Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

GOQDs and GOQDs-NS-doped Carbocatalysts: A Concise Study on Production and Use in One-pot Green MCRs

Author(s): Shahnaz Rostamizadeh, Bahram Zamiri*, Mehrdad Mahkam and Parvin Beigi Azar Aghbelagh

Volume 20, Issue 7, 2023

Published on: 16 March, 2023

Page: [788 - 811] Pages: 24

DOI: 10.2174/1570179420666230118151343

Price: $65

Abstract

Introduction: Nowadays, the catalysts’ usage in chemical reactions is unavoidable, and this has led scientists to look for producing and using catalysts which not only cause pollution and toxicity in the reactions and products, but also generate economical benefits.

Aims: Our goal in this paper is to produce a fully biocompatible, non-toxic and inexpensive carbocatalyst with a graphene oxide structure for use in multi-component reactions as a heterogeneous catalyst.

Methods: The research has been carried out to simplify the method of preparing carbocatalysts. In this article, we heated citric acid and thiourea in the simple bottom-up method in which nitrogen and sulfur were atomically inserted into a carbon-carbon bond of graphene oxide.

Results: The results have been obtained by comparing graphene oxide quantum dots (GOQDs) and functional graphene oxide quantum dots (GOQDs) and functional nitrogen and sulfur-doped graphene oxide quantum dots (NS-doped-GOQDS) using the produced carbocatalyst in the synthesis of spiro indoline pyrano pyrazoles and highly substituted pyridine derivatives with chemical and pharmacological properties.

Conclusion: A simple and affordable bottom-up method has been developed to synthesize fluorescent NS-doped-GOQDS by the condensation of CA in the presence of thiourea with water elimination at 185 ℃. After the production of NS-doped-GOQDS, the carbocatalyst is used in the synthesis of spiro[indoline-3,4'-pyrano [2, 3-c]pyrazole] derivatives in four-component reactions and pyridine derivatives in five-component reactions.

Graphical Abstract

[1]
Haag, D.; Kung, H.H. Metal free graphene based catalysts: A review. Top. Catal., 2014, 57(6-9), 762-773.
[http://dx.doi.org/10.1007/s11244-013-0233-9]
[2]
Hajjar, Z.; Kazemeini, M.; Rashidi, A.; Soltanali, S. Hydrodesulfurization catalysts based on carbon nanostructures: A review. Fuller. Nanotub. Carbon Nanostruct., 2018, 26(9), 557-569.
[http://dx.doi.org/10.1080/1536383X.2018.1470509]
[3]
Ahmad, M.S.; Nishina, Y. Graphene-based carbocatalysts for carbon–carbon bond formation. Nanoscale, 2020, 12(23), 12210-12227.
[http://dx.doi.org/10.1039/D0NR02984J] [PMID: 32510079]
[4]
Ganta, R.K.; Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Advances in pyranopyrazole scaffolds’ syntheses using sustainable catalysts—a review. Molecules, 2021, 26(11), 3270.
[http://dx.doi.org/10.3390/molecules26113270] [PMID: 34071629]
[5]
Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. Adv. Mater., 2014, 26(35), 6186-6192.
[http://dx.doi.org/10.1002/adma.201401427] [PMID: 25069955]
[6]
Zhang, J.; Zhao, F.; Zhang, Z.; Chen, N.; Qu, L. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale, 2013, 5(8), 3112-3126.
[http://dx.doi.org/10.1039/c3nr00011g] [PMID: 23467313]
[7]
Wang, D.; Su, D. Environmental Science Heterogeneous nanocarbon materials for oxygen. Energy Environ. Sci., 2014, 576-591.
[http://dx.doi.org/10.1039/c3ee43463j]
[8]
Geng, D.; Ding, N.; Andy Hor, T.S.; Liu, Z.; Sun, X.; Zong, Y. Potential of metal-free “graphene alloy” as electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(5), 1795-1810.
[http://dx.doi.org/10.1039/C4TA06008C]
[9]
Shahriary, L.; Athawale, A.A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng., 2014, 2, 58-63.
[10]
Ahirwar, S.; Mallick, S.; Bahadur, D. Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega, 2017, 2(11), 8343-8353.
[http://dx.doi.org/10.1021/acsomega.7b01539] [PMID: 31457373]
[11]
Seah, C.M.; Chai, S.P.; Mohamed, A.R. Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon, 2014, 70, 1-21.
[http://dx.doi.org/10.1016/j.carbon.2013.12.073]
[12]
Somanathan, T.; Prasad, K.; Ostrikov, K.; Saravanan, A.; Krishna, V. Graphene oxide synthesis from agro waste. Nanomaterials, 2015, 5(2), 826-834.
[http://dx.doi.org/10.3390/nano5020826] [PMID: 28347038]
[13]
Seo, D.H.; Rider, A.E.; Kumar, S.; Randeniya, L.K.; Ostrikov, K. Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon, 2013, 60, 221-228.
[http://dx.doi.org/10.1016/j.carbon.2013.04.015]
[14]
Rostamizadeh, S.; Rezgi, M.; Shadjou, N.; Hasanzadeh, M. Magnetic graphene oxide anchored sulfonic acid as a novel nanocatalyst for the synthesis of N-aryl-2-amino-1,6-naphthyridines J. Chin. Chem. Soc. (Taipei),, 2013, 60(11), n/a.
[http://dx.doi.org/10.1002/jccs.201300167]
[15]
Luceño-Sánchez, J.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A. Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Nanomaterials, 2018, 8(11), 870.
[http://dx.doi.org/10.3390/nano8110870] [PMID: 30360567]
[16]
Lee, W.S.V.; Leng, M.; Li, M.; Huang, X.L.; Xue, J.M. Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 2015, 12, 250-257.
[http://dx.doi.org/10.1016/j.nanoen.2014.12.030]
[17]
Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater., 2013, 25(35), 4932-4937.
[http://dx.doi.org/10.1002/adma.201301870] [PMID: 23864555]
[18]
Bhunia, P.; Hwang, E.; Yoon, Y.; Lee, E.; Seo, S.; Lee, H. Synthesis of highly n-type graphene by using an ionic liquid. Chemistry, 2012, 18(39), 12207-12212.
[http://dx.doi.org/10.1002/chem.201201593] [PMID: 22899106]
[19]
Wu, Z.S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5(7), 5463-5471.
[http://dx.doi.org/10.1021/nn2006249] [PMID: 21696205]
[20]
Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 2009, 131(43), 15939-15944.
[http://dx.doi.org/10.1021/ja907098f] [PMID: 19817436]
[21]
Jin, Z.; Yao, J.; Kittrell, C.; Tour, J.M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano, 2011, 5(5), 4112-4117.
[http://dx.doi.org/10.1021/nn200766e] [PMID: 21476571]
[22]
Guo, B.; Sun, X-G.; Veith, G.M.; Bi, Z.; Mahurin, S.M.; Liao, C.; Bridges, C.; Paranthaman, M.P.; Dai, S. Nitrogen-enriched carbons from alkali salts with high coulombic efficiency for energy storage applications. Adv. Energy Mater., 2013, 3(6), 708-712.
[http://dx.doi.org/10.1002/aenm.201200925]
[23]
Allaedini, G.; Aminayi, P.; Tasirin, S.; Mahmoudi, E. Chemical vapor deposition of methane in the presence of Cu/Si nanoparticles as a facile method for graphene production. Fuller. Nanotub. Carbon Nanostruct., 2015, 23(11), 968-973.
[http://dx.doi.org/10.1080/1536383X.2015.1057279]
[24]
Bag, S.; Mondal, B.; Das, A.K.; Raj, C.R. Nitrogen and sulfur dual-doped reduced graphene oxide: Synergistic effect of dopants towards oxygen reduction reaction. Electrochim. Acta, 2015, 163, 16-23.
[http://dx.doi.org/10.1016/j.electacta.2015.02.130]
[25]
Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5(24), 12272-12277.
[http://dx.doi.org/10.1039/c3nr04402e] [PMID: 24150696]
[26]
Witomska, S.; Liu, Z.; Czepa, W.; Aliprandi, A.; Pakulski, D. Pawluć P.; Ciesielski, A.; Samorì, P. Graphene oxide hybrid with sulfur–nitrogen polymer for high-performance pseudocapacitors. J. Am. Chem. Soc., 2019, 141(1), 482-487.
[http://dx.doi.org/10.1021/jacs.8b11181] [PMID: 30517783]
[27]
Rezaii, E.; Nazmi, L.; Mahkam, M.; Ghaleh Assadi, M. A facile and industrial method for synthesis of modified magnetic lipophilic graphene as a super oil additive. Main Group Chem., 2021, 20(1), 89-101.
[http://dx.doi.org/10.3233/MGC-210029]
[28]
Ahadi, S.; Khavasi, H.R.; Bazgir, A. A Clean synthesis of spiro[indoline-3,9′-xanthene]trione derivatives. Chem. Pharm. Bull., 2008, 56(9), 1328-1330.
[http://dx.doi.org/10.1248/cpb.56.1328] [PMID: 18758112]
[29]
Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: A chemical prism carrying plethora of therapeutic benefits. Eur. J. Med. Chem., 2016, 123, 858-894.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.011] [PMID: 27543880]
[30]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[31]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; El-Bady, S.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[32]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[33]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[34]
Zhou, L.M.; Qu, R.Y.; Yang, G.F. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(5), 603-625.
[http://dx.doi.org/10.1080/17460441.2020.1733526] [PMID: 32106717]
[35]
Patravale, A.A.; Gore, A.H.; Kolekar, G.B.; Deshmukh, M.B.; Choudhari, P.B.; Bhatia, M.S.; Prabhu, S.; Jamdhade, M.D.; Patole, M.S.; Anbhule, P.V. Synthesis, biological evaluation and molecular docking studies of some novel indenospiro derivatives as anticancer agents. J. Taiwan Inst. Chem. Eng., 2016, 68, 105-118.
[http://dx.doi.org/10.1016/j.jtice.2016.09.034]
[36]
Ziarani, G.M.; Moradi, R.; Lashgari, N.; Badiei, A.; Soorki, A.A. Synthesis and biological evaluation of spiro[indoline-3,4′-Pyrano[2,3- C:6,5- C ']dipyrazol]-2-ones in the presence of SBA-Pr-SO3 H as a nanocatalyst. Quim. Nova, 2015, 38, 1167-1171.
[http://dx.doi.org/10.5935/0100-4042.20150125]
[37]
Srinivasan, M.; Perumal, S.; Selvaraj, S. Synthesis, stereochemistry, and antimicrobial activity of 2,6-diaryl-3-(arylthio)piperidin-4-ones. Chem. Pharm. Bull. (Tokyo), 2006, 54(6), 795-801.
[http://dx.doi.org/10.1248/cpb.54.795] [PMID: 16755046]
[38]
Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Hermann, T.; Wall, D. Synthesis and SAR of 3,5-diamino-piperidine derivatives: Novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorg. Med. Chem. Lett., 2007, 17(5), 1206-1210.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.024] [PMID: 17188860]
[39]
Dimmock, J.R.; Padmanilayam, M.P.; Puthucode, R.N.; Nazarali, A.J.; Motaganahalli, N.L.; Zello, G.A.; Quail, J.W.; Oloo, E.O.; Kraatz, H.B.; Prisciak, J.S.; Allen, T.M.; Santos, C.L.; Balzarini, J.; De Clercq, E.; Manavathu, E.K. A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J. Med. Chem., 2001, 44(4), 586-593.
[http://dx.doi.org/10.1021/jm0002580] [PMID: 11170648]
[40]
Srinivas, C.; Sai Pavan Kumar, C.N.S.; China Raju, B.; Jayathirtha Rao, V.; Naidu, V.G.M.; Ramakrishna, S.; Diwan, P.V. First stereoselective total synthesis and anticancer activity of new amide alkaloids of roots of pepper. Bioorg. Med. Chem. Lett., 2009, 19(20), 5915-5918.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.056] [PMID: 19733069]
[41]
Petit, S.; Nallet, J.P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Simon, P.; Fontaine, C.; Barthelmebs, M.; Imbs, J.L. Synthèses et activités psychotropes de 3,4-diarylpipéridines. Corrélation structure-activité et recherche d’une activité antihypertensive. Eur. J. Med. Chem., 1991, 26(1), 19-32.
[http://dx.doi.org/10.1016/0223-5234(91)90209-6]
[42]
Dimmock, J.R.; Arora, V.K.; Semple, H.A.; Lee, J.S.; Allen, T.M.; Kao, G.Y. 3,5-Bis-arylidene-1-methyl-4-piperidone methohalides and related compounds with activity against L 1210 cells and DNA binding properties. Pharmazie, 1992, 47(4), 246-248.
[PMID: 1518879]
[43]
Aeluri, R.; Alla, M.; Bommena, V.R.; Murthy, R.; Jain, N. Synthesis and antiproliferative activity of polysubstituted tetrahydropyridine and piperidin-4-one-3-carboxylate derivatives. Asian J. Org. Chem., 2012, 1(1), 71-79.
[http://dx.doi.org/10.1002/ajoc.201200010]
[44]
Babaei, E.; Mirjalili, B.B.F. One-pot synthesis of five substituted tetrahydropyridines using nano-Al2O3/BF3/Fe3O4 as a highly efficient nano-catalyst. Res. Chem. Intermed., 2018, 44(5), 3493-3505.
[http://dx.doi.org/10.1007/s11164-018-3320-5]
[45]
Hazeri, N.; Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Aboonajmi, J.; Sajadikhah, S.S. Fe(NO3)3·9H2O as efficient catalyst for one-pot synthesis of highly functionalized piperidines. J. Chin. Chem. Soc. , 2013, 60(4), 355-358.
[http://dx.doi.org/10.1002/jccs.201200421]
[46]
Mohsin, N-A.; Ahmad, M. Tetrahydropyridine: A promising heterocycle for pharmacologically active molecules. Turk. J. Chem., 2018, 42(5), 1191-1216.
[http://dx.doi.org/10.3906/kim-1709-4]
[47]
Zafar, M.; Zahra, S.; Tahir, M.; Mughal, E.; Nazar, M.; Rafique, H. One-pot synthesis of new $N$-(1-methylpyridin-4(1$H)$-ylidene)amine ligands for palladium-catalyzed Heck coupling reaction. Turk. J. Chem., 2018, 42, 63-74.
[http://dx.doi.org/10.3906/kim-1703-44]
[48]
Guruswamy, M.; Mariappan, M. Growth and characterization of urea-thiourea non-linear optical organic mixed crystal. Indian J. Pure Appl. Phy., 2010, 48, 264-270.
[49]
Fouda, A.N.; Duraia, E.S.M.; Almaqwashi, A.A. Facile and scalable green synthesis of N-doped graphene/CNTs nanocomposites via ball milling. Ain Shams Eng. J., 2021, 12(1), 1017-1024.
[http://dx.doi.org/10.1016/j.asej.2020.04.011]
[50]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. Green synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@l-arginine as a robust and reusable catalyst. BMC Chem., 2019, 13(1), 119.
[http://dx.doi.org/10.1186/s13065-019-0636-1] [PMID: 31624802]
[51]
Liju, W.; Ablajan, K.; Jun, F. Rapid and efficient one-pot synthesis of spiro[indoline-3,4′-pyrano[2, 3-c]pyrazole] derivatives catalyzed by l-proline under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 113-118.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.013] [PMID: 24931425]
[52]
Wang, C.; Jiang, Y.H.; Yan, C.G. Convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4′-pyrano [2,3-c]pyrazoles] via four-component reaction. Chin. Chem. Lett., 2015, 26(7), 889-893.
[http://dx.doi.org/10.1016/j.cclet.2015.05.018]
[53]
Khan, A.T.; Parvin, T.; Choudhury, L.H. Effects of substituents in the β-position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: A facile access to functionalized piperidines. J. Org. Chem., 2008, 73(21), 8398-8402.
[http://dx.doi.org/10.1021/jo8014962] [PMID: 18841917]
[54]
Khan, A.T.; Lal, M.; Khan, M.M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51(33), 4419-4424.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.069]
[55]
Sajadikhah, S.S.; Maghsoodlou, M.T.; Hazeri, N.; Habibi-Khorassani, S.M.; Shams-Najafi, S.J. One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst. Monatsh. Chem., 2012, 143(6), 939-945.
[http://dx.doi.org/10.1007/s00706-011-0671-7]
[56]
Gupta, A.; Kaur, R.; Singh, D.; Kapoor, K.K. Graphene oxide: A carbocatalyst for the one-pot multicomponent synthesis of highly functionalized tetrahydropyridines. Tetrahedron Lett., 2017, 58(26), 2583-2587.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy