Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Perspective

CYP1B1: A Promising Target in Cancer Drug Discovery

Author(s): Marciéli Fabris, Mariana Luiza Silva, Kaio Maciel de Santiago-Silva, Marcelle de Lima Ferreira Bispo* and Priscila Goes Camargo*

Volume 23, Issue 9, 2023

Published on: 16 February, 2023

Page: [981 - 988] Pages: 8

DOI: 10.2174/1871520623666230119103914

Price: $65

Abstract

CYP1B1 plays an essential role in cancer's pathogenesis since it activates procarcinogens. Significantly, this enzyme catalyzes the hydroxylation of 17β-estradiol, leading to carcinogenic metabolites involved in carcinogenesis and cancer progression. Therefore, the inhibition of CYP1B1 activity is considered a therapeutic target for chemotherapy. In addition, CYP1B1 is overexpressed in hormone-dependent cancer cells and could be related to resistance to anticancer drugs. However, the activity of CYP1B1 in the tumor microenvironment can metabolize and activate prodrugs in cancer cells, providing more selectivity and being useful for chemoprevention or chemotherapy strategies. Furthermore, due to its importance in anticancer drug design, recent studies have reported using computational methods to understand the intermolecular interactions between possible ligands and CYP1B1. Therefore, in this perspective, we highlight recent findings in developing CYP1B1 inhibitors (flavonoids, trans-stilbenes, estradiol derivatives, and carbazoles) and CYP1B1-activated prodrugs (a chalcone DMU-135 and an oxime DMAKO-20). Finally, we have analyzed their possible molecular interactions with this enzymatic target by molecular docking, which can help to design new active substances.

Graphical Abstract

[1]
Lee, J.Y.; Cho, H.; Thangapandian, S.; Lim, C.; Chun, Y.J.; Lee, Y.; Choi, S.; Kim, S. Adaptable small ligand of CYP1 enzymes for use in understanding the structural features determining isoform selectivity. ACS Med. Chem. Lett., 2018, 9(12), 1247-1252.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00409] [PMID: 30613334]
[2]
Wang, Z.; Chen, Y.; Drbohlav, L.M.; Wu, J.Q.; Wang, M.Z. Development of an in vitro model to screen CYP1B1-targeted anticancer prodrugs. SLAS Discov., 2016, 21(10), 1090-1099.
[http://dx.doi.org/10.1177/1087057116675315] [PMID: 28139960]
[3]
Mikstacka, R.; Dutkiewicz, Z. New perspectives of CYP1B1 inhibitors in the light of molecular studies. Processes, 2021, 9(5), 817.
[http://dx.doi.org/10.3390/pr9050817]
[4]
Zhu, Z.; Mu, Y.; Qi, C.; Wang, J.; Xi, G.; Guo, J.; Mi, R.; Zhao, F. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro. Int. J. Mol. Med., 2015, 35(2), 340-348.
[http://dx.doi.org/10.3892/ijmm.2014.2041] [PMID: 25516145]
[5]
D’Uva, G.; Baci, D.; Albini, A.; Noonan, D.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat. Rev., 2018, 63, 1-18.
[http://dx.doi.org/10.1016/j.ctrv.2017.10.013] [PMID: 29197745]
[6]
Shimada, T.; Yamazaki, H.; Foroozesh, M.; Hopkins, N.E.; Alworth, W.L.; Guengerich, F.P. Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chem. Res. Toxicol., 1998, 11(9), 1048-1056.
[http://dx.doi.org/10.1021/tx980090+] [PMID: 9760279]
[7]
Wang, A.; Savas, U.; Stout, C.D.; Johnson, E.F. Structural characterization of the complex between α-naphthoflavone and human cytochrome P450 1B1. J. Biol. Chem., 2011, 286(7), 5736-5743.
[http://dx.doi.org/10.1074/jbc.M110.204420] [PMID: 21147782]
[8]
Walsh, A.A.; Szklarz, G.D.; Scott, E.E. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem., 2013, 288(18), 12932-12943.
[http://dx.doi.org/10.1074/jbc.M113.452953] [PMID: 23508959]
[9]
Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem., 2007, 282(19), 14348-14355.
[http://dx.doi.org/10.1074/jbc.M611692200] [PMID: 17311915]
[10]
Mikstacka, R.; Wierzchowski, M.; Dutkiewicz, Z.; Gielara-Korzańska, A.; Korzański, A.; Teubert, A.; Sobiak, S.; Baer-Dubowska, W. 3,4,2′-Trimethoxy-trans-stilbene - a potent CYP1B1 inhibitor. Med. Chem. Comm., 2014, 5(4), 496.
[http://dx.doi.org/10.1039/c3md00317e]
[11]
Shimada, T.; Tanaka, K.; Takenaka, S.; Murayama, N.; Martin, M.V.; Foroozesh, M.K.; Yamazaki, H.; Guengerich, F.P.; Komori, M. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem. Res. Toxicol., 2010, 23(12), 1921-1935.
[http://dx.doi.org/10.1021/tx100286d] [PMID: 21053930]
[12]
Dutour, R.; Roy, J.; Cortés-Benítez, F.; Maltais, R.; Poirier, D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of a-ring substituted estrane derivatives: Design, synthesis, inhibitory activity, and selectivity. J. Med. Chem., 2018, 61(20), 9229-9245.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00907] [PMID: 30216063]
[13]
Kubo, M.; Yamamoto, K.; Itoh, T. Design and synthesis of selective CYP1B1 inhibitor via dearomatization of α-naphthoflavone. Bioorg. Med. Chem., 2019, 27(2), 285-304.
[http://dx.doi.org/10.1016/j.bmc.2018.11.045] [PMID: 30553624]
[14]
Huggins, D.J.; Sherman, W.; Tidor, B. Rational approaches to improving selectivity in drug design. J. Med. Chem., 2012, 55(4), 1424-1444.
[http://dx.doi.org/10.1021/jm2010332] [PMID: 22239221]
[15]
Wierzchowski, M.; Dutkiewicz, Z.; Gielara-Korzańska, A.; Korzański, A.; Teubert, A.; Teżyk, A.; Stefański, T.; Baer-Dubowska, W.; Mikstacka, R. Synthesis, biological evaluation and docking studies of trans-stilbene methylthio derivatives as cytochromes P450 family 1 inhibitors. Chem. Biol. Drug Des., 2017, 90(6), 1226-1236.
[http://dx.doi.org/10.1111/cbdd.13042] [PMID: 28632937]
[16]
Wang, Y.; He, X.; Li, C.; Ma, Y.; Xue, W.; Hu, B.; Wang, J.; Zhang, T.; Zhang, F. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur. J. Med. Chem., 2020, 193, 112235.
[http://dx.doi.org/10.1016/j.ejmech.2020.112235] [PMID: 32203789]
[17]
Sale, S.; Tunstall, R.G.; Ruparelia, K.C.; Butler, P.C.; Potter, G.A.; Steward, W.P.; Gescher, A.J. Effects of the potential chemopreventive agent DMU-135 on adenoma development in the ApcMin+ mouse. Invest. New Drugs, 2006, 24(6), 459-464.
[http://dx.doi.org/10.1007/s10637-006-5947-0] [PMID: 16505954]
[18]
Cui, J.; Zhang, X.; Huang, G.; Zhang, Q.; Dong, J.; Sun, G.; Meng, Q.; Li, S. DMAKO-20 as a new multitarget anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm., 2019, 16(1), 409-421.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01062] [PMID: 30481041]
[19]
Wang, R.; Zhang, X.; Song, H.; Zhou, S.; Li, S. Synthesis and evaluation of novel alkannin and shikonin oxime derivatives as potent antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(17), 4304-4307.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.012] [PMID: 25127868]
[20]
Wang, R.B.; Zhou, W.; Meng, Q.Q.; Zhang, X.; Ding, J.; Xu, Y.; Song, H.L.; Yang, K.; Cui, J.H.; Li, S.S. Design, synthesis, and biological evaluation of shikonin and alkannin derivatives as potential anticancer agents via a prodrug approach. ChemMedChem, 2014, 9(12), 2798-2808.
[http://dx.doi.org/10.1002/cmdc.201402224] [PMID: 25234005]
[21]
Ju, W.; Yang, S.; Ansede, J.H.; Stephens, C.E.; Bridges, A.S.; Voyksner, R.D.; Ismail, M.A.; Boykin, D.W.; Tidwell, R.R.; Hall, J.E.; Wang, M.Z. CYP1A1 and CYP1B1-mediated biotransformation of the antitrypanosomal methamidoxime prodrug DB844 forms novel metabolites through intramolecular rearrangement. J. Pharm. Sci., 2014, 103(1), 337-349.
[http://dx.doi.org/10.1002/jps.23765] [PMID: 24186380]
[22]
Cui, J.; Zhou, X.; Huang, J.; Cui, J.; Chen, J. Selective antitumor effect of shikonin derived DMAKO-20 on melanoma through CYP1B1. Curr. Cancer Drug Targets, 2021, 21(3), 223-231.
[http://dx.doi.org/10.2174/1568009620666201116112937] [PMID: 33200710]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy