Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

An Algorithm-optimized Scheme for In situ Synthesis of DNA Microarrays

Author(s): Chu Cheng, Xingyue Gu, Zhongjie Fei and Pengfeng Xiao*

Volume 26, Issue 8, 2023

Published on: 01 February, 2023

Page: [1609 - 1617] Pages: 9

DOI: 10.2174/1386207326666230118114032

Price: $65

conference banner
Abstract

Background: The cost of synthetic DNA has limited applications in frontier science and technology fields such as synthetic biology, DNA storage, and DNA chips.

Objective: The objective of this study is to find an algorithm-optimized scheme for the in situ synthesis of DNA microarrays, which can reduce the cost of DNA synthesis.

Methods: Here, based on the characteristics of in situ chemical synthesis of DNA microarrays, an optimization algorithm was proposed. Through data grading, the sequences with the same base at as many different features as possible were synthesized in parallel to reduce synthetic cycles.

Results and Discussion: The simulation results of 10 and 100 randomly selected sequences showed that when level=2, the reduction ratio in the number of synthetic cycles was the largest, 40% and 32.5%, respectively. Subsequently, the algorithm-optimized scheme was applied to the electrochemical synthesis of 12,000 sequences required for DNA storage. The results showed that compared to the 508 cycles required by the conventional synthesis scheme, the algorithmoptimized scheme only required 342 cycles, which reduced by 32.7%. In addition, the reduced 166 cycles reduced the total synthesis time by approximately 11 hours.

Conclusions: The algorithm-optimized synthesis scheme can not only reduce the synthesis time of DNA microarrays and improve synthesis efficiency, but more importantly, it can also reduce the cost of DNA synthesis by nearly 1/3. In addition, it is compatible with various in situ synthesis methods of DNA microarrays, including soft-lithography, photolithography, a photoresist layer, electrochemistry and photoelectrochemistry. Therefore, it has very important application value.

Graphical Abstract

[1]
Gibson, D.G.; Glass, J.I.; Lartigue, C.; Noskov, V.N.; Chuang, R.Y.; Algire, M.A.; Benders, G.A.; Montague, M.G.; Ma, L.; Moodie, M.M.; Merryman, C.; Vashee, S.; Krishnakumar, R.; Assad-Garcia, N.; Andrews-Pfannkoch, C.; Denisova, E.A.; Young, L.; Qi, Z.Q.; Segall-Shapiro, T.H.; Calvey, C.H.; Parmar, P.P.; Hutchison, C.A., III; Smith, H.O.; Venter, J.C. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987), 52-56.
[http://dx.doi.org/10.1126/science.1190719] [PMID: 20488990]
[2]
Cello, J.; Paul, A.V.; Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583), 1016-1018.
[http://dx.doi.org/10.1126/science.1072266] [PMID: 12114528]
[3]
Tian, J.; Gong, H.; Sheng, N.; Zhou, X.; Gulari, E.; Gao, X.; Church, G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 2004, 432(7020), 1050-1054.
[http://dx.doi.org/10.1038/nature03151] [PMID: 15616567]
[4]
Kobayashi, H.; Kærn, M.; Araki, M.; Chung, K.; Gardner, T.S.; Cantor, C.R.; Collins, J.J. Programmable cells: Interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA, 2004, 101(22), 8414-8419.
[http://dx.doi.org/10.1073/pnas.0402940101] [PMID: 15159530]
[5]
McDaniel, R.; Weiss, R. Advances in synthetic biology: on the path from prototypes to applications. Curr. Opin. Biotechnol., 2005, 16(4), 476-483.
[http://dx.doi.org/10.1016/j.copbio.2005.07.002] [PMID: 16019200]
[6]
Gibson, D.G.; Benders, G.A.; Andrews-Pfannkoch, C.; Denisova, E.A.; Baden-Tillson, H.; Zaveri, J.; Stockwell, T.B.; Brownley, A.; Thomas, D.W.; Algire, M.A.; Merryman, C.; Young, L.; Noskov, V.N.; Glass, J.I.; Venter, J.C.; Hutchison, C.A., III; Smith, H.O. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 2008, 319(5867), 1215-1220.
[http://dx.doi.org/10.1126/science.1151721] [PMID: 18218864]
[7]
Hughes, R.A.; Ellington, A.D. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol., 2017, 9(1), a023812.
[http://dx.doi.org/10.1101/cshperspect.a023812] [PMID: 28049645]
[8]
Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic acid memory. Nat. Mater., 2016, 15(4), 366-370.
[http://dx.doi.org/10.1038/nmat4594] [PMID: 27005909]
[9]
Ceze, L.; Nivala, J.; Strauss, K. Molecular digital data storage using DNA. Nat. Rev. Genet., 2019, 20(8), 456-466.
[http://dx.doi.org/10.1038/s41576-019-0125-3] [PMID: 31068682]
[10]
Xu, C.; Zhao, C.; Ma, B.; Liu, H. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Res., 2021, 49(10), 5451-5469.
[http://dx.doi.org/10.1093/nar/gkab230] [PMID: 33836076]
[11]
Fodor, S.P.A.; Read, J.L.; Pirrung, M.C.; Stryer, L.; Lu, A.T.; Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251(4995), 767-773.
[http://dx.doi.org/10.1126/science.1990438] [PMID: 1990438]
[12]
McGall, G.; Labadie, J.; Brock, P.; Wallraff, G.; Nguyen, T.; Hinsberg, W. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 13555-13560.
[http://dx.doi.org/10.1073/pnas.93.24.13555] [PMID: 8942972]
[13]
Hughes, T.R.; Mao, M.; Jones, A.R.; Burchard, J.; Marton, M.J.; Shannon, K.W.; Lefkowitz, S.M.; Ziman, M.; Schelter, J.M.; Meyer, M.R.; Kobayashi, S.; Davis, C.; Dai, H.; He, Y.D.; Stephaniants, S.B.; Cavet, G.; Walker, W.L.; West, A.; Coffey, E.; Shoemaker, D.D.; Stoughton, R.; Blanchard, A.P.; Friend, S.H.; Linsley, P.S. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol., 2001, 19(4), 342-347.
[http://dx.doi.org/10.1038/86730] [PMID: 11283592]
[14]
Butler, J.H.; Cronin, M.; Anderson, K.M.; Biddison, G.M.; Chatelain, F.; Cummer, M.; Davi, D.J.; Fisher, L.; Frauendorf, A.W.; Frueh, F.W.; Gjerstad, C.; Harper, T.F.; Kernahan, S.D.; Long, D.Q.; Pho, M.; Walker, J.A., II; Brennan, T.M. In situ synthesis of oligonucleotide arrays by using surface tension. J. Am. Chem. Soc., 2001, 123(37), 8887-8894.
[http://dx.doi.org/10.1021/ja003758r] [PMID: 11552795]
[15]
Mrksich, M.; Chen, C.S.; Xia, Y.; Dike, L.E.; Ingber, D.E.; Whitesides, G.M. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA, 1996, 93(20), 10775-10778.
[http://dx.doi.org/10.1073/pnas.93.20.10775] [PMID: 8855256]
[16]
Egeland, R.D.; Southern, E.M. Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication. Nucleic Acids Res., 2005, 33(14)e125
[http://dx.doi.org/10.1093/nar/gni117] [PMID: 16085751]
[17]
Egeland, R.D.; Marken, F.; Southern, E.M. An electrochemical redox couple activitated by microelectrodes for confined chemical patterning of surfaces. Anal. Chem., 2002, 74(7), 1590-1596.
[http://dx.doi.org/10.1021/ac010953v] [PMID: 12033249]
[18]
Chow, B.Y.; Emig, C.J.; Jacobson, J.M. Photoelectrochemical synthesis of DNA microarrays. Proc. Natl. Acad. Sci. USA, 2009, 106(36), 15219-15224.
[http://dx.doi.org/10.1073/pnas.0813011106] [PMID: 19706433]
[19]
Southern, E.M.; Maskos, U.; Elder, J.K. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics, 1992, 13, 1008-1017.
[http://dx.doi.org/10.1016/0888-7543(92)90014-J]
[20]
Efcavitch, J.W.; Heiner, C. Depurination as a yield decreasing mechanism in oligodeoxynucleotide synthesis. Nucleosides Nucleotides, 1985, 4(1-2), 267-267.
[http://dx.doi.org/10.1080/07328318508077883]
[21]
Septak, M. Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis. Nucleic Acids Res., 1996, 24(15), 3053-3058.
[http://dx.doi.org/10.1093/nar/24.15.3053] [PMID: 8760893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy