 384(5): 428-39.
[http://dx.doi.org/10.1056/NEJMoa1913948] [PMID: 33471991]
[2]
Milton L, Behroozian T, Coburn N, et al. Prediction of breast cancer–related outcomes with the Edmonton Symptom Assessment Scale: A literature review. Support Care Cancer 2021; 29(2): 595-603.
[http://dx.doi.org/10.1007/s00520-020-05755-9] [PMID: 32918128]
[3]
Fleege NMG, Cobain EF. Breast Cancer Management in 2021: A Primer for the OB GYN. Best Pract Res Clin Obstet Gynaecol 2022; 82: 30-45.
[4]
World Health Organization (WHO). Cancer. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[5]
Khodjaeva DI. Magnetic-resonance imaging in the diagnosis of breast cancer and its metastasis to the spinal column. Sci Prog 2021; 2(6): 540-7.
[6]
Fusco R, Granata V, Pariante P, et al. Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination. Magn Reson Imag 2021; 75: 51-9.
[http://dx.doi.org/10.1016/j.mri.2020.10.008] [PMID: 33080334]
[7]
Ayana G, Dese K, Choe S. Transfer learning in breast cancer diagnoses via ultrasound imaging. Cancers (Basel) 2021; 13(4): 738.
[http://dx.doi.org/10.3390/cancers13040738] [PMID: 33578891]
[8]
Fei X, Zhou S, Han X, et al. Doubly supervised parameter transfer classifier for diagnosis of breast cancer with imbalanced ultrasound imaging modalities. Pattern Recognit 2021; 120: 108139.
[http://dx.doi.org/10.1016/j.patcog.2021.108139]
[9]
Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: A pilot study. The British journal of radiology 2018; 91: 20170576.
[10]
Luccas VAS, Azimbagirad M, Cabrelli LC, et al. 3D automated breast ultrasound imaging: equipment and image reconstruction. Res Biomed Eng 2021; 37(3): 519-33.
[http://dx.doi.org/10.1007/s42600-021-00159-y]
[11]
Mambou S, Maresova P, Krejcar O, Selamat A, Kuca K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors (Basel) 2018; 18(9): 2799.
[http://dx.doi.org/10.3390/s18092799] [PMID: 30149621]
[12]
Chatterjee S, Biswas S, Majee A, Sen S, Oliva D, Sarkar R. Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method. Comput Biol Med 2022; 141: 105027.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105027] [PMID: 34799076]
[13]
Zhou Y, Chen H, Li Y, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Med Image Anal 2021; 70(5): 101918.
[http://dx.doi.org/10.1016/j.media.2020.101918] [PMID: 33676100]
[14]
Shia WC, Chen DR. Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Comput Med Imaging Graph 2021; 87: 101829.
[http://dx.doi.org/10.1016/j.compmedimag.2020.101829] [PMID: 33302247]
[15]
Vijayakumar K, Rajinikanth V, Kirubakaran MK. Automatic detection of breast cancer in ultrasound images using Mayfly algorithm optimized handcrafted features. J XRay Sci Technol 2022; 2022: 1-16.
[http://dx.doi.org/10.3233/XST-221136]
[16]
Wei M, Du Y, Wu X, et al. A benign and malignant breast tumor classification method via efficiently combining texture and morphological features on ultrasound images. Comput Math Methods Med 2020; 2020: 5894010.
[http://dx.doi.org/10.1155/2020/5894010] [PMID: 33062038]
[17]
Liang CY, Chen TB, Lu NH, et al. Classification of breast ultrasound tomography by using textural analysis. Iran J Radiol 2020; 17(2): e91749.
[http://dx.doi.org/10.5812/iranjradiol.91749]
[18]
Yang Z, Gong X, Guo Y, Liu W. A Temporal sequence dual-branch network for classifying hybrid ultrasound data of breast cancer. IEEE Access 2020; 8: 82688-99.
[http://dx.doi.org/10.1109/ACCESS.2020.2990683]
[19]
Liu Y, Ren L, Cao X, Tong Y. Breast tumors recognition based on edge feature extraction using support vector machine. Biomed Signal Process Control 2020; 58: 101825.
[http://dx.doi.org/10.1016/j.bspc.2019.101825]
[20]
Moon WK, Lee YW, Ke HH, Lee SH, Huang CS, Chang RF. Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Programs Biomed 2020; 190: 105361.
[http://dx.doi.org/10.1016/j.cmpb.2020.105361] [PMID: 32007839]
[21]
Pang T, Wong JHD, Ng WL, Chan CS. Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification. Comput Methods Programs Biomed 2021; 203: 106018.
[http://dx.doi.org/10.1016/j.cmpb.2021.106018] [PMID: 33714900]
[23]
Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief 2020; 28: 104863.
[http://dx.doi.org/10.1016/j.dib.2019.104863] [PMID: 31867417]
[24]
Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O. Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif Intell Med 2022; 127: 102276.
[http://dx.doi.org/10.1016/j.artmed.2022.102276] [PMID: 35430037]
[25]
Morawitz J, Bruckmann NM, Dietzel F, et al. Comparison of nodal staging between CT, MRI, and [18F]-FDG PET/MRI in patients with newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging 2022; 49(3): 992-1001.
[http://dx.doi.org/10.1007/s00259-021-05502-0] [PMID: 34476552]
[26]
Paul K, Razmi S, Pockaj BA, Ladani L, Stromer J. Finite element modeling of quantitative ultrasound analysis of the surgical margin of breast tumor. Tomography 2022; 8(2): 570-84.
[http://dx.doi.org/10.3390/tomography8020047] [PMID: 35314624]
[27]
Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images. Biology (Basel) 2022; 11(3): 439.
[http://dx.doi.org/10.3390/biology11030439] [PMID: 35336813]
[28]
Rautela K, Kumar D, Kumar V. A systematic review on breast cancer detection using deep learning techniques. Arch Comput Methods Eng 2022; 29(7): 4599-629.
[http://dx.doi.org/10.1007/s11831-022-09744-5]
[29]
Yang XS. Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspired Comput 2010; 2(2): 78-84.
[http://dx.doi.org/10.1504/IJBIC.2010.032124]
[30]
Łukasik S, Żak S. Firefly algorithm for continuous constrained optimization tasks. International conference on computational collective intelligence. Springer 2009; pp. 97-106.
[http://dx.doi.org/10.1007/978-3-642-04441-0_8]
[31]
Yang XS. Chaos-enhanced firefly algorithm with automatic parameter tuning. In: Recent algorithms and applications in swarm intelligence research. IGI Global 2013; pp. 125-36.
[http://dx.doi.org/10.4018/978-1-4666-2479-5.ch007]
[32]
Sri Madhava Raja N, Rajinikanth V, Latha K. Otsu based optimal multilevel image thresholding using firefly algorithm. Model Simul Eng 2014; 2014: 794574.
[http://dx.doi.org/10.1155/2014/794574]
[33]
Khan MA, Muhammad K, Wang SH, et al. Gastrointestinal diseases recognition: A framework of deep neural network and improved moth-crow optimization with DCCA fusion. Human-centric Comput. Inform Sci 2022; 12: 1-15.
[34]
Latif MR, Khan MA, Javed MY, et al. Cotton leaf diseases recognition using deep learning and genetic algorithm. Comput Mater Cont 2021; 69(3): 2917-32.
[35]
Gudigar A, Raghavendra U, Devasia T, et al. Global weighted LBP based entropy features for the assessment of pulmonary hypertension. Pattern Recognit Lett 2019; 125: 35-41.
[http://dx.doi.org/10.1016/j.patrec.2019.03.027]
[36]
Raja NSM, Manic KS, Rajinikanth V. Firefly Algorithm with Various Randomization Parameters: An Analysis. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. Eds.; Swarm, Evolutionary, and Memetic Computing. SEMCCO. Lecture Notes in Computer Science, vol. 8297. Springer, Cham 2013.
[http://dx.doi.org/10.1007/978-3-319-03753-0_11]
[37]
Ahila A, Poongodi M, Bourouis S, et al. Meta-heuristic algorithm-tuned neural network for breast cancer diagnosis using ultrasound images. Front Oncol 2022; 12: 834028.
[http://dx.doi.org/10.3389/fonc.2022.834028] [PMID: 35769710]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy