Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Potential MicroRNA-MRNA Regulatory Relationship Pairs in Irritable Bowel Syndrome with Diarrhea

Author(s): Wenli Yan, Zunqi Kan, Zhaofeng Li, Yuxia Ma* and Dongqing Du*

Volume 26, Issue 8, 2023

Published on: 17 January, 2023

Page: [1618 - 1628] Pages: 11

DOI: 10.2174/1386207326666230109143325

Price: $65

Abstract

Background: Irritable bowel syndrome (IBS) is the most common gastrointestinal disease worldwide, with diarrhea-predominant irritable bowel syndrome (IBS-D) being the prevalent subtype. However, its pathogenesis remains unclear. Research has increasingly focused on identifying genetic factors in the mechanisms underlying IBS.

Objective: We aimed to explore key gene nodes and potential microRNA-mRNA regulatory pairs of IBS-D using bioinformatics methods.

Methods: We downloaded the GSE36701 microarray dataset from the Gene Expression Omnibus database and obtained 1358 differentially expressed mRNAs by analyzing mRNA profiles using the GEO2R analysis tool. Based on our previous study, we used TargetScan, miTarBase, and miRDB to predict the downstream genes of three known microRNAs (hsa-let-7b-5p, hsa-miR-19b-3p, and hsamiR- 20a-5p), and the microRNA-mRNA regulatory network was visualized using Cytoscape.

Results: A total of 795 downstream target genes were found in TargetScan, miRTarBase, and miRDB databases, and 50 candidate genes were obtained. The Metascape and STRING databases were used to perform enrichment analysis and construct a protein-protein interaction network of candidate genes. Finally, we constructed a network of 3 microRNAs and 50 candidate mRNAs, among which 28 negative relation ship pairs and 5 key axes (hsa-miR-20a-5p/VEGFA, hsa-let-7b- 5p/MSN, hsa-let-7b-5p /PPP1R16B, hsa-19b-3p/ITGA2, and hsa-19b-3p/PIK3R3) were identified.

Conclusion: We report five novel microRNA-mRNA regulatory axes in IBS-D pathogenesis and speculated that PIK3R3, negatively regulated by hsa-miR-19b-3p, may regulate NF-κB production through the PI3K/Akt pathway, which accounts for the occurrence of clinical symptoms in IBS-D patients. Our findings may offer key biomarkers for IBS-D diagnosis and treatment.

« Previous
Graphical Abstract

[1]
Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The microbiome and irritable bowel syndrome-A review on the pathophysiology, current research and future therapy. Front. Microbiol., 2019, 10, 1136.
[http://dx.doi.org/10.3389/fmicb.2019.01136] [PMID: 31244784]
[2]
Elbadawi, M.; Ammar, R.M.; Aziz-Kalbhenn, H.; Rabini, S.; Klauck, S.M.; Dawood, M.; Saeed, M.E.M.; Kampf, C.J.; Efferth, T. Anti-inflammatory and tight junction protective activity of the herbal preparation STW 5-II on mouse intestinal organoids. Phytomedicine, 2021, 88, 153589.
[http://dx.doi.org/10.1016/j.phymed.2021.153589] [PMID: 34111617]
[3]
Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel disorders.Gastroenterology, 2016.S0016-5085(16)00222-5]
[PMID: 27144627]
[4]
Sperber, A.D.; Dumitrascu, D.; Fukudo, S.; Gerson, C.; Ghoshal, U.C.; Gwee, K.A.; Hungin, A.P.S.; Kang, J.Y.; Minhu, C.; Schmulson, M.; Bolotin, A.; Friger, M.; Freud, T.; Whitehead, W. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut, 2017, 66(6), 1075-1082.
[http://dx.doi.org/10.1136/gutjnl-2015-311240] [PMID: 26818616]
[5]
Xiao, L.; Liu, Q.; Luo, M.; Xiong, L. Gut microbiota-derived metabolites in irritable bowel syndrome. Front. Cell. Infect. Microbiol., 2021, 11, 729346-729346.
[http://dx.doi.org/10.3389/fcimb.2021.729346] [PMID: 34631603]
[6]
Singh, P.; Alm, E.J.; Kelley, J.M.; Cheng, V.; Smith, M.; Kassam, Z.; Nee, J.; Iturrino, J.; Lembo, A. Effect of antibiotic pretreatment on bacterial engraftment after Fecal Microbiota Transplant (FMT) in IBS-D. Gut Microbes, 2022, 14(1), 2020067.
[http://dx.doi.org/10.1080/19490976.2021.2020067] [PMID: 35014601]
[7]
Zhu, X.; Hong, G.; Li, Y.; Yang, P.; Cheng, M.; Zhang, L.; Li, Y.; Ji, L.; Li, G.; Chen, C.; Zhong, C.; Jin, Y.; Yang, M.; Xiong, H.; Qian, W.; Ding, Z.; Ning, K.; Hou, X. Understanding of the site-specific microbial patterns towards accurate identification for patients with diarrhea-predominant irritable bowel syndrome. Microbiol. Spectr., 2021, 9(3), e01255-e21.
[http://dx.doi.org/10.1128/Spectrum.01255-21] [PMID: 34937163]
[8]
Holtmann, G.J.; Ford, A.C.; Talley, N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol., 2016, 1(2), 133-146.
[http://dx.doi.org/10.1016/S2468-1253(16)30023-1] [PMID: 28404070]
[9]
Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet, 2020, 396(10263), 1675-1688.
[http://dx.doi.org/10.1016/S0140-6736(20)31548-8] [PMID: 33049223]
[10]
a) Prospero, L.; Riezzo, G.; Linsalata, M.; Orlando, A.; D’Attoma, B.; Russo, F. Psychological and gastrointestinal symptoms of patients with irritable bowel syndrome undergoing a low-FODMAP diet: The role of the intestinal barrier. Nutrients, 2021, 13(7), 2469.;
b) The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res., 2018, 11, 345-349.
[11]
Zhou, Q.; Verne, G.N. New insights into visceral hypersensitivity-Clinical implications in IBS. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(6), 349-355.
[http://dx.doi.org/10.1038/nrgastro.2011.83] [PMID: 21643039]
[12]
Ren, H.X.; Zhang, F.C.; Luo, H.S.; Zhang, G.; Liang, L.X. Role of mast cell-miR-490-5p in irritable bowel syndrome. World J. Gastroenterol., 2017, 23(1), 93-102.
[http://dx.doi.org/10.3748/wjg.v23.i1.93] [PMID: 28104984]
[13]
Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov., 2010, 9(10), 775-789.
[http://dx.doi.org/10.1038/nrd3179] [PMID: 20885409]
[14]
Zhu, H.; Xiao, X.; Shi, Y.; Wu, Y.; Huang, Y.; Li, D.; Xiong, F.; He, G.; Chai, Y.; Tang, H. Inhibition of miRNA 29a regulates intestinal barrier function in diarrhea predominant irritable bowel syndrome by upregulating ZO 1 and CLDN1. Exp. Ther. Med., 2020, 20(6), 155.
[http://dx.doi.org/10.3892/etm.2020.9284] [PMID: 33093893]
[15]
Zhou, Q.; Costinean, S.; Croce, C.M.; Brasier, A.R.; Merwat, S.; Larson, S.A.; Basra, S.; Verne, G.N. MicroRNA 29 targets nuclear factor-κB-repressing factor and Claudin 1 to increase intestinal permeability. Gastroenterology, 2015, 148(1), 158-169.e8.
[http://dx.doi.org/10.1053/j.gastro.2014.09.037] [PMID: 25277410]
[16]
Mahurkar-Joshi, S.; Rankin, C.R.; Videlock, E.J.; Soroosh, A.; Verma, A.; Khandadash, A.; Iliopoulos, D.; Pothoulakis, C.; Mayer, E.A.; Chang, L. The colonic mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p are downregulated in irritable bowel syndrome and are associated with barrier function and MAPK signaling. Gastroenterology, 2021, 160(7), 2409-2422.e19.
[http://dx.doi.org/10.1053/j.gastro.2021.02.040] [PMID: 33617890]
[17]
Zhou, Q.; Yang, L.; Larson, S.; Basra, S.; Merwat, S.; Tan, A.; Croce, C.; Verne, G.N. Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1. Gut, 2016, 65(5), 797-805.
[http://dx.doi.org/10.1136/gutjnl-2013-306464] [PMID: 25681400]
[18]
Wohlfarth, C.; Schmitteckert, S.; Härtle, J.D.; Houghton, L.A.; Dweep, H.; Fortea, M.; Assadi, G.; Braun, A.; Mederer, T.; Pöhner, S.; Becker, P.P.; Fischer, C.; Granzow, M.; Mönnikes, H.; Mayer, E.A.; Sayuk, G.; Boeckxstaens, G.; Wouters, M.M.; Simrén, M.; Lindberg, G.; Ohlsson, B.; Schmidt, P.T.; Dlugosz, A.; Agreus, L.; Andreasson, A.; D’Amato, M.; Burwinkel, B.; Bermejo, J.L.; Röth, R.; Lasitschka, F.; Vicario, M.; Metzger, M.; Santos, J.; Rappold, G.A.; Martinez, C.; Niesler, B. miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci. Rep., 2017, 7(1), 14680.
[http://dx.doi.org/10.1038/s41598-017-13982-0] [PMID: 29089619]
[19]
Yue, Z.H.O.U. Regulation effects of microRNA expression in diarrhea-predominant irritable bowel syndrome patients treated with herb-partitioned moxibustion on the navel. Zhonghua Zhongyiyao Zazhi, 2021, 36(5), 2688-2693.
[20]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.H.; Zhang, J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[21]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[22]
Zhao, X.; Zhang, L.; Wang, J.; Zhang, M.; Song, Z.; Ni, B.; You, Y. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis. J. Transl. Med., 2021, 19(1), 35.
[http://dx.doi.org/10.1186/s12967-020-02698-x] [PMID: 33468161]
[23]
Benardout, M.; Le Gresley, A.; ElShaer, A.; Wren, S.P. Fructose malabsorption: Causes, diagnosis and treatment. Br. J. Nutr., 2022, 127(4), 481-489.
[http://dx.doi.org/10.1017/S0007114521001215] [PMID: 33818329]
[24]
Zhao, L.; Yang, W.; Chen, Y.; Huang, F.; Lu, L.; Lin, C.; Huang, T.; Ning, Z.; Zhai, L.; Zhong, L.L.D.; Lam, W.; Yang, Z.; Zhang, X.; Cheng, C.; Han, L.; Qiu, Q.; Shang, X.; Huang, R.; Xiao, H.; Ren, Z.; Chen, D.; Sun, S.; El-Nezami, H.; Cai, Z.; Lu, A.; Fang, X.; Jia, W.; Bian, Z. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J. Clin. Invest., 2019, 130(1), 438-450.
[http://dx.doi.org/10.1172/JCI130976] [PMID: 31815740]
[25]
Sood, R.; Law, G.R.; Ford, A.C. Diagnosis of IBS: Symptoms, symptom-based criteria, biomarkers or ‘psychomarkers’? Nat. Rev. Gastroenterol. Hepatol., 2014, 11(11), 683-691.
[http://dx.doi.org/10.1038/nrgastro.2014.127] [PMID: 25069544]
[26]
Shah, E.D.; Salwen-Deremer, J.K.; Gibson, P.R.; Muir, J.G.; Eswaran, S.; Chey, W.D. Comparing costs and outcomes of treatments for irritable bowel syndrome with diarrhea: Cost-benefit analysis. Clin. Gastroenterol. Hepatol., 2022, 20(1), 136-144.e31.
[http://dx.doi.org/10.1016/j.cgh.2020.09.043] [PMID: 33010413]
[27]
Chao, G.; Zhang, S. Aquaporins 1, 3 and 8 expression in irritable bowel syndrome rats’ colon via NF-κB pathway. Oncotarget, 2017, 8(29), 47175-47183.
[http://dx.doi.org/10.18632/oncotarget.17565] [PMID: 28525373]
[28]
a) Kalli, T.; Koutouratsas, T.; Karamanolis, G.; Gazouli, M. Ghrelin gene polymorphisms in irritable bowel syndrome. Digestion, 2021, 102(3), 313-318.;
b) Levy, R.L.; Jones, K.R.; Whitehead, W.E.; Feld, S.I.; Talley, N.J.; Corey, L.A. Irritable bowel syndrome in twins: Heredity and social learning both contribute to etiology. Gastroenterology, 2001, 121(4), 799-804.
[29]
Kapeller, J.; Houghton, L.A.; Mönnikes, H.; Walstab, J.; Möller, D.; Bönisch, H.; Burwinkel, B.; Autschbach, F.; Funke, B.; Lasitschka, F.; Gassler, N.; Fischer, C.; Whorwell, P.J.; Atkinson, W.; Fell, C.; Büchner, K.J.; Schmidtmann, M.; van der Voort, I.; Wisser, A.S.; Berg, T.; Rappold, G.; Niesler, B. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet., 2008, 17(19), 2967-2977.
[http://dx.doi.org/10.1093/hmg/ddn195] [PMID: 18614545]
[30]
Guo, J.; Lu, G.; Chen, L.; Geng, H.; Wu, X.; Chen, H.; Li, Y.; Yuan, M.; Sun, J.; Pei, L. Regulation of serum microRNA expression by acupuncture in patients with diarrhea-predominant irritable bowel syndrome. Acupunct. Med., 2022, 40(1), 34-42.
[http://dx.doi.org/10.1177/09645284211027892] [PMID: 34231397]
[31]
Martínez, C.; Rodiño-Janeiro, B.K.; Lobo, B.; Stanifer, M.L.; Klaus, B.; Granzow, M.; González-Castro, A.M.; Salvo-Romero, E.; Alonso-Cotoner, C.; Pigrau, M.; Roeth, R.; Rappold, G.; Huber, W.; González-Silos, R.; Lorenzo, J.; de Torres, I.; Azpiroz, F.; Boulant, S.; Vicario, M.; Niesler, B.; Santos, J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut, 2017, 66(9), 1537.1-1538.
[http://dx.doi.org/10.1136/gutjnl-2016-311477]] [PMID: 28082316]
[32]
Wu, F.; Zhang, S.; Dassopoulos, T.; Harris, M.L.; Bayless, T.M.; Meltzer, S.J.; Brant, S.R.; Kwon, J.H. Identification of microRNAs associated with ileal and colonic Crohnʼs disease. Inflamm. Bowel Dis., 2010, 16(10), 1729-1738.
[http://dx.doi.org/10.1002/ibd.21267] [PMID: 20848482]
[33]
Simrén, M.; Axelsson, J.; Gillberg, R.; Abrahamsson, H.; Svedlund, J.; Björnsson, E.S. Quality of life in inflammatory bowel disease in remission: The impact of IBS-like symptoms and associated psychological factors. Am. J. Gastroenterol., 2002, 97(2), 389-396.
[http://dx.doi.org/10.1016/S0002-9270(01)04037-0] [PMID: 11866278]
[34]
Minderhoud, I.M.; Oldenburg, B.; Wismeijer, J.A.; Van Berge Henegouwen, G.P.; Smout, A.J.P.M. IBS-like symptoms in patients with inflammatory bowel disease in remission; relationships with quality of life and coping behavior. Dig. Dis. Sci., 2004, 49(3), 469-474.
[http://dx.doi.org/10.1023/B:DDAS.0000020506.84248.f9] [PMID: 15139501]
[35]
Keohane, J.; O’Mahony, C.; O’Mahony, L.; O’Mahony, S.; Quigley, E.M.; Shanahan, F. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: A real association or reflection of occult inflammation? Am. J. Gastroenterol., 2010, 105(8), 1788.
[http://dx.doi.org/10.1038/ajg.2010.156]
[36]
Fei, L.; Wang, Y. microRNA‐495 reduces visceral sensitivity in mice with diarrhea‐predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life, 2020, 72(7), 1468-1480.
[http://dx.doi.org/10.1002/iub.2270] [PMID: 32187820]
[37]
Zhang, L.; Wang, R.; Bai, T.; Xiang, X.; Qian, W.; Song, J.; Hou, X. EphrinB2/ephB2‐mediated myenteric synaptic plasticity: Mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J., 2019, 33(12), 13644-13659.
[http://dx.doi.org/10.1096/fj.201901192R] [PMID: 31601124]
[38]
Li, B.; Luo, X.F.; Liu, S.W.; Zhao, N.; Li, H.N.; Zhang, W.; Chen, Y.Y.; Bao, A.; Wang, J.G.; Wang, Q.S. Abdominal massage reduces visceral hypersensitivity via regulating GDNF and PI3K/AKT signal pathway in a rat model of irritable bowel syndrome. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/3912931] [PMID: 32565856]
[39]
Zhou, J.; Chen, G.B.; Tang, Y.C.; Sinha, R.A.; Wu, Y.; Yap, C.S.; Wang, G.; Hu, J.; Xia, X.; Tan, P.; Goh, L.K.; Yen, P.M. Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Med. Genomics, 2012, 5(1), 34.
[http://dx.doi.org/10.1186/1755-8794-5-34] [PMID: 22876838]
[40]
a) Choghakhori, R.; Abbasnezhad, A.; Hasanvand, A.; Amani, R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine, 2017, 93, 34-43.;
b) Khodabakhsh, P.; Khoie, N.; Dehpour, A.R.; Abdollahi, A.; Ghazi-Khansari, M.; Shafaroodii, H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology, 2022, 30(1), 313-325.;
c) Lin, Z.; Wang, Y.; Lin, S.; Liu, D.; Mo, G.; Zhang, H.; Dou, Y. Identification of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach. BMC Gastroenterol., 2021, 21(1), 48.
[41]
He, X.; Cui, L.H.; Wang, X.H.; Yan, Z.H.; Li, C.; Gong, S.D.; Zheng, Y.; Luo, Z.; Wang, Y. Modulation of inflammation by toll-like receptor 4/nuclear factor-kappa B in diarrhea-predominant irritable bowel syndrome. Oncotarget, 2017, 8(69), 113957-113965.
[http://dx.doi.org/10.18632/oncotarget.23045] [PMID: 29371960]
[42]
Bhat, A.A.; Uppada, S.; Achkar, I.W.; Hashem, S.; Yadav, S.K.; Shanmugakonar, M.; Al-Naemi, H.A.; Haris, M.; Uddin, S. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk. Front. Physiol., 2019, 9, 1942.
[http://dx.doi.org/10.3389/fphys.2018.01942] [PMID: 30728783]
[43]
a) Luo, L.; Liang, H.; Liu, L. Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway. Pharm. Biol., 2022, 60(1), 56-64.;
b) Wei, X.; Zhou, R.; Xhen, Y.; Ma, G.; Yang, Y.; Lu, C.; Xu, W.; Hu, W. Systemic pharmacological verification of Baixianfeng decoction regulating TNF-PI3K-Akt-NF-κB pathway in treating rheumatoid arthritis. Bioorg. Chem., 2022, 119, 105519.
[44]
Qi, S.; Xin, Y.; Guo, Y.; Diao, Y.; Kou, X.; Luo, L.; Yin, Z. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int. Immunopharmacol., 2012, 12(1), 278-287.
[http://dx.doi.org/10.1016/j.intimp.2011.12.001] [PMID: 22193240]
[45]
Shao, D.; Lian, Z.; Di, Y.; Zhang, L.; Rajoka, M.; Zhang, Y.; Kong, J.; Jiang, C.; Shi, J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci. Food, 2018, 2(1), 13.
[http://dx.doi.org/10.1038/s41538-018-0022-8] [PMID: 31304263]
[46]
Krishnachaitanya, S.S.; Liu, M.; Fujise, K.; Li, Q. MicroRNAs in inflammatory bowel disease and its complications. Int. J. Mol. Sci., 2022, 23(15), 8751.
[http://dx.doi.org/10.3390/ijms23158751] [PMID: 35955886]
[47]
Kalla, R.; Ventham, N.T.; Kennedy, N.A.; Quintana, J.F.; Nimmo, E.R.; Buck, A.H.; Satsangi, J. MicroRNAs: New players in IBD. Gut, 2015, 64(3), 504-513.
[http://dx.doi.org/10.1136/gutjnl-2014-307891] [PMID: 25475103]
[48]
Lai, C.Y.; Yeh, K.Y.; Liu, B.F.; Chang, T.M.; Chang, C.H.; Liao, Y.F.; Liu, Y.W.; Her, G.M. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish. Cancers, 2021, 13(21), 5565.
[http://dx.doi.org/10.3390/cancers13215565] [PMID: 34771727]
[49]
Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; Li, H.; Guo, B.; Zhu, Q.; Wei, Q.; Moyer, M.P.; Wang, P.; Cai, S.; Goel, A.; Qin, H.; Ma, Y. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor−κB, and up-regulating expression of microRNA-21. Gastroenterology, 2017, 152(4), 851-866.e24.
[http://dx.doi.org/10.1053/j.gastro.2016.11.018] [PMID: 27876571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy