Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Mechanisms of Cancer-killing by Quercetin; A Review on Cell Death Mechanisms

Author(s): Hehua Wang*, Ziyu Dong, Jinhai Liu, Zhaoyu Zhu* and Masoud Najafi*

Volume 23, Issue 9, 2023

Published on: 10 February, 2023

Page: [999 - 1012] Pages: 14

DOI: 10.2174/1871520623666230120094158

Price: $65

Abstract

Cancer drug resistance has always been a serious issue regarding cancer research and therapy. Different cancers undergo different mutations, which may cause suppression of tumor suppressor genes, inhibition of apoptosis, stimulation of drug resistance mediators, and exhaustion of the immune system. The modulation of pro-death and survival-related mediators is an intriguing strategy for cancer therapy. Several nature-derived molecules, e.g., quercetin, have shown interesting properties against cancer through the modulation of apoptosis and autophagy mediators. Such molecules, e.g., quercetin, have been shown to stimulate apoptosis and other types of cell death pathways in cancers via the modulation of ROS metabolism. Quercetin may affect immune system function and trigger the expression and activity of tumor suppressor genes. Furthermore, it may suppress certain multidrug resistance mechanisms in cancer cells. This paper aims to review the effects of quercetin on various cell death mechanisms such as apoptosis, autophagic cell death, senescence, ferroptosis, and others.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[3]
Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open, 2021, 4(4), e214708-e214708.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.4708] [PMID: 33825840]
[4]
Castanon, A.; Landy, R.; Pesola, F.; Windridge, P.; Sasieni, P. Prediction of cervical cancer incidence in England, UK, up to 2040, under four scenarios: A modelling study. Lancet Public Health, 2018, 3(1), e34-e43.
[http://dx.doi.org/10.1016/S2468-2667(17)30222-0] [PMID: 29307386]
[5]
Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542.
[http://dx.doi.org/10.1038/nrd4003] [PMID: 23812271]
[6]
Sadeghinezhad, S.; Khodamoradi, E.; Diojan, L.; Taeb, S.; Najafi, M. Radioprotective mechanisms of arbutin: A systematic review. Curr. Drug Res. Rev., 2022, 14(2), 132-138.
[http://dx.doi.org/10.2174/2589977514666220321114415] [PMID: 35319405]
[7]
Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423.
[http://dx.doi.org/10.1111/bph.14816] [PMID: 31368509]
[8]
Bracci, L.; Fabbri, A.; Del Cornò, M.; Conti, L. Dietary polyphenols: Promising adjuvants for colorectal cancer therapies. Cancers, 2021, 13(18), 4499.
[http://dx.doi.org/10.3390/cancers13184499] [PMID: 34572726]
[9]
Moslehi, M.; Moazamiyanfar, R.; Dakkali, M.S.; Rezaei, S.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Taeb, S.; Najafi, M. Modulation of the immune system by melatonin; implications for cancer therapy. Int. Immunopharmacol., 2022, 108, 108890.
[http://dx.doi.org/10.1016/j.intimp.2022.108890] [PMID: 35623297]
[10]
Taeb, S.; Ashrafizadeh, M.; Zarrabi, A.; Rezapoor, S.; Musa, A.E.; Farhood, B.; Najafi, M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets, 2022, 22(1), 18-30.
[http://dx.doi.org/10.2174/1568009622666211224154952] [PMID: 34951575]
[11]
Turchan, W.T.; Pitroda, S.P.; Weichselbaum, R.R. Treatment of cancer with radio-immunotherapy: What we currently know and what the future may hold. Int. J. Mol. Sci., 2021, 22(17), 9573.
[http://dx.doi.org/10.3390/ijms22179573] [PMID: 34502479]
[12]
Amini, P.; Moazamiyanfar, R.; Dakkali, M.S.; Khani, A.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Johari, R.; Taeb, S.; Najafi, M. Resveratrol in cancer therapy; from stimulation of genomic stability to adjuvant cancer therapy; a comprehensive review. Curr. Top. Med. Chem., 2022.
[PMID: 36239730]
[13]
Moslehi, M.; Rezaei, S.; Talebzadeh, P.; Ansari, M.J.; Jawad, M.A.; Jalil, A.T.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Taeb, S.; Najafi, M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin. Exp. Pharmacol. Physiol., 2022, 1440-1681.13725.
[http://dx.doi.org/10.1111/1440-1681.13725] [PMID: 36111951]
[14]
Rose, B.S.; Aydogan, B.; Liang, Y.; Yeginer, M.; Hasselle, M.D.; Dandekar, V.; Bafana, R.; Yashar, C.M.; Mundt, A.J.; Roeske, J.C. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2011, 79(3), 800-807.
[15]
Lai, X.; Najafi, M. Redox interactions in chemo/radiation therapy-induced lung toxicity; mechanisms and therapy perspectives. Curr. Drug Targets, 2022, 23(13), 1261-1276.
[http://dx.doi.org/10.2174/1389450123666220705123315] [PMID: 35792117]
[16]
Xu, C.; Najafi, M.; Shang, Z. Lung pneumonitis and fibrosis in cancer therapy; a review on cellular and molecular mechanisms. Curr. Drug Targets, 2022, 23(16), 1505-1525.
[http://dx.doi.org/10.2174/1389450123666220907144131] [PMID: 36082868]
[17]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[18]
Huang, J.; Chen, X.; Chang, Z.; Xiao, C.; Najafi, M. Boosting anti-tumour immunity using adjuvant apigenin. Anticancer. Agents Med. Chem., 2022, 22.
[http://dx.doi.org/10.2174/1871520622666220523151409] [PMID: 35616683]
[19]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145.
[http://dx.doi.org/10.2174/1568009619666191019143539] [PMID: 31738153]
[20]
Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers, 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[21]
Park, E.-J.; Pezzuto, MJ. Flavonoids in cancer prevention. Anticancer. Agents. Med. Chem., 2012, 12(8), 836-851.
[22]
Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci., 2012, 1(1), 146-160.
[23]
Brito, A.; Ribeiro, M.; Abrantes, A.; Pires, A.; Teixo, R.; Tralhão, J.; Botelho, M. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem., 2015, 22(26), 3025-3039.
[http://dx.doi.org/10.2174/0929867322666150812145435] [PMID: 26264923]
[24]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[25]
Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; Saitoh, S.; Shimamoto, K.; Kobori, M. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients, 2015, 7(4), 2345-2358.
[http://dx.doi.org/10.3390/nu7042345] [PMID: 25849945]
[26]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi. Pharm. J., 2017, 25(2), 149-164.
[27]
Parasuraman, S.; Anand David, A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[28]
Kaşıkcı, M.B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Current research in nutrition and food science journal,2016, 4. Special Issue Nutrition in Conference, 2016, (October), 146-151.
[29]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), 174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[30]
Xiao, L.; Luo, G.; Tang, Y.; Yao, P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem. Toxicol., 2018, 114, 190-203.
[http://dx.doi.org/10.1016/j.fct.2018.02.022] [PMID: 29432835]
[31]
Sanders, R.A.; Rauscher, F.M.; Watkins, J.B., III. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol., 2001, 15(3), 143-149.
[http://dx.doi.org/10.1002/jbt.11] [PMID: 11424224]
[32]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[33]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre) hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J. Nutr., 2015, 145(7), 1459-1463.
[http://dx.doi.org/10.3945/jn.115.211888] [PMID: 25972527]
[34]
Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-15.
[http://dx.doi.org/10.1093/ecam/neq053] [PMID: 21792362]
[35]
Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; Yu, Q.; Chen, K.; Xia, Y.; Lu, J.; Xu, L.; Zhou, Y.; Fan, X.; Guo, C. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci. Rep., 2017, 7(1), 9289.
[http://dx.doi.org/10.1038/s41598-017-09673-5] [PMID: 28839277]
[36]
Bhadoriya, S.S.; Mangal, A.; Madoriya, N.; Dixit, P. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review. J Curr Pharm Res, 2011, 8, 1-7.
[37]
Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr., 2022, 62(28), 7730-7742.
[PMID: 34078189]
[38]
Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311.
[http://dx.doi.org/10.3892/ijo.2017.3886] [PMID: 28259895]
[39]
Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet b radiation. Front. Pharmacol., 2018, 9, 826.
[http://dx.doi.org/10.3389/fphar.2018.00826] [PMID: 30140227]
[40]
Amanzadeh, E.; Esmaeili, A.; Abadi, R.E.N.; Kazemipour, N.; Pahlevanneshan, Z.; Beheshti, S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci. Rep., 2019, 9(1), 6876.
[http://dx.doi.org/10.1038/s41598-019-43345-w] [PMID: 31053743]
[41]
Guan, X.; Gao, M.; Xu, H.; Zhang, C.; Liu, H.; Lv, L.; Deng, S.; Gao, D.; Tian, Y. Quercetin-loaded poly (lactic-co-glycolic acid)- D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv., 2016, 23(9), 3307-3318.
[http://dx.doi.org/10.1080/10717544.2016.1176087] [PMID: 27067032]
[42]
Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667.
[http://dx.doi.org/10.1007/s10495-022-01750-z] [PMID: 35849264]
[43]
Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661.
[PMID: 22334787]
[44]
Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[45]
Weiss-Angeli, V.; Poletto, F.S.; Marco, S.L.; Salvador, M.; Silveira, N.P.; Guterres, S.S.; Pohlmann, A.R. Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J. Nanosci. Nanotechnol., 2012, 12(3), 2874-2880.
[http://dx.doi.org/10.1166/jnn.2012.5770] [PMID: 22755137]
[46]
Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res. Lett., 2014, 9(1), 684.
[http://dx.doi.org/10.1186/1556-276X-9-684] [PMID: 26088982]
[47]
Schwendener, R.A.; Schott, H. Liposome formulations of hydrophobic drugs. Methods Mol. Biol., 2010, 605, 129-138.
[http://dx.doi.org/10.1007/978-1-60327-360-2_8] [PMID: 20072877]
[48]
Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B Biointerfaces, 2014, 123, 345-363.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
[49]
Men, K.; Duan, X.; Wei, Wei. Nanoparticle-delivered quercetin for cancer therapy. Anticancer. Agents. Med. Chem., 2014, 14(6), 826-832.
[50]
Jan, A.T.; Kamli, M.R.; Murtaza, I.; Singh, J.B.; Ali, A.; Haq, Q.M.R. Dietary flavonoid quercetin and associated health benefits-An overview. Food Rev. Int., 2010, 26(3), 302-317.
[http://dx.doi.org/10.1080/87559129.2010.484285]
[51]
Miles, S.L.; McFarland, M.; Niles, R.M. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr. Rev., 2014, 72(11), 720-734.
[http://dx.doi.org/10.1111/nure.12152] [PMID: 25323953]
[52]
Zhou, Y.; Suo, W.; Zhang, X.; Lv, J.; Liu, Z.; Liu, R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed. Pharmacother., 2022, 153, 113447.
[http://dx.doi.org/10.1016/j.biopha.2022.113447] [PMID: 36076562]
[53]
Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786.
[http://dx.doi.org/10.1007/s12012-022-09762-6] [PMID: 35877038]
[54]
Ashrafizadeh, M.; Samarghandian, S.; Hushmandi, K.; Zabolian, A.; Shahinozzaman, M.; Saleki, H.; Esmaeili, H.; Raei, M.; Entezari, M.; Zarrabi, A.; Najafi, M. Quercetin in attenuation of ischemic/reperfusion injury: A review. Curr. Mol. Pharmacol., 2021, 14(4), 537-558.
[http://dx.doi.org/10.2174/1874467213666201217122544] [PMID: 33334302]
[55]
Verma, S.; Dutta, A.; Dahiya, A.; Kalra, N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. Phytomedicine, 2022, 99, 154004.
[http://dx.doi.org/10.1016/j.phymed.2022.154004] [PMID: 35219007]
[56]
Qin, M.; Chen, W.; Cui, J.; Li, W.; Liu, D.; Zhang, W. Protective efficacy of inhaled quercetin for radiation pneumonitis. Exp. Ther. Med., 2017, 14(6), 5773-5778.
[http://dx.doi.org/10.3892/etm.2017.5290] [PMID: 29285120]
[57]
Lotfi, M.; Kazemi, S.; Ebrahimpour, A.; Shirafkan, F.; Pirzadeh, M.; Hosseini, M.; Moghadamnia, A.A. Protective effect of quercetin nanoemulsion on 5-fluorouracil-induced oral mucositis in mice. J. Oncol., 2021. Available from: https://www.hindawi.com/journals/jo/2021/5598230/
[58]
Baran, M.; Yay, A.; Onder, G.O.; canturk Tan, F.; Yalcin, B.; Balcioglu, E.; Yıldız, O.G. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int. J. Radiat. Biol., 2022, 98(9), 1473-1483.
[59]
Najafi, M.; Tavakol, S.; Zarrabi, A.; Ashrafizadeh, M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: A review. Arch. Physiol. Biochem., 2022, 128(6), 1438-1452.
[http://dx.doi.org/10.1080/13813455.2020.1773864] [PMID: 32521182]
[60]
Zhivotovsky, B.; Orrenius, S. Cell death mechanisms: Cross-talk and role in disease. Exp. Cell Res., 2010, 316(8), 1374-1383.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.037] [PMID: 20211164]
[61]
Shah, B.P.; Pasquale, N.; De, G.; Tan, T.; Ma, J.; Lee, K.B. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano, 2014, 8(9), 9379-9387.
[http://dx.doi.org/10.1021/nn503431x] [PMID: 25133971]
[62]
Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis, 2022, 27(5-6), 297-310.
[http://dx.doi.org/10.1007/s10495-022-01721-4] [PMID: 35312885]
[63]
Sinha, D.; Duijf, P.H.G.; Khanna, K.K. Mitotic slippage: An old tale with a new twist. Cell Cycle, 2019, 18(1), 7-15.
[http://dx.doi.org/10.1080/15384101.2018.1559557] [PMID: 30601084]
[64]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[65]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[66]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[67]
De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474.
[http://dx.doi.org/10.1038/nrc.2017.51] [PMID: 28706266]
[68]
Nishikawa, M. Reactive oxygen species in tumor metastasis. Cancer Lett., 2008, 266(1), 53-59.
[http://dx.doi.org/10.1016/j.canlet.2008.02.031] [PMID: 18362051]
[69]
Moloney, J.N.; Cotter, T.G. Semin Cell Dev Biol; Elsevier: Amsterdam, 2018, Vol. 80, pp. 50-64.
[70]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[71]
Wu, Q.; Needs, P.W.; Lu, Y.; Kroon, P.A.; Ren, D.; Yang, X. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct., 2018, 9(3), 1736-1746.
[http://dx.doi.org/10.1039/C7FO01964E] [PMID: 29497723]
[72]
Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol., 2012, 50(5), 1589-1599.
[http://dx.doi.org/10.1016/j.fct.2012.01.025] [PMID: 22310237]
[73]
Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183.
[http://dx.doi.org/10.2174/1874467211666180219102520] [PMID: 29468988]
[74]
Raja, S.B.; Rajendiran, V.; Kasinathan, N.K.; P, A.; Venkatabalasubramanian, S.; Murali, M.R.; Devaraj, H.; Devaraj, S.N. Differential cytotoxic activity of quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem. Toxicol., 2017, 106(Pt A), 92-106.
[http://dx.doi.org/10.1016/j.fct.2017.05.006] [PMID: 28479391]
[75]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[76]
Zhang, X.; Huang, J.; Yu, C.; Xiang, L.; Li, L.; Shi, D.; Lin, F. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 Prostate cancer through er stress induction and ROS production. OncoTargets Ther., 2020, 13, 513-523.
[http://dx.doi.org/10.2147/OTT.S228453] [PMID: 32021294]
[77]
Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sadhukhan, R.; Mondal, J.; Khuda-Bukhsh, A.R. Quercetin induces cytochrome‐c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: Signal cascade and drug‐DNA interaction. Cell Prolif., 2013, 46(2), 153-163.
[http://dx.doi.org/10.1111/cpr.12017] [PMID: 23510470]
[78]
Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6(1), 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[79]
Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina, 2019, 55(4), 114.
[http://dx.doi.org/10.3390/medicina55040114] [PMID: 31013662]
[80]
Jeon, J.S.; Kwon, S.; Ban, K.; Kwon Hong, Y.; Ahn, C.; Sung, J.S.; Choi, I. Regulation of the intracellular ROS level is critical for the antiproliferative effect of quercetin in the hepatocellular carcinoma cell line HepG2. Nutr. Cancer, 2019, 71(5), 861-869.
[http://dx.doi.org/10.1080/01635581.2018.1559929] [PMID: 30661409]
[81]
Li, N.; Sun, C.; Zhou, B.; Xing, H.; Ma, D.; Chen, G.; Weng, D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One, 2014, 9(7), e100314.
[http://dx.doi.org/10.1371/journal.pone.0100314] [PMID: 24999622]
[82]
Chang, Y.F.; Chi, C.W.; Wang, J.J. Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells. Nutr. Cancer, 2006, 55(2), 201-209.
[http://dx.doi.org/10.1207/s15327914nc5502_12] [PMID: 17044776]
[83]
Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol., 2003, 23(23), 8576-8585.
[http://dx.doi.org/10.1128/MCB.23.23.8576-8585.2003] [PMID: 14612402]
[84]
Sun, J.; Feng, Y.; Wang, Y.; Ji, Q.; Cai, G.; Shi, L.; Wang, Y.; Huang, Y.; Zhang, J.; Li, Q. α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation. Int. J. Oncol., 2019, 54(5), 1601-1612.
[http://dx.doi.org/10.3892/ijo.2019.4757] [PMID: 30896843]
[85]
Law, B.Y.K.; Gordillo-Martínez, F.; Qu, Y.Q.; Zhang, N.; Xu, S.W.; Coghi, P.S.; Fai Mok, S.W.; Guo, J.; Zhang, W.; Leung, E.L.H.; Fan, X.X.; Wu, A.G.; Chan, W.K.; Yao, X.J.; Wang, J.R.; Liu, L.; Wong, V.K.W. Thalidezine, a novel AMPK activator, eliminates apoptosis-resistant cancer cells through energy-mediated autophagic cell death. Oncotarget, 2017, 8(18), 30077-30091.
[http://dx.doi.org/10.18632/oncotarget.15616] [PMID: 28404910]
[86]
Kim, G.T.; Lee, S.H.; Kim, Y.M. Quercetin regulates sestrin 2-ampk-mtor signaling pathway and induces apoptosis via increased intracellular ros in hct116 colon cancer cells. J. Cancer Prev., 2013, 18(3), 264-270.
[http://dx.doi.org/10.15430/JCP.2013.18.3.264] [PMID: 25337554]
[87]
Kim, G.T.; Lee, S.H.; Kim, J.; Kim, Y.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int. J. Mol. Med., 2014, 33(4), 863-869.
[http://dx.doi.org/10.3892/ijmm.2014.1658] [PMID: 24535669]
[88]
Yi, L.; Zongyuan, Y.; Cheng, G.; Lingyun, Z.; GuiLian, Y.; Wei, G. Quercetin enhances apoptotic effect of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer‐binding protein homologous protein (CHOP)‐death receptor 5 pathway. Cancer Sci., 2014, 105(5), 520-527.
[http://dx.doi.org/10.1111/cas.12395] [PMID: 24612139]
[89]
Wang, L.H.; Wu, C.F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem., 2018, 51(6), 2647-2693.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[90]
Yogosawa, S.; Yoshida, K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer Sci., 2018, 109(11), 3376-3382.
[http://dx.doi.org/10.1111/cas.13792] [PMID: 30191640]
[91]
Philippe, G.J.B.; Mittermeier, A.; Lawrence, N.; Huang, Y.H.; Condon, N.D.; Loewer, A.; Craik, D.J.; Henriques, S.T. Angler peptides: macrocyclic conjugates inhibit p53: MDM2/X interactions and activate apoptosis in cancer cells. ACS Chem. Biol., 2021, 16(2), 414-428.
[http://dx.doi.org/10.1021/acschembio.0c00988] [PMID: 33533253]
[92]
Cordani, M.; Butera, G.; Pacchiana, R.; Masetto, F.; Mullappilly, N.; Riganti, C.; Donadelli, M. Mutant p53-associated molecular mechanisms of ROS regulation in cancer cells. Biomolecules, 2020, 10(3), 361.
[http://dx.doi.org/10.3390/biom10030361] [PMID: 32111081]
[93]
Papa, A.; Pandolfi, P.P. The PTEN-PI3K axis in cancer. Biomolecules, 2019, 9(4), 153.
[http://dx.doi.org/10.3390/biom9040153] [PMID: 30999672]
[94]
Tanigawa, S.; Fujii, M.; Hou, D.X. Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells. Biosci. Biotechnol. Biochem., 2008, 72(3), 797-804.
[http://dx.doi.org/10.1271/bbb.70680] [PMID: 18323654]
[95]
Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.020] [PMID: 20858478]
[96]
Kuo, P.C.; Liu, H.F.; Chao, J.I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J. Biol. Chem., 2004, 279(53), 55875-55885.
[http://dx.doi.org/10.1074/jbc.M407985200] [PMID: 15456784]
[97]
Lim, J.H.; Park, J.W.; Min, D.S.; Chang, J.S.; Lee, Y.H.; Park, Y.B.; Choi, K.S.; Kwon, T.K. NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis, 2007, 12(2), 411-421.
[http://dx.doi.org/10.1007/s10495-006-0576-9] [PMID: 17191121]
[98]
Xavier, C.P.R.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol., 2011, 68(6), 1449-1457.
[http://dx.doi.org/10.1007/s00280-011-1641-9] [PMID: 21479885]
[99]
Wang, G.; Zhang, J.; Liu, L.; Sharma, S.; Dong, Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One, 2012, 7(12), e51764.
[http://dx.doi.org/10.1371/journal.pone.0051764] [PMID: 23240061]
[100]
Gong, C.; Yang, Z.; Zhang, L.; Wang, Y.; Gong, W.; Liu, Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther., 2017, 11, 17-27.
[http://dx.doi.org/10.2147/OTT.S147316] [PMID: 29317830]
[101]
Liu, B.; Chen, Y.; St Clair, D.K. ROS and p53: A versatile partnership. Free Radic. Biol. Med., 2008, 44(8), 1529-1535.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.011] [PMID: 18275858]
[102]
Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108.
[http://dx.doi.org/10.1186/s12957-018-1400-z] [PMID: 29898731]
[103]
Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-Loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[104]
Gulati, N.; Laudet, B.; Zohrabian, V.M.; Murali, R.; Jhanwar-Uniyal, M. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res., 2006, 26(2A), 1177-1181.
[PMID: 16619521]
[105]
Miao, Z.; Miao, Z.; Wang, S.; Shi, X.; Xu, S. Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes. Environ. Pollut., 2021, 290, 118036.
[http://dx.doi.org/10.1016/j.envpol.2021.118036] [PMID: 34488159]
[106]
Li, S.-z.; Qiao, S.-f.; Zhang, J.-h.; Li, K. Quercetin increase the chemosensitivity of breast cancer cells to doxorubicin via PTEN/Akt pathway. Anticancer. Agents. Med. Chem., 2015, 15(9), 1185-1189.
[107]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[108]
Aung, M.O.M.H.; Mat Nor, N.; Mohd Adnan, L.H.; Ahmad, N.Z.B.; Septama, A.W.; Nik Nurul Najihah, N.N.N.; Ohn, M.L.; Simbak, N. Effects of apigenin, luteolin, and quercetin on the natural killer (NK-92) cells proliferation: A potential role as immunomodulator. Sains Malays., 2021, 50(3), 821-828.
[http://dx.doi.org/10.17576/jsm-2021-5003-22]
[109]
Yu, C.S.; Yang, J.S.; Kuo, H.M.; Chung, J.G. Quercetin promoted natural killer cells activity and inhibits WEHI‐3 leukemia cells in Balb/C mice in vivo. FASEB J., 2007, 21(6), A1189-A1189.
[http://dx.doi.org/10.1096/fasebj.21.6.A1189-a]
[110]
Bae, J.H.; Kim, J.Y.; Kim, M.J.; Chang, S.H.; Park, Y.S.; Son, C.H.; Park, S.J.; Chung, J.S.; Lee, E.Y.; Kim, S.H.; Kang, C.D. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J. Immunother., 2010, 33(4), 391-401.
[http://dx.doi.org/10.1097/CJI.0b013e3181d32f22] [PMID: 20386467]
[111]
Kim, Y.H.; Lee, Y.J. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J. Cell. Biochem., 2007, 100(4), 998-1009.
[http://dx.doi.org/10.1002/jcb.21098] [PMID: 17031854]
[112]
Askar, M.A.; El-Nashar, H.A.S.; Al-Azzawi, M.A.; Rahman, S.S.A.; Elshawi, O.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer, 2022, 16, 11782234221086728.
[http://dx.doi.org/10.1177/11782234221086728] [PMID: 35359610]
[113]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[114]
Riganti, C.; Contino, M. New strategies to overcome resistance to chemotherapy and immune system in cancer. Int. J. Mol. Sci., 2019, 20(19), 4783.
[115]
Jing, L.; Lin, J.; Yang, Y.; Tao, L.; Li, Y.; Liu, Z.; Zhao, Q.; Diao, A. Quercetin inhibiting the PD‐1/PD‐L1 interaction for immune‐enhancing cancer chemopreventive agent. Phytother. Res., 2021, 35(11), 6441-6451.
[http://dx.doi.org/10.1002/ptr.7297] [PMID: 34560814]
[116]
Tan, C.; Hu, W.; He, Y.; Zhang, Y.; Zhang, G.; Xu, Y.; Tang, J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine, 2018, 108, 151-159.
[http://dx.doi.org/10.1016/j.cyto.2018.03.020] [PMID: 29609137]
[117]
Liang, S.; Chen, Z.; Jiang, G.; Zhou, Y.; Liu, Q.; Su, Q.; Wei, W.; Du, J.; Wang, H. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett., 2017, 386, 12-23.
[http://dx.doi.org/10.1016/j.canlet.2016.11.003] [PMID: 27836733]
[118]
Jones, V.S.; Huang, R-Y.; Chen, L-P.; Chen, Z-S.; Fu, L.; Huang, R-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta, 2016, 1865(2), 255-265.
[PMID: 26993403]
[119]
Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[120]
Shi, H.; Li, X.Y.; Chen, Y.; Zhang, X.; Wu, Y.; Wang, Z.X.; Chen, P.H.; Dai, H.Q.; Feng, J.; Chatterjee, S.; Li, Z.J.; Huang, X.W.; Wei, H.Q.; Wang, J.; Lu, G.D.; Zhou, J. Quercetin induces apoptosis via downregulation of vascular endothelial growth Factor/Akt signaling pathway in acute myeloid leukemia cells. Front. Pharmacol., 2020, 11, 534171.
[http://dx.doi.org/10.3389/fphar.2020.534171] [PMID: 33362534]
[121]
Cao, L.; Yang, Y.; Ye, Z.; Lin, B.; Zeng, J.; Li, C.; Liang, T.; Zhou, K.; Li, J. Quercetin-3-methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int. J. Mol. Med., 2018, 42(3), 1625-1636.
[http://dx.doi.org/10.3892/ijmm.2018.3741] [PMID: 29956731]
[122]
Senthilkumar, K.; Elumalai, P.; Arunkumar, R.; Banudevi, S.; Gunadharini, N.D.; Sharmila, G.; Selvakumar, K.; Arunakaran, J. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol. Cell. Biochem., 2010, 344(1-2), 173-184.
[http://dx.doi.org/10.1007/s11010-010-0540-4] [PMID: 20658310]
[123]
Lu, X.; Yang, F.; Chen, D.; Zhao, Q.; Chen, D.; Ping, H.; Xing, N. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci., 2020, 16(7), 1121-1134.
[http://dx.doi.org/10.7150/ijbs.41686] [PMID: 32174789]
[124]
Safi, A.; Heidarian, E.; Ahmadi, R. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 signaling pathways in MDA-MB-231 breast cancer cell line. Int. J. Mol. Cell. Med., 2021, 10(1), 11-22.
[PMID: 34268250]
[125]
Lan, C-Y.; Chen, S-Y.; Kuo, C-W.; Lu, C-C.; Yen, G-C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Yao Wu Shi Pin Fen Xi, 2019, 27(4), 887-896.
[PMID: 31590760]
[126]
Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell, 2013, 4(3), 176-185.
[http://dx.doi.org/10.1007/s13238-013-2084-3] [PMID: 23483479]
[127]
Sp, N.; Kang, D.; Kim, D.; Park, J.; Lee, H.; Kim, H.; Darvin, P.; Park, Y.M.; Yang, Y. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Kb signaling axis. Nutrients, 2018, 10(6), 772.
[http://dx.doi.org/10.3390/nu10060772] [PMID: 29914089]
[128]
Teng, Y.; Ross, J.L.; Cowell, J.K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAK-STAT, 2014, 3(1), e28086.
[http://dx.doi.org/10.4161/jkst.28086] [PMID: 24778926]
[129]
Mukherjee, A.; Khuda-Bukhsh, A.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall- cell lung-cancer cell line, A549. J. Pharmacopuncture, 2015, 18(1), 19-26.
[http://dx.doi.org/10.3831/KPI.2015.18.002] [PMID: 25830055]
[130]
Shang, Y.; Cai, X.; Fan, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr. Cancer Drug Targets, 2013, 13(9), 915-929.
[http://dx.doi.org/10.2174/15680096113136660097] [PMID: 24168191]
[131]
Cai, W.; Yu, D.; Fan, J.; Liang, X.; Jin, H.; Liu, C.; Zhu, M.; Shen, T.; Zhang, R.; Hu, W.; Wei, Q.; Yu, J. Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. Drug Des. Devel. Ther., 2018, 12, 4149-4161.
[http://dx.doi.org/10.2147/DDDT.S185618] [PMID: 30584279]
[132]
Feng, J.; Song, D.; Jiang, S.; Yang, X.; Ding, T.; Zhang, H.; Luo, J.; Liao, J.; Yin, Q. Quercetin restrains TGF-β1-induced epithelial–mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochem. Biophys. Res. Commun., 2018, 498(1), 132-138.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.044] [PMID: 29425820]
[133]
Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One, 2015, 10(10), e0141370.
[http://dx.doi.org/10.1371/journal.pone.0141370] [PMID: 26491966]
[134]
Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5(1), 14.
[http://dx.doi.org/10.1186/1750-2187-5-14] [PMID: 20718984]
[135]
Sun, S.; Gong, F.; Liu, P.; Miao, Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene, 2018, 664, 50-57.
[http://dx.doi.org/10.1016/j.gene.2018.04.045] [PMID: 29678660]
[136]
Shen, X.; Si, Y.; Wang, Z.; Wang, J.; Guo, Y.; Zhang, X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. Int. J. Mol. Med., 2016, 38(2), 619-626.
[http://dx.doi.org/10.3892/ijmm.2016.2625] [PMID: 27278820]
[137]
Sun, Z.J.; Chen, G.; Hu, X.; Zhang, W.; Liu, Y.; Zhu, L.X.; Zhou, Q.; Zhao, Y.F. Activation of PI3K/Akt/IKK-α/NF-κB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis, 2010, 15(7), 850-863.
[http://dx.doi.org/10.1007/s10495-010-0497-5] [PMID: 20386985]
[138]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[139]
Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111284] [PMID: 32771817]
[140]
Patra, A.; Satpathy, S.; Shenoy, A.; Bush, J.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomedicine, 2018, 13, 2869-2881.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[141]
Daglioglu, C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.012] [PMID: 28528134]
[142]
Marques, M.B.; Machado, A.P.; Santos, P.A.; Carrett-Dias, M.; Araújo, G.S.; da Silva Alves, B.; de Oliveira, B.S.; da Silva Júnior, F.M.R.; Dora, C.L.; Cañedo, A.D.; Filgueira, D.M.V.B.; Fernandes e Silva, E.; de Souza Votto, A.P. Anti-MDR effects of quercetin and its nanoemulsion in multidrug-resistant human leukemia cells. Anticancer. Agents Med. Chem., 2021, 21(14), 1911-1920.
[http://dx.doi.org/10.2174/1871520621999210104200722] [PMID: 33397267]
[143]
Kioka, N.; Hosokawa, N.; Komano, T.; Hirayoshi, K.; Nagate, K.; Ueda, K. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett., 1992, 301(3), 307-309.
[http://dx.doi.org/10.1016/0014-5793(92)80263-G] [PMID: 1349537]
[144]
Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; Mancuso, S. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol., 1994, 34(6), 459-464.
[http://dx.doi.org/10.1007/BF00685655] [PMID: 7923555]
[145]
Yuan, J.; Wong, I.L.K.; Jiang, T.; Wang, S.W.; Liu, T.; Jin Wen, B.; Chow, L.M.C.; Wan Sheng, B. Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells. Eur. J. Med. Chem., 2012, 54, 413-422.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.026] [PMID: 22743241]
[146]
Hyun, H.; Moon, J.; Cho, S. Quercetin suppresses CYR61-mediated multidrug resistance in human gastric adenocarcinoma ags cells. Molecules, 2018, 23(2), 209.
[http://dx.doi.org/10.3390/molecules23020209] [PMID: 29364834]
[147]
Chen, Z.; Huang, C.; Ma, T.; Jiang, L.; Tang, L.; Shi, T.; Zhang, S.; Zhang, L.; Zhu, P.; Li, J.; Shen, A. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45.
[http://dx.doi.org/10.1016/j.phymed.2018.03.040] [PMID: 29747752]
[148]
Yun, H.R.; Jo, Y.H.; Kim, J.; Shin, Y.; Kim, S.S.; Choi, T.G. Roles of autophagy in oxidative stress. Int. J. Mol. Sci., 2020, 21(9), 3289.
[http://dx.doi.org/10.3390/ijms21093289] [PMID: 32384691]
[149]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[150]
Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[151]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev, 2013, 2013
[http://dx.doi.org/10.1155/2013/596496]
[152]
Psahoulia, F.H.; Moumtzi, S.; Roberts, M.L.; Sasazuki, T.; Shirasawa, S.; Pintzas, A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha- RAS-transformed human colon cells. Carcinogenesis, 2007, 28(5), 1021-1031.
[http://dx.doi.org/10.1093/carcin/bgl232] [PMID: 17148506]
[153]
Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol. Appl. Pharmacol., 2013, 273(3), 580-589.
[http://dx.doi.org/10.1016/j.taap.2013.10.003] [PMID: 24126416]
[154]
Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of quercetin and green tea in xenografts of human leukemia HL60 cells. Sci. Rep., 2018, 8(1), 3459.
[http://dx.doi.org/10.1038/s41598-018-21516-5] [PMID: 29472583]
[155]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[156]
Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605.
[http://dx.doi.org/10.1016/j.biopha.2016.05.029] [PMID: 27470402]
[157]
Lou, M.; Zhang, L.; Ji, P.; Feng, F.; Liu, J.; Yang, C.; Li, B.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
[http://dx.doi.org/10.1016/j.biopha.2016.08.055] [PMID: 27621033]
[158]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[159]
Wu, L.; Li, J.; Liu, T.; Li, S.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med., 2019, 8(10), 4806-4820.
[http://dx.doi.org/10.1002/cam4.2388] [PMID: 31273958]
[160]
Jang, E.; Kim, I.Y.; Kim, H.; Lee, D.M.; Seo, D.Y.; Lee, J.A.; Choi, K.S.; Kim, E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem. Pharmacol., 2020, 178, 114098.
[http://dx.doi.org/10.1016/j.bcp.2020.114098] [PMID: 32540484]
[161]
Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560.
[http://dx.doi.org/10.1007/s13277-015-4125-4] [PMID: 26454746]
[162]
Tsai, T.F.; Hwang, T.I-S.; Lin, J-F.; Chen, H-E.; Yang, S-C.; Lin, Y-C.; Chou, K-Y.; Chou, K-Y. Suppression of quercetin-induced autophagy enhances cytotoxicity through elevating apoptotic cell death in human bladder cancer cells. Urol. Sci., 2019, 30(2), 58.
[http://dx.doi.org/10.4103/UROS.UROS_22_18]
[163]
Chang, J.L.; Chow, J.M.; Chang, J.H.; Wen, Y.C.; Lin, Y.W.; Yang, S.F.; Lee, W.J.; Chien, M.H. Quercetin simultaneously induces G0/G1-phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol., 2017, 32(7), 1857-1868.
[http://dx.doi.org/10.1002/tox.22408] [PMID: 28251795]
[164]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[165]
Taylor, M.A.; Khathayer, F.; Ray, S.K. Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochem. Res., 2019, 44(7), 1715-1725.
[http://dx.doi.org/10.1007/s11064-019-02802-8] [PMID: 31011879]
[166]
Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J. Neurooncol., 2016, 129(1), 39-45.
[http://dx.doi.org/10.1007/s11060-016-2149-2] [PMID: 27174198]
[167]
Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381.
[http://dx.doi.org/10.3892/or.2015.3991] [PMID: 25997470]
[168]
Wang, Z.X.; Ma, J.; Li, X.Y.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.M.; Lu, G.D.; Zhou, J. Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species‐dependent ferroptosis. Br. J. Pharmacol., 2021, 178(5), 1133-1148.
[http://dx.doi.org/10.1111/bph.15350] [PMID: 33347603]
[169]
Chung, Y.; Lee, J.; Jung, S.; Lee, Y.; Cho, J.W.; Oh, Y.J. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis., 2018, 9(12), 1189.
[http://dx.doi.org/10.1038/s41419-018-1229-y] [PMID: 30538224]
[170]
Jung, S.; Jeong, H.; Yu, S.W. Autophagy as a decisive process for cell death. Exp. Mol. Med., 2020, 52(6), 921-930.
[http://dx.doi.org/10.1038/s12276-020-0455-4] [PMID: 32591647]
[171]
Wu, B.; Zeng, W.; Ouyang, W.; Xu, Q.; Chen, J.; Wang, B.; Zhang, X. Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells. J. Clin. Biochem. Nutr., 2020, 67(2), 137-145.
[http://dx.doi.org/10.3164/jcbn.19-121] [PMID: 33041510]
[172]
Zhao, Y.; Fan, D.; Zheng, Z.P.; Li, E.T.S.; Chen, F.; Cheng, K.W.; Wang, M. 8-C-(E-phenylethenyl) quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Mol. Nutr. Food Res., 2017, 61(2), 1600437.
[http://dx.doi.org/10.1002/mnfr.201600437] [PMID: 27670274]
[173]
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Med. J., 2017, 118(2), 123-128.
[http://dx.doi.org/10.4149/BLL_2017_025] [PMID: 28814095]
[174]
Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell, 2007, 130(2), 223-233.
[http://dx.doi.org/10.1016/j.cell.2007.07.003] [PMID: 17662938]
[175]
Ewald, J.A.; Desotelle, J.A.; Wilding, G.; Jarrard, D.F. Therapy-induced senescence in cancer. J. Natl. Cancer Inst., 2010, 102(20), 1536-1546.
[http://dx.doi.org/10.1093/jnci/djq364] [PMID: 20858887]
[176]
Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anticancer. Agents Med. Chem., 2020, 20(11), 1387-1396.
[http://dx.doi.org/10.2174/1871520620666200408082026] [PMID: 32268873]
[177]
Kovacovicova, K.; Skolnaja, M.; Heinmaa, M.; Mistrik, M.; Pata, P.; Pata, I.; Bartek, J.; Vinciguerra, M. Senolytic cocktail Dasatinib + Quercetin (D + Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front. Oncol., 2018, 8, 459.
[http://dx.doi.org/10.3389/fonc.2018.00459] [PMID: 30425964]
[178]
Zamin, L.L.; Filippi-Chiela, E.C.; Dillenburg-Pilla, P.; Horn, F.; Salbego, C.; Lenz, G. Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci., 2009, 100(9), 1655-1662.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01215.x] [PMID: 19496785]
[179]
Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112.
[http://dx.doi.org/10.1016/j.acthis.2016.11.003] [PMID: 27887793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy