Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Opinion Article

HIV/AIDS Curability Study, Different Approaches and Drug Combination

Author(s): Da-Yong Lu* and Ting-Ren Lu

Volume 23, Issue 4, 2023

Published on: 08 February, 2023

Article ID: e170123212803 Pages: 10

DOI: 10.2174/1871526523666230117115826

Price: $65

Abstract

Aim: HIV infection is currently an incurable disease characterized by life-long drug utility. Its incurable causality and mechanism are still unknown to us.

Methods: To overcome this therapeutic setback, some breakthroughs should be made by utilizing different approaches. How to plan some experimental and clinical novelty for HIV curability is a modern challenge. In this article, new ideas and approaches for global HIV/AIDS therapeutic strategies are proposed and represented by scientific insights.

Results: Pharmaceutical characteristics, herbal medicine, novel drug targets, cutting-edge biotherapy, drug combination, animal modalities, and immune-stimuli for HIV latency, as well as clearance, are highlighted.

Discussion: To elucidate our understanding of curative treatment for HIV/AIDS, many new pathological discoveries, expansion, technical advances, and potential drug targets are constructed. After the discovery of novel pathogenesis and therapeutic evolution, HIV/AIDS therapeutic curability may become achievable and a reality.

Conclusion: Transformation from animal model investigation to widespread therapies for larger volume of human population is a necessity in modern medicine. In this infectious treatment scenario, major breakthroughs in medicine and drug development are anticipated.

Graphical Abstract

[1]
Pomerantz RJ, Horn DL. Twenty years of therapy for HIV-1 infection. Nat Med 2003; 9(7): 867-73.
[http://dx.doi.org/10.1038/nm0703-867] [PMID: 12835707]
[2]
Lu DY, Lu TR. High active antiretroviral therapy for HIV/AIDS, progresses and drawback. Adv Pharmacoepidemiol Drug Saf 2012; 1(6): e115.
[http://dx.doi.org/10.4172/2167-1052.1000e115]
[3]
Lu DY, Lu TR, Che JY, Wu HY, Xu B. New perspectives of HIV/AIDS therapy study. Recent Patents Anti-Infect Drug Disc 2015; 9(2): 112-20.
[http://dx.doi.org/10.2174/1574891X10666150109115402] [PMID: 25578060]
[4]
Gene DM, Sarah N. Frontiers in HIV research (Vol I) advances in HIV treatments-HIV enzyme inhibitors and antiretroviral therapy. Bentham ebooks; Sharjah 2015.
[5]
Lu DY, Wu HY, Yarla NS, Xu B, Ding J, Lu TR. HAART in HIV/AIDS treatments, future trends. Infect Disord Drug Targets 2018; 18(1): 15-22.
[http://dx.doi.org/10.2174/1871526517666170505122800] [PMID: 28474549]
[6]
McMichael AJ, Hanke T. HIV vaccines 1983-2003. Nat Med 2003; 9(7): 874-80.
[http://dx.doi.org/10.1038/nm0703-874] [PMID: 12835708]
[7]
Letvin NL. Virology. Moving forward in HIV vaccine development. Science 2009; 326(5957): 1196-8.
[http://dx.doi.org/10.1126/science.1183278] [PMID: 19965456]
[8]
Korber B, Gnanakaran S. Converging on an HIV vaccine. Science 2011; 333(6049): 1589-90.
[http://dx.doi.org/10.1126/science.1211919] [PMID: 21921189]
[9]
Lu DY, Wu HY, Lu TR, Xu B, Ding J. HIV vaccination, is breakthrough underway? Rev Recent Clin Trials 2016; 11(2): 145-51.
[http://dx.doi.org/10.2174/1574887111666151217125154] [PMID: 26672600]
[10]
Lu DY, Wu HY, Ding J, Sastry N, Lu TR. HIV vaccine for prevention and cure, a mission possible. Rev Recent Clin Trials 2016; 11(4): 290-6.
[http://dx.doi.org/10.2174/1574887111666160729103440] [PMID: 27480966]
[11]
Zhang J, Crumpacker C. Eradication of HIV and cure of AIDS, now and how? Front Immunol 2013; 4: 337.
[http://dx.doi.org/10.3389/fimmu.2013.00337] [PMID: 24151495]
[12]
Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science 2009; 323(5919): 1304-7.
[http://dx.doi.org/10.1126/science.1165706] [PMID: 19265012]
[13]
Lu DY. HIV/AIDS treatments, fight for a cure. Germany: Lambert Academic Publishing 2017.
[14]
Dash PK, Kevadiya BD, Su H, Banoub MG, Gendelman HE. Pathways towards human immunodeficiency virus elimination. EBioMedicine 2020; 53: 102667.
[http://dx.doi.org/10.1016/j.ebiom.2020.102667] [PMID: 32114397]
[15]
Bosque A, Levinger C, Howard JN, Tang PT, Joshi A. A ultrasensitive planar array P24 Gag ELISA to detect individual HIV-1 viral particles and infected cell. Research Square (pre-prints) 2021. Available from: https://assets.researchsquare.com/files/rs-832339/v1_covered.pdf?c=1631877601
[16]
Lu DY, Lu TR, Yarla NS, Xu B, Ding J. HIV in human genomes and therapeutics. HIV: Current Research 2017; 2(1): 121.
[17]
Deeks SG. Shock and kill. Nature 2012; 487(7408): 439-40.
[http://dx.doi.org/10.1038/487439a] [PMID: 22836995]
[18]
Lu DY, Lu TR, Wu HY, Yarla NS, Ding J, Xu B. HIV/AIDS curable study, new forms of therapeutic trinity. Recent Patents Anti-Infect Drug Disc 2019; 13(3): 217-27.
[http://dx.doi.org/10.2174/1574891X13666181026094526] [PMID: 30362422]
[19]
Wang D, Ma S, Ma Y, et al. Effect of traditional Chinese Medicine therapy on the trend in CD4+ T-cell counting and patients with HIV/AIDS treated with anti-retroviral therapy; a retrospective cohort study. Evid Based Complement Alternat Med 2021; 2021(1): 1-8.
[http://dx.doi.org/10.1155/2021/5576612] [PMID: 34326884]
[20]
Shi P, Chen Z, Meng J, et al. Molecular transmission networks and pre-treatment drug resistance among individuals with acute HIV-1 infection in Baoding, China. PLoS One 2021; 16(12): e0260670.
[http://dx.doi.org/10.1371/journal.pone.0260670] [PMID: 34855860]
[21]
Dash PK, Kaminski R, Bella R, et al. Sequential LASER ART and CRISPR treatment, Eliminate HIV-1 in a subset of infected humanized mice. Nat Commun 2019; 10(1): 2753.
[http://dx.doi.org/10.1038/s41467-019-10366-y] [PMID: 31266936]
[22]
Lerner AM, Eisinger RW, Fauci AS. Comorbidities in persons with HIV: The lingering challenge. JAMA 2020; 323(1): 19-20.
[http://dx.doi.org/10.1001/jama.2019.19775] [PMID: 31825458]
[23]
Mazzon M, Marsh M. Targeting viral entry as a strategy for broad-spectrum antivirals. F1000 Res 2019; 8: 1628.
[http://dx.doi.org/10.12688/f1000research.19694.1] [PMID: 31559009]
[24]
Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 2014; 20(4): 425-9.
[http://dx.doi.org/10.1038/nm.3489] [PMID: 24658076]
[25]
Lu DY, Ding J. Sequencing the whole genome of infected human cells obtained from diseased patients-A proposed strategy for understanding and overcoming AIDS or other deadest virus-infected diseases. Med Hypotheses 2007; 68(4): 826-7.
[http://dx.doi.org/10.1016/j.mehy.2006.08.042] [PMID: 17055187]
[26]
Lu DY, Ding J. AIDS and human genome studies, from a hypothesis to systematic approaches. Med Hypotheses 2007; 69(3): 695.
[http://dx.doi.org/10.1016/j.mehy.2007.01.023] [PMID: 17329035]
[27]
Engelman A. AIDS/HIV. A reversal of fortune in HIV-1 integration. Science 2007; 316(5833): 1855-7.
[http://dx.doi.org/10.1126/science.1145015] [PMID: 17600205]
[28]
Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521-9.
[http://dx.doi.org/10.1016/S0092-8674(02)00864-4] [PMID: 12202041]
[29]
Taha H, Morgan J, Das A, Das S. Parenteral patent drug S/GSK1265744 has the potential to be an effective agent in pre-exposure prophylaxis against HIV infection. Recent Patents Anti-Infect Drug Disc 2014; 8(3): 213-8.
[http://dx.doi.org/10.2174/1574891X09666140417154727] [PMID: 24738551]
[30]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[31]
Nathanson N. HIV/AIDS epidemic: The whole truth. Science 2016; 351(6269): 133.
[http://dx.doi.org/10.1126/science.351.6269.133] [PMID: 26744400]
[32]
Trono D, Van Lint C, Rouzioux C, et al. HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 2010; 329(5988): 174-80.
[http://dx.doi.org/10.1126/science.1191047] [PMID: 20616270]
[33]
Zhang P, Chen Y, Zeng Y, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci USA 2015; 112(45): E6129-38.
[http://dx.doi.org/10.1073/pnas.1505799112] [PMID: 26504197]
[34]
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7(1): 71.
[http://dx.doi.org/10.1038/s41541-022-00485-x] [PMID: 35764661]
[35]
Letvin NL, Walker BD. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med 2003; 9(7): 861-6.
[http://dx.doi.org/10.1038/nm0703-861] [PMID: 12835706]
[36]
FDA. Biosimilar Product Information, 2022. Available from: https://www.fda.gov/drugs/biosimilars/biosimilar-product-information
[37]
Sillman B, Bade AN, Dash PK, et al. Creation of a long-acting nanoformulated dolutegravir. Nat Commun 2018; 9(1): 443.
[http://dx.doi.org/10.1038/s41467-018-02885-x] [PMID: 29402886]
[38]
Lu DY, Che JY. Drug delivery of bio-molecules. EC Pharmacol Toxicol 2022; 10(2): 83-5.
[39]
de Oliveira França P, Ayres LR, Pimassoni LH, Cerutti Junior C.. Health-related quality of life and coping strategies in a cohort study of highly active antiretroviral therapy naïve patient’s adherence. Int J Clin Pract 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/8341638]
[40]
Bezabhe WM, Chalmers L, Bereznicki LR, Peterson GM. Adherence to antiretroviral therapy and virologic failure. Medicine (Baltimore) 2016; 95(15): e3361.
[http://dx.doi.org/10.1097/MD.0000000000003361] [PMID: 27082595]
[41]
Pattanayak S. Plants in healthcare: Past, present and future. Explor Anim Med Res 2021; 11(2): 140-4.
[http://dx.doi.org/10.52635/EAMR/11.2.140-144]
[42]
Pattanayak S. Alternative to antibiotics from herbal origin-outline of a comprehensive research project. Curr Pharmacogenomics Person Med 2018; 16(1): 9-62.
[http://dx.doi.org/10.2174/1875692116666180419154033]
[43]
Lu DY, Lu TR. Herbal medicine in new era. Am J Hosp Palliat Care 2019; 3(4): 125-30.
[http://dx.doi.org/10.15406/hpmij.2019.03.00165]
[44]
Lu DY, Lu TR. Drug discoveries from natural resources. J Primary Health Care & General Practice 2019; 3(1): 28.
[45]
Parasuraman S. Herbal drug discovery: Challenges and perspectives. Curr Pharmacogenomics Person Med 2018; 16(1): 63-8.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[46]
Putta S, Yarla NS, Peluso I, et al. Anthocyanins: Possible role as multitarget therapeutic agents for prevention and therapy of chronic diseases. Curr Pharm Des 2017; 23(30): 4475-83.
[PMID: 28831925]
[47]
Lu DY, Lu TR, Wu HY. Treatment of influenza virus infections with Chinese medicine. Adv Pharmacoepidemiol Drug Saf 2012; 1: e104.
[48]
Lu DY, Lu TR, Lu Y, Sastry N, Wu HY. Discover natural chemical drugs in modern medicines. Metabolomics 2016; 6(3): 181.
[49]
Mathaiyan M, Suresh A, Balamurugan R. Binding property of HIV p24 and Reverse transcriptase by chalcones from Pongamia pinnata seeds. Bioinformation 2018; 14(6): 279-84.
[http://dx.doi.org/10.6026/97320630014279] [PMID: 30237673]
[50]
Paterson RRM. Cordyceps - A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008; 69(7): 1469-95.
[http://dx.doi.org/10.1016/j.phytochem.2008.01.027] [PMID: 18343466]
[51]
Chen PX, Wang S, Nie S, Marcone M. Properties of Cordyceps sinensis: A review. J Funct Foods 2013; 5(2): 550-69.
[http://dx.doi.org/10.1016/j.jff.2013.01.034] [PMID: 32288794]
[52]
Gopal M, Bhaskaran A, Khalife W, Barbagelata A. Heart disease in patients with HIV/AIDS-an emerging clinical problem. Curr Cardiol Rev 2009; 5(2): 149-54.
[http://dx.doi.org/10.2174/157340309788166705] [PMID: 20436855]
[53]
Garg H, Joshi A, Mukherjee D. Cardiovascular complications of HIV infection and treatment. Cardiovasc Hematol Agents Med Chem 2013; 11(1): 58-66.
[http://dx.doi.org/10.2174/1871525711311010010] [PMID: 22946901]
[54]
Behrman Sherman R, Woodcock J, Norden J, Grandinetti C, Temple RJ. New FDA regulation to improve safety reporting in clinical trials. N Engl J Med 2011; 365(1): 3-5.
[http://dx.doi.org/10.1056/NEJMp1103464] [PMID: 21651388]
[55]
Su H, Sravanam S, Sillman B, et al. Recovery of latent HIV-1 from brain tissue by adoptive cell transfer in virally suppressed humanized mice. J Neuroimmune Pharmacol 2021; 16(4): 796-805.
[http://dx.doi.org/10.1007/s11481-021-10011-w] [PMID: 34528173]
[56]
Escalona-Noguero C, López-Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. BioEssays 2021; 43(4): 2000315.
[http://dx.doi.org/10.1002/bies.202000315] [PMID: 33569817]
[57]
Smith R, Tran K, Richards K, Luo R. Dietary carbohydrates that modulate the immune system. Clin Immunol Endocr Metab Drugs 2015; 2(1): 35-42.
[http://dx.doi.org/10.2174/221270700201151216151927]
[58]
Abrahams MR, Joseph SB, Garrett N, et al. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci Transl Med 2019; 11(513): eaaw5589.
[http://dx.doi.org/10.1126/scitranslmed.aaw5589] [PMID: 31597754]
[59]
Goo L, Chohan V, Nduati R, Overbaugh J. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat Med 2014; 20(6): 655-8.
[http://dx.doi.org/10.1038/nm.3565] [PMID: 24859529]
[60]
Lu DY, Wu HY, Lu TR. HIV/AIDS treatment, therapeutic strategy breakthroughs. Hospice Pall Med Int J 2020; 4(2): 34-9.
[61]
Matsuda K, Kobayakawa T, Tsuchiya K, et al. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C–induced HIV latency reversal. J Biol Chem 2019; 294(1): 116-29.
[http://dx.doi.org/10.1074/jbc.RA118.005798] [PMID: 30413535]
[62]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[63]
Hokello J, Sharma AL, Tyagi M. Combinatorial use of both epigenetic and non-epigenetic mechanisms to efficiently reactivate HIV latency. Int J Mol Sci 2021; 22(7): 3697.
[http://dx.doi.org/10.3390/ijms22073697] [PMID: 33918134]
[64]
Chiappini E, Lisi C, Giacomet V, et al. Off-label use of combined antiretroviral therapy, analysis of data collected by the Italian Register for HIV-1 infection in paediatrics in a large cohort of children. BMC Infect Dis 2022; 22(1): 55.
[http://dx.doi.org/10.1186/s12879-022-07026-w] [PMID: 35033018]
[65]
Lu DY, Lu TR, Wu HY. Avian flu, pathogenesis and therapy. Antiinfect Agents 2012; 10(2): 124-9.
[http://dx.doi.org/10.2174/2211362611208020124]
[66]
Lu DY. Ebola therapeutic study and future trends. Infect Disord Drug Targets 2019; 19(1): 17-29.
[http://dx.doi.org/10.2174/1871526518666180813160348] [PMID: 30101721]
[67]
Rao DV, Dattatreya A, Dan MM, Sarangi T, Sasidhar K, Rahul J. Translational approach in emerging infectious disease treatment: An update. Biomed Res 2017; 28(13): 5678-86.
[68]
Sánchez Martín A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurlé ADG, Carracedo Álvarez Á. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics 2013; 14(10): 1167-78.
[http://dx.doi.org/10.2217/pgs.13.111] [PMID: 23859571]
[69]
Sukasem C, Sungkanuparph S. Would a CYP2B6 test help HIV patients being treated with efavirenz? Pharmacogenomics 2013; 14(9): 999-1001.
[http://dx.doi.org/10.2217/pgs.13.69] [PMID: 23837472]
[70]
De Luca A, Dunn D, Zazzi M, et al. Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe. J Infect Dis 2013; 207(8): 1216-20.
[http://dx.doi.org/10.1093/infdis/jit017] [PMID: 23315324]
[71]
Viana JO, Félix MB, Maia MS, Serafim VL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era Braz J Pharm Sci 2018; 54(spe): e01010.
[http://dx.doi.org/10.1590/s2175-97902018000001010]
[72]
Scotti L, Ishiki H, Mendonca FJB, Silva MS, Scotti MT. In silico analyses of natural products on leishmania enzyme targets. Mini Rev Med Chem 2015; 15(3): 253-69.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[73]
Muthuraman A, Thiagarajan VRK, Paramakrishman N. Integration of artificial intelligence in pharmacological research with deep and machine learning process. EC Pharmacol Toxicol 2019; 7(1): 56-61.
[74]
Freedman DH. Hunting for new drugs with AI. Nature 2019; 576(7787): S49-53.
[http://dx.doi.org/10.1038/d41586-019-03846-0] [PMID: 31853074]
[75]
Gentle JE. Elements of Computational Statistics. Germany: Springer Science 2002.
[76]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[77]
Lu DY, Lu TR, Lu Y, Wu HY, Yarla NS. The acquisition of mathematical language in biomedical articles. J Cell Developmental Biol 2017; 1(1): 8.
[78]
Lu DY, Lu TR. Mathematics or physics-majored students on the biomedical fields, insiders or outsiders? Metabolomics 2015; 5(4): e142.
[79]
Lu DY, Wu HY, Lu TR, Che JY, Lu Y. Updating biomedical studies by recruiting more mathematics or physics-majored talents. Metabolomics 2016; 6(2): e148.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy