Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Herb-Drug Interactions and Their Impact on Pharmacokinetics: An Update

Author(s): Wenhao Cheng, Kexin Xia, Siyang Wu* and Yingfei Li*

Volume 24, Issue 1, 2023

Published on: 23 January, 2023

Page: [28 - 69] Pages: 42

DOI: 10.2174/1389200224666230116113240

Price: $65

Abstract

Herb medicine has a long history of application and is still used worldwide. With the development of complementary and alternative medicine, the interaction between herb and drugs has attracted more and more attention. Herb-drug interactions (HDI) could cause decreased efficiency, increased toxicity, and affect the drug absorption and disposition processes due to the interference of their pharmacological or pharmacokinetic effects. Hence, the mechanisms and results of herb-pharmacokinetic interactions should be comprehensively summarized. Here, we have summarized the mechanisms of HDI and pharmacokinetic interactions in the last ten years based on searching on PubMed, Science Direct, and Web of Science with different keywords. Besides, the pharmacokinetic interactions were related to nine commonly used herbs and drugs, including Ginseng, Salvia miltiorrhiza, Ginkgo biloba, Garlic, Coptis chinensis, St. John's wort, Ginger, Licorice, Silythistle and Fructus Schisandrae. This review provides an overview of HDI to provide a reference for the rational and safe clinical use of herbs and drugs.

Graphical Abstract

[1]
Tarirai, C.; Viljoen, A.M.; Hamman, J.H. Herb-drug pharmacokinetic interactions reviewed. Expert Opin. Drug Metab. Toxicol., 2010, 6(12), 1515-1538.
[http://dx.doi.org/10.1517/17425255.2010.529129] [PMID: 21067427]
[2]
Shaikh, A.S.; Thomas, A.B.; Chitlange, S.S. Herb-drug interaction studies of herbs used in treatment of cardiovascular disorders—A narrative review of preclinical and clinical studies. Phytother. Res., 2020, 34(5), 1008-1026.
[http://dx.doi.org/10.1002/ptr.6585] [PMID: 31908085]
[3]
Ma, B.L.; Ma, Y.M. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab. Rev., 2016, 48(1), 1-26.
[http://dx.doi.org/10.3109/03602532.2015.1124888] [PMID: 26915920]
[4]
Huang, C.C.; Lo, C.P.; Chiu, C.Y.; Shyur, L.F. Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br. J. Pharmacol., 2010, 159(4), 856-871.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00581.x] [PMID: 20105176]
[5]
Zhong, W.; Sun, B.; Gao, W.; Qin, Y.; Zhang, H.; Huai, L.; Tang, Y.; Liang, Y.; He, L.; Zhang, X.; Tao, H.; Chen, S.; Yang, W.; Yang, L.; Liu, Y.; Liu, H.; Zhou, H.; Sun, T.; Yang, C. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine, 2018, 37, 246-258.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.041] [PMID: 30361065]
[6]
Zhong, Y.; Lee, K.; Deng, Y.; Ma, Y.; Chen, Y.; Li, X.; Wei, C.; Yang, S.; Wang, T.; Wong, N.J.; Muwonge, A.N.; Azeloglu, E.U.; Zhang, W.; Das, B.; He, J.C.; Liu, R. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat. Commun., 2019, 10(1), 4523-4523.
[http://dx.doi.org/10.1038/s41467-019-12433-w] [PMID: 31586053]
[7]
Moore, L.B.; Goodwin, B.; Jones, S.A.; Wisely, G.B.; Serabjit-Singh, C.J.; Willson, T.M.; Collins, J.L.; Kliewer, S.A.St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci., 2000, 97(13), 7500-7502.
[http://dx.doi.org/10.1073/pnas.130155097] [PMID: 10852961]
[8]
Chan, E.; Tan, M.; Xin, J.; Sudarsanam, S.; Johnson, D.E. Interactions between traditional Chinese medicines and Western therapeutics. Curr. Opin. Drug Discov. Devel., 2010, 13(1), 50-65.
[PMID: 20047146]
[9]
Wu, X.; Ma, J.; Ye, Y.; Lin, G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb-drug interactions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1026, 236-253.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.024] [PMID: 26675080]
[10]
Parvez, M.K.; Rishi, V. Herb-drug interactions and hepatotoxicity. Curr. Drug Metab., 2019, 20(4), 275-282.
[http://dx.doi.org/10.2174/1389200220666190325141422] [PMID: 30914020]
[11]
Wang, X. Potential herb-drug interaction in the prevention of cardiovascular diseases during integrated traditional and western medicine treatment. Chin. J. Integr. Med., 2015, 21(1), 3-9.
[http://dx.doi.org/10.1007/s11655-014-1892-5] [PMID: 25533650]
[12]
Meng, Q.; Liu, K. Pharmacokinetic interactions between herbal medicines and prescribed drugs: focus on drug metabolic enzymes and transporters. Curr. Drug Metab., 2015, 15(8), 791-807.
[http://dx.doi.org/10.2174/1389200216666150223152348] [PMID: 25705905]
[13]
Choi, Y.H.; Chin, Y.W. Multifaceted factors causing conflicting outcomes in herb-drug interactions. Pharmaceutics, 2020, 13(1), 43.
[http://dx.doi.org/10.3390/pharmaceutics13010043] [PMID: 33396770]
[14]
Feltrin, C.; Oliveira Simões, C.M. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem. Biol. Interact., 2019, 314, 108825.
[http://dx.doi.org/10.1016/j.cbi.2019.108825] [PMID: 31553897]
[15]
Choi, Y.H. Interpretation of drug interaction using systemic and local tissue exposure changes. Pharmaceutics, 2020, 12(5), 417.
[http://dx.doi.org/10.3390/pharmaceutics12050417] [PMID: 32370191]
[16]
Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic interactions between herbal medicines and drugs: Their mechanisms and clinical relevance. Life, 2020, 10(7), 106.
[http://dx.doi.org/10.3390/life10070106] [PMID: 32635538]
[17]
Sharma, A.K.; Kapoor, V.K.; Kaur, G. Herb-drug interactions: A mechanistic approach. Drug Chem. Toxicol., 2022, 45(2), 594-603.
[http://dx.doi.org/10.1080/01480545.2020.1738454] [PMID: 32160796]
[18]
Suroowan, S.; Mahomoodally, M.F. Herbal medicine of the 21st century: A focus on the chemistry, pharma-cokinetics and toxicity of five widely advocated phytotherapies. Curr. Top. Med. Chem., 2019, 19(29), 2718-2738.
[http://dx.doi.org/10.2174/1568026619666191112121330] [PMID: 31721714]
[19]
Zha, W. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases. Yao Wu Shi Pin Fen Xi, 2018, 26(2S), S32-S44.
[PMID: 29703385]
[20]
Oga, E.F.; Sekine, S.; Shitara, Y.; Horie, T. Pharmacokinetic herb-drug interactions: Insight into mechanisms and consequences. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(2), 93-108.
[http://dx.doi.org/10.1007/s13318-015-0296-z] [PMID: 26311243]
[21]
Liu, C.X.; Yi, X.L.; Si, D.Y.; Xiao, X.F.; He, X.; Li, Y.Z. Herb-drug interactions involving drug metabolizing enzymes and transporters. Curr. Drug Metab., 2011, 12(9), 835-849.
[http://dx.doi.org/10.2174/138920011797470083] [PMID: 21619518]
[22]
Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; Yu, A.M.; Zuo, Z.; Bi, H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2019, 9(6), 1113-1144.
[http://dx.doi.org/10.1016/j.apsb.2019.10.001] [PMID: 31867160]
[23]
Hong, X.; Zheng, Y.; Qin, Z.; Wu, B.; Dai, Y.; Gao, H.; Yao, Z.; Gonzalez, F.; Yao, X. In vitro glucuronidation of wushanicaritin by liver microsomes, intestine microsomes and expressed human udp-glucuronosyltransferase enzymes. Int. J. Mol. Sci., 2017, 18(9), 1983.
[http://dx.doi.org/10.3390/ijms18091983] [PMID: 28925930]
[24]
Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug metabolism in the liver. Clin. Liver Dis., 2017, 21(1), 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[25]
Xu, C.; Li, C.Y.T.; Kong, A.N.T. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res., 2005, 28(3), 249-268.
[http://dx.doi.org/10.1007/BF02977789] [PMID: 15832810]
[26]
Kim, H.G.; Lee, H.S.; Jeon, J.S.; Choi, Y.J.; Choi, Y.J.; Yoo, S.Y.; Kim, E.; Lee, K.; Park, I.; Na, M.; Park, H.J.; Cho, S.W.; Kim, J.H.; Lee, J.Y.; Kim, S.K. Quasi-irreversible inhibition of cyp2d6 by berberine. Pharmaceutics, 2020, 12(10), 916.
[http://dx.doi.org/10.3390/pharmaceutics12100916] [PMID: 32987920]
[27]
Kumar, S.; Bouic, P.J.; Rosenkranz, B. In vitro assessment of the interaction potential of Ocimum basilicum (l.) extracts on cyp2b6, 3a4, and rifampicin metabolism. Front. Pharmacol., 2020, 11, 517-517.
[http://dx.doi.org/10.3389/fphar.2020.00517] [PMID: 32425779]
[28]
Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol., 2008, 21(1), 70-83.
[http://dx.doi.org/10.1021/tx700079z] [PMID: 18052394]
[29]
Nelson, D.R. Cytochrome P450 nomenclature, 2004. Methods Mol. Biol., 2006, 320, 1-10.
[PMID: 16719369]
[30]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[31]
Garfinkel, D. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys., 1958, 77(2), 493-509.
[http://dx.doi.org/10.1016/0003-9861(58)90095-X] [PMID: 13584011]
[32]
Klingenberg, M. Pigments of rat liver microsomes. Arch. Biochem. Biophys., 1958, 75(2), 376-386.
[http://dx.doi.org/10.1016/0003-9861(58)90436-3] [PMID: 13534720]
[33]
Omura, T.; Sato, R. A new cytochrome in liver microsomes. J. Biol. Chem., 1962, 237(4), PC1375-PC1376.
[http://dx.doi.org/10.1016/S0021-9258(18)60338-2] [PMID: 14482007]
[34]
Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol., 2003, 43(1), 149-173.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140251] [PMID: 12171978]
[35]
Du, L.; Neis, M.M.; Ladd, P.A.; Lanza, D.L.; Yost, G.S.; Keeney, D.S. Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells. Toxicol. Appl. Pharmacol., 2006, 213(2), 135-144.
[http://dx.doi.org/10.1016/j.taap.2005.10.003] [PMID: 16307767]
[36]
Bièche, I.; Narjoz, C.; Asselah, T.; Vacher, S.; Marcellin, P.; Lidereau, R.; Beaune, P.; de Waziers, I. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics, 2007, 17(9), 731-742.
[http://dx.doi.org/10.1097/FPC.0b013e32810f2e58] [PMID: 17700362]
[37]
Dutheil, F.; Beaune, P.; Loriot, M.A. Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie, 2008, 90(3), 426-436.
[http://dx.doi.org/10.1016/j.biochi.2007.10.007] [PMID: 17997991]
[38]
Chaudhary, K.R.; Batchu, S.N.; Seubert, J.M. Cytochrome P450 enzymes and the heart. IUBMB Life, 2009, 61(10), 954-960.
[http://dx.doi.org/10.1002/iub.241] [PMID: 19787709]
[39]
Orellana, M.; Guajardo, V. [Cytochrome P450 activity and its alteration in different diseases]. Rev. Med. Chil., 2004, 132(1), 85-94.
[PMID: 15379059]
[40]
Spiecker, M.; Darius, H.; Hankeln, T.; Soufi, M.; Sattler, A.M.; Schaefer, J.R.; Node, K.; Börgel, J.; Mügge, A.; Lindpaintner, K.; Huesing, A.; Maisch, B.; Zeldin, D.C.; Liao, J.K. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation, 2004, 110(15), 2132-2136.
[http://dx.doi.org/10.1161/01.CIR.0000143832.91812.60] [PMID: 15466638]
[41]
Hoffmann, M.M.; Bugert, P.; Seelhorst, U.; Wellnitz, B.; Winkelmann, B.R.; Boehm, B.O.; März, W. The -50G>T polymorphism in the promoter of the CYP2J2 gene in coronary heart disease: The ludwigshafen risk and cardiovascular health study. Clin. Chem., 2007, 53(3), 539-540.
[http://dx.doi.org/10.1373/clinchem.2006.084756] [PMID: 17327508]
[42]
DeLozier, T.C.; Kissling, G.E.; Coulter, S.J.; Dai, D.; Foley, J.F.; Bradbury, J.A.; Murphy, E.; Steenbergen, C.; Zeldin, D.C.; Goldstein, J.A. Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos., 2007, 35(4), 682-688.
[http://dx.doi.org/10.1124/dmd.106.012823] [PMID: 17220242]
[43]
Ono, S.; Hatanaka, T.; Hotta, H.; Satoh, T.; Gonzalez, F.J.; Tsutsui, M. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica, 1996, 26(7), 681-693.
[http://dx.doi.org/10.3109/00498259609046742] [PMID: 8819299]
[44]
Wang, J.F.; Chou, K.C. Molecular modeling of cytochrome P450 and drug metabolism. Curr. Drug Metab., 2010, 11(4), 342-346.
[http://dx.doi.org/10.2174/138920010791514180] [PMID: 20446905]
[45]
Li, Y.; Lu, Y.Y.; Meng, Y.Q.; Du, Z.Y.; Gao, P.; Zhao, M.B.; Jiang, Y.; Tu, P.F.; Guo, X.Y. Evaluation of the effects of notoginseng total saponins (NS), safflower total flavonoids (SF), and the combination of NS and SF (CNS) on the activities of cytochrome P450 enzymes using a cocktail method in rats. Biomed. Chromatogr., 2021, 35(10), e5171.
[http://dx.doi.org/10.1002/bmc.5171] [PMID: 34010455]
[46]
Ramanathan, M.R.; Penzak, S.R. Pharmacokinetic drug interactions with panax ginseng. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 545-557.
[http://dx.doi.org/10.1007/s13318-016-0387-5] [PMID: 27864798]
[47]
Taki, Y.; Yokotani, K.; Yamada, S.; Shinozuka, K.; Kubota, Y.; Watanabe, Y.; Umegaki, K. Ginkgo biloba extract attenuates warfarin-mediated anticoagulation through induction of hepatic cytochrome P450 enzymes by bilobalide in mice. Phytomedicine, 2012, 19(2), 177-182.
[http://dx.doi.org/10.1016/j.phymed.2011.06.020] [PMID: 21802929]
[48]
Wang, B.; Yang, S.; Hu, J.; Li, Y. Multifaceted interaction of the traditional chinese medicinal herb Schisandra chinensis with cytochrome p450-mediated drug metabolism in rats. J. Ethnopharmacol., 2014, 155(3), 1473-1482.
[http://dx.doi.org/10.1016/j.jep.2014.07.026] [PMID: 25091466]
[49]
Fasinu, P.S.; Bouic, P.J.; Rosenkranz, B. An overview of the evidence and mechanisms of herb-drug interactions. Front. Pharmacol., 2012, 3, 69.
[http://dx.doi.org/10.3389/fphar.2012.00069] [PMID: 22557968]
[50]
Wang, Z.; Wang, X.; Wang, Z.; Lv, X.; Yin, H.; Li, W.; Li, W.; Jiang, L.; Liu, Y. Potential herb-drug interaction risk of thymoquinone and phenytoin. Chem. Biol. Interact., 2022, 353, 109801.
[http://dx.doi.org/10.1016/j.cbi.2022.109801] [PMID: 34998822]
[51]
Yu, C.; Shi, Z.; Jiang, J.; Zhao, D.; Xie, B.; Li, Y. Effects of astragaloside iv on the pharmacokinetics of metoprolol in rats and its mechanism. Curr. Drug Metab., 2022, 23(2), 131-136.
[http://dx.doi.org/10.2174/1389200223666220128143133] [PMID: 35088663]
[52]
Pao, L.H.; Hu, O.Y.P.; Fan, H.Y.; Lin, C.C.; Liu, L.C.; Huang, P.W. Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo. Am. J. Chin. Med., 2012, 40(1), 57-73.
[http://dx.doi.org/10.1142/S0192415X1250005X] [PMID: 22298448]
[53]
Rastogi, H.; Jana, S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities. Phytother. Res., 2014, 28(12), 1873-1878.
[http://dx.doi.org/10.1002/ptr.5220] [PMID: 25196644]
[54]
Zhang, N.; Liu, J.; Chen, Z.; Dou, W. In vitro inhibitory effects of kaempferitrin on human liver cytochrome P450 enzymes. Pharm. Biol., 2019, 57(1), 571-576.
[http://dx.doi.org/10.1080/13880209.2019.1656257] [PMID: 31456483]
[55]
Gong, E.; Chea, S.; Balupuri, A.; Kang, N.; Chin, Y.W.; Choi, Y. Enzyme kinetics and molecular docking studies on cytochrome 2b6, 2c19, 2e1, and 3a4 activities by sauchinone. Molecules, 2018, 23(3), 555.
[http://dx.doi.org/10.3390/molecules23030555] [PMID: 29498658]
[56]
Zhou, Y.; Tu, Y.; Zhou, Q.; Hua, A.; Geng, P.; Chen, F.; Han, A.; Liu, J.; Dai, D.; Wang, S.; Wang, J.; Wen, C. Evaluation of acacetin inhibition potential against cytochrome P450 in vitro and in vivo. Chem. Biol. Interact., 2020, 329, 109147.
[http://dx.doi.org/10.1016/j.cbi.2020.109147] [PMID: 32738202]
[57]
Soleymani, S.; Bahramsoltani, R.; Rahimi, R.; Abdollahi, M. Clinical risks of St John’s Wort (Hypericum perforatum) co-administration. Expert Opin. Drug Metab. Toxicol., 2017, 13(10), 1047-1062.
[http://dx.doi.org/10.1080/17425255.2017.1378342] [PMID: 28885074]
[58]
Manikandan, P.; Nagini, S. Cytochrome p450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[PMID: 28124606]
[59]
Saxena, A.; Tripathi, K.P.; Roy, S.; Khan, F.; Sharma, A. Pharmacovigilance: Effects of herbal components on human drugs interactions involving cytochrome P450. Bioinformation, 2008, 3(5), 198-204.
[http://dx.doi.org/10.6026/97320630003198] [PMID: 19255634]
[60]
Wang, Y.M.; Lin, W.; Chai, S.C.; Wu, J.; Ong, S.S.; Schuetz, E.G.; Chen, T. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol. Appl. Pharmacol., 2013, 272(1), 96-107.
[http://dx.doi.org/10.1016/j.taap.2013.05.014] [PMID: 23707768]
[61]
Chen, X.W.; Serag, E.S.; Sneed, K.B.; Liang, J.; Chew, H.; Pan, S.Y.; Zhou, S.F. Clinical herbal interactions with conventional drugs: From molecules to maladies. Curr. Med. Chem., 2011, 18(31), 4836-4850.
[http://dx.doi.org/10.2174/092986711797535317] [PMID: 21919844]
[62]
Hafner-Blumenstiel, V. Herbal drug-drug interaction and adverse drug reactions. Ther. Umsch., 2011, 68(1), 54-57.
[http://dx.doi.org/10.1024/0040-5930/a000120] [PMID: 21184395]
[63]
Peters, F.T.; Bureik, M.; Maurer, H.H. Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis, 2009, 1(4), 821-830.
[http://dx.doi.org/10.4155/bio.09.53] [PMID: 21083140]
[64]
Li, L.; Hu, H.; Xu, S.; Zhou, Q.; Zeng, S. Roles of UDP-glucuronosyltransferases in phytochemical metabolism of herbal medicines and the associated herb-drug interactions. Curr. Drug Metab., 2012, 13(5), 615-623.
[http://dx.doi.org/10.2174/1389200211209050615] [PMID: 22475332]
[65]
Mano, E.C.C.; Scott, A.L.; Honorio, K.M. Udp-glucuronosyl-transferases: Structure, function and drug design studies. Curr. Med. Chem., 2018, 25(27), 3247-3255.
[http://dx.doi.org/10.2174/0929867325666180226111311] [PMID: 29484974]
[66]
Liu, D.; Zhang, L.; Duan, L.; Wu, J.; Hu, M.; Liu, Z.; Wang, C. Potential of herb-drug / herb interactions between substrates and inhibitors of UGTs derived from herbal medicines. Pharmacol. Res., 2019, 150, 104510.
[http://dx.doi.org/10.1016/j.phrs.2019.104510] [PMID: 31678209]
[67]
Kuang, Y.; Chai, Y.; Xu, L.; Wang, Z.; Liang, L.; Qiao, X.; Ye, M. Glabrone as a specific UGT1A9 probe substrate and its application in discovering the inhibitor glycycoumarin. Eur. J. Pharm. Sci., 2021, 161, 105786.
[http://dx.doi.org/10.1016/j.ejps.2021.105786] [PMID: 33684484]
[68]
Chang, C.F.; Chang, Y.C.; Lin, J.T.; Yu, C.W.; Kao, Y.T. Evaluation of inhibitors of intestinal UDP-glucuronosyltransferases 1A8 and 1A10 using raloxifene as a substrate in Caco-2 cells: Studies with four flavonoids of Scutellaria baicalensis. Toxicol.in vitro, 2021, 72, 105087.
[http://dx.doi.org/10.1016/j.tiv.2021.105087] [PMID: 33440186]
[69]
You, B.; Gong, E.; Choi, Y. Inhibitory effect of sauchinone on udp-glucuronosyltransferase (UGT) 2b7 activity. Molecules, 2018, 23(2), 366.
[http://dx.doi.org/10.3390/molecules23020366] [PMID: 29425147]
[70]
Shan, L.; Zhang, G.; Guo, Z.; Shi, X. In vitro investigation of permeability and metabolism of licoricidin. Life Sci., 2019, 234, 116770.
[http://dx.doi.org/10.1016/j.lfs.2019.116770] [PMID: 31421085]
[71]
Lv, X.; Zhang, J.B.; Wang, X.X.; Hu, W.Z.; Shi, Y.S.; Liu, S.W.; Hao, D.C.; Zhang, W.D.; Ge, G.B.; Hou, J.; Yang, L. Amentoflavone is a potent broad-spectrum inhibitor of human UDP-glucuronosyltransferases. Chem. Biol. Interact., 2018, 284, 48-55.
[http://dx.doi.org/10.1016/j.cbi.2018.02.009] [PMID: 29470958]
[72]
Abdullah, N.; Ismail, S. Inhibition of ugt2b7 enzyme activity in human and rat liver microsomes by herbal constituents. Molecules, 2018, 23(10), 2696.
[http://dx.doi.org/10.3390/molecules23102696] [PMID: 30347696]
[73]
Singh, A.; Zhao, K. Herb-drug interactions of commonly used Chinese medicinal herbs. Int. Rev. Neurobiol., 2017, 135, 197-232.
[http://dx.doi.org/10.1016/bs.irn.2017.02.010] [PMID: 28807159]
[74]
Chapman, E.; Best, M.D.; Hanson, S.R.; Wong, C.H. Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed., 2004, 43(27), 3526-3548.
[http://dx.doi.org/10.1002/anie.200300631] [PMID: 15293241]
[75]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[76]
Azizi, J.; Ismail, S.; Mordi, M.N.; Ramanathan, S.; Said, M.I.M.; Mansor, S.M. In vitro and in vivo effects of three different Mitragyna speciosa korth leaf extracts on phase II drug metabolizing enzymes--glutathione transferases (GSTs). Molecules, 2010, 15(1), 432-441.
[http://dx.doi.org/10.3390/molecules15010432] [PMID: 20110902]
[77]
Elbarbry, F.; Ung, A.; Rao, D.; Abdelkawy, K. Effect of dietary doses of quercetin on hepatic drug metabolizing enzymes in spontaneously hypertensive rats. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(6), 761-770.
[http://dx.doi.org/10.1007/s13318-019-00560-0] [PMID: 31065969]
[78]
Singh, A.; Zhao, K. Herb-drug interactions of commonly used chinese medicinal herbs. In: Int Rev Neurobiol; Zeng, B.Y.; Zhao, K., Eds.; Academic Press, 2017; 135, pp. 197-232.
[79]
Liang, Y.; Li, S.; Chen, L. The physiological role of drug transporters. Protein Cell, 2015, 6(5), 334-350.
[http://dx.doi.org/10.1007/s13238-015-0148-2] [PMID: 25797421]
[80]
Li, X.; Hu, J.; Wang, B.; Sheng, L.; Liu, Z.; Yang, S.; Li, Y. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: Herb-drug interactions mediated via P-gp. Toxicol. Appl. Pharmacol., 2014, 275(2), 163-175.
[http://dx.doi.org/10.1016/j.taap.2013.12.015] [PMID: 24380838]
[81]
Thomas, C.; Tampe, R. Structural and mechanistic principles of abc transporters. In: Annual review of biochemistry; Kornberg, R.D., Ed.; , 2020; 89, pp. 605-636.
[http://dx.doi.org/10.1146/annurev-biochem-011520-105201]
[82]
Zhou, S.; Lim, L.Y.; Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev., 2004, 36(1), 57-104.
[http://dx.doi.org/10.1081/DMR-120028427] [PMID: 15072439]
[83]
Cho, H.J.; Yoon, I.S. Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/736431] [PMID: 25632290]
[84]
Choudhuri, S.; Klaassen, C.D. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol., 2006, 25(4), 231-259.
[http://dx.doi.org/10.1080/10915810600746023] [PMID: 16815813]
[85]
Sharom, F.J. The P-glycoprotein multidrug transporter. Essays Biochem., 2011, 50(1), 161-178.
[http://dx.doi.org/10.1042/bse0500161] [PMID: 21967057]
[86]
Zhou, S.F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38(7-8), 802-832.
[http://dx.doi.org/10.1080/00498250701867889] [PMID: 18668431]
[87]
Hennessy, M.; Spiers, J.P. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol. Res., 2007, 55(1), 1-15.
[http://dx.doi.org/10.1016/j.phrs.2006.10.007] [PMID: 17095241]
[88]
Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther., 2015, 149, 1-123.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[89]
Liu, Y.; Zhang, L.; Wei, S.; Cai, J.; Zang, Z.; Wang, M.; Su, D.; Gerk, P.M. Pulchinenosides from Pulsatilla chinensis increase p-glycoprotein activity and induce p-glycoprotein expression. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/4861719] [PMID: 32148543]
[90]
Dunkoksung, W.; Vardhanabhuti, N.; Jianmongkol, S. Potential P-glycoprotein-mediated herb-drug interaction of phyllanthin at the intesti-nal absorptive barrier. J. Pharm. Pharmacol., 2019, 71(2), 213-219.
[http://dx.doi.org/10.1111/jphp.13019] [PMID: 30251430]
[91]
Yu, C.P.; Huang, C.Y.; Lin, S.P.; Hou, Y.C. Activation of P-glycoprotein and CYP 3A by Coptidis rhizoma in vivo: Using cyclosporine as a probe substrate in rats. Yao Wu Shi Pin Fen Xi, 2018, 26(2S), S125-S132.
[PMID: 29703381]
[92]
Bolla, L.; Srivastava, P.; Ravichandiran, V.; Nanjappan, S.K. Cytochrome p450 and p-gp mediated herb-drug interactions and molecular docking studies of garcinol. Membranes, 2021, 11(12), 992.
[http://dx.doi.org/10.3390/membranes11120992] [PMID: 34940493]
[93]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[94]
Kong, L.L. zhuang, X.M.; Yang, H.Y.; Yuan, M.; Xu, L.; Li, H. Inhibition of p-glycoprotein gene expression and function enhances trip-tolide-induced hepatotoxicity in mice. Sci. Rep., 2015, 5(1), 11747.
[http://dx.doi.org/10.1038/srep11747] [PMID: 26134275]
[95]
Lee, J.H.; Shin, Y.J.; Kim, H.J.; Oh, J.H.; Jang, Y.P.; Lee, Y.J. Danshen extract does not alter pharmacokinetics of docetaxel and clopidogrel, reflecting its negligible potential in P-glycoprotein- and cytochrome P4503A-mediated herb-drug interactions. Int. J. Pharm., 2011, 410(1-2), 68-74.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.031] [PMID: 21421030]
[96]
Sun, S.; Wang, R.; Fan, J.; Zhang, G.; Zhang, H. Effects of Danshen tablets on pharmacokinetics of atorvastatin calcium in rats and its potential mechanism. Pharm. Biol., 2018, 56(1), 104-108.
[http://dx.doi.org/10.1080/13880209.2018.1424209] [PMID: 29322864]
[97]
Chen, J.; Li, G.J.; Liu, Q. Glycyrrhizin affects the pharmacokinetics of omeprazole in rats through inducing the activity of cyp3a4, cyp2c19, and p-gp. Lat. Am. J. Pharm., 2018, 37(11), 2177-2184.
[98]
Yan, G.; Zhang, H.; Wang, W.; Li, Y.; Mao, C.; Fang, M.; Yi, X.; Zhang, J. Investigation of the influence of glycyrrhizin on the pharmacokinetics of celastrol in rats using LC-MS and its potential mechanism. Xenobiotica, 2017, 47(7), 607-613.
[http://dx.doi.org/10.1080/00498254.2016.1211773] [PMID: 27919190]
[99]
Liu, W.; Liu, G.; Liu, J. Effects of astragaloside IV on the pharmacokinetics of omeprazole in rats. Pharm. Biol., 2019, 57(1), 449-452.
[http://dx.doi.org/10.1080/13880209.2019.1636828] [PMID: 31290355]
[100]
Li, Y.; Huang, L.; Sun, J.; Wei, X.; Wen, J.; Zhong, G.; Huang, M.; Bi, H. Mulberroside A suppresses PXR-mediated transactivation and gene expression of P-gp in LS174T cells. J. Biochem. Mol. Toxicol., 2017, 31(5), e21884.
[http://dx.doi.org/10.1002/jbt.21884] [PMID: 27918128]
[101]
Yu, C.P.; Lin, H.J.; Lin, S.P.; Shia, C.S.; Chang, P.H.; Hou, Y.C.; Hsieh, Y.W. Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A. Xenobiotica, 2016, 46(8), 677-682.
[http://dx.doi.org/10.3109/00498254.2015.1117159] [PMID: 26634287]
[102]
Cole, S.P.C. Targeting multidrug resistance protein 1 (MRP1, ABCC1): Past, present, and future. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 95-117.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135959] [PMID: 24050699]
[103]
Dogra, A.; Gour, A.; Bhatt, S.; Sharma, P.; Sharma, A.; Kotwal, P.; Wazir, P.; Mishra, P.; Singh, G.; Nandi, U. Effect of rutin on pharmaco-kinetic modulation of diclofenac in rats. Xenobiotica, 2020, 50(11), 1332-1340.
[http://dx.doi.org/10.1080/00498254.2020.1773008] [PMID: 32432967]
[104]
Kim, J.K.; Choi, M.S.; Kim, J.Y.; Yu, J.S.; Seo, J.I.; Yoo, H.H.; Kim, D.H. Ginkgo biloba leaf extract suppresses intestinal human breast cancer resistance protein expression in mice: Correlation with gut microbiota. Biomed. Pharmacother., 2021, 140, 111712.
[http://dx.doi.org/10.1016/j.biopha.2021.111712] [PMID: 34010745]
[105]
Lou, Y.; Guo, Z.; Zhu, Y.; Zhang, G.; Wang, Y.; Qi, X.; Lu, L.; Liu, Z.; Wu, J. Astragali radix and its main bioactive compounds activate the Nrf2-mediated signaling pathway to induce P-glycoprotein and breast cancer resistance protein. J. Ethnopharmacol., 2019, 228, 82-91.
[http://dx.doi.org/10.1016/j.jep.2018.09.026] [PMID: 30243825]
[106]
Wu, J.; Zhu, Y.; Guo, Z.; Lou, Y.; He, S.; Guan, Y.; Zhu, L.; Liu, Z.; Lu, L.; Liu, L. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. Phytomedicine, 2018, 44, 87-97.
[http://dx.doi.org/10.1016/j.phymed.2017.12.007] [PMID: 29277460]
[107]
Lee, S.; Kwon, M.; Choi, M.K.; Song, I.S. Effects of red ginseng extract on the pharmacokinetics and elimination of methotrexate viamrp2 regulation. Molecules, 2018, 23(11), 2948.
[http://dx.doi.org/10.3390/molecules23112948] [PMID: 30424502]
[108]
Lin, L.; Yee, S.W.; Kim, R.B.; Giacomini, K.M. SLC transporters as therapeutic targets: Emerging opportunities. Nat. Rev. Drug Discov., 2015, 14(8), 543-560.
[http://dx.doi.org/10.1038/nrd4626] [PMID: 26111766]
[109]
Turkanovic, J.; Ward, M.B.; Gerber, J.P.; Milne, R.W. Effect of garlic, gingko, and st. John’s wort extracts on the pharmacokinetics of fexofenadine: A mechanistic study. Drug Metab. Dispos., 2017, 45(5), 569-575.
[http://dx.doi.org/10.1124/dmd.116.073528] [PMID: 28188296]
[110]
Wen, J.H.; Xiong, Y.Q. The effect of herbal medicine danshensu and ursolic acid on pharmacokinetics of rosuvastatin in rats. Eur. J. Drug Metab. Pharmacokinet., 2011, 36(4), 205-211.
[http://dx.doi.org/10.1007/s13318-011-0048-7] [PMID: 21717139]
[111]
Wu, T.; Li, H.; Chen, J.; Cao, Y.; Fu, W.; Zhou, P.; Pang, J. Apigenin, a novel candidate involving herb-drug interaction (HDI), interacts with organic anion transporter 1 (OAT1). Pharmacol. Rep., 2017, 69(6), 1254-1262.
[http://dx.doi.org/10.1016/j.pharep.2017.06.012] [PMID: 29128807]
[112]
Wu, G.; Dong, Z.; Dong, J.; Wei, L.; Shi, R.; Kang, S.; Zhang, D. Effects of mongolian medicine Terminalia chebula Retz. on 6 CYP450 enzymes in rats. Int. J. Clin. Exp. Pathol., 2020, 13(12), 3128-3138.
[PMID: 33425113]
[113]
Liu, L.; Cao, X.; Li, T.; Li, X. Effects of catalpol on the activity of human liver cytochrome P450 enzymes. Xenobiotica, 2019, 49(11), 1289-1295.
[http://dx.doi.org/10.1080/00498254.2018.1558309] [PMID: 30557096]
[114]
Qin, X.L.; Bi, H.C.; Wang, X.D.; Li, J.L.; Wang, Y.; Xue, X.P.; Chen, X.; Wang, C.X.; Xu, L.J.; Wang, Y.T.; Huang, M. Mechanistic understanding of the different effects of Wuzhi Tablet (Schisandra sphenanthera extract) on the absorption and first-pass intestinal and hepatic metabolism of Tacrolimus (FK506). Int. J. Pharm., 2010, 389(1-2), 114-121.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.025] [PMID: 20097278]
[115]
Liang, Y.; Zhou, Y.; Zhang, J.; Liu, Y.; Guan, T.; Wang, Y.; Xing, L.; Rao, T.; Zhou, L.; Hao, K.; Xie, L.; Wang, G. In vitro to in vivo evidence of the inhibitor characteristics of Schisandra lignans toward P-glycoprotein. Phytomedicine, 2013, 20(11), 1030-1038.
[http://dx.doi.org/10.1016/j.phymed.2013.04.005] [PMID: 23731657]
[116]
Revol, B.; Gautier-Veyret, E.; Arrivé, C.; Fouilhé Sam-Laï, N.; McLeer-Florin, A.; Pluchart, H.; Pinsolle, J.; Toffart, A.C. Pharmacokinetic herb‐drug interaction between ginger and crizotinib. Br. J. Clin. Pharmacol., 2020, 86(9), 1892-1893.
[http://dx.doi.org/10.1111/bcp.13862] [PMID: 30701569]
[117]
Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab. Pharmacokinet., 2012, 27(2), 242-247.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-105] [PMID: 22123127]
[118]
Kim, I.S.; Kim, S.Y.; Yoo, H.H. Effects of an aqueous-ethanolic extract of ginger on cytochrome P450 enzyme-mediated drug metabolism. Pharmazie, 2012, 67(12), 1007-1009.
[PMID: 23346764]
[119]
Li, M.; Chen, P.; Yue, Q.; Li, J.; Chu, R.; Zhang, W.; Wang, H. Pungent ginger components modulates human cytochrome P450 enzymes in vitro. Acta Pharmacol. Sin., 2013, 34(9), 1237-1242.
[http://dx.doi.org/10.1038/aps.2013.49] [PMID: 23770984]
[120]
Nayeri, A.; Wu, S.; Adams, E.; Tanner, C.; Meshman, J.; Saini, I.; Reid, W. Acute calcineurin inhibitor nephrotoxicity secondary to tur-meric intake: A case report. Transplant. Proc., 2017, 49(1), 198-200.
[http://dx.doi.org/10.1016/j.transproceed.2016.11.029] [PMID: 28104136]
[121]
Thikekar, A.K.; Thomas, A.B.; Chitlange, S.S. HERB‐DRUG interactions in diabetes mellitus: A review based on pre‐clinical and clinical data. Phytother. Res., 2021, 35(9), 4763-4781.
[http://dx.doi.org/10.1002/ptr.7108] [PMID: 33908677]
[122]
Shamsi, S.; Tran, H.; Tan, R.S.J.; Tan, Z.J.; Lim, L.Y. Curcumin, piperine, and capsaicin: A comparative study of spice-mediated inhibition of human cytochrome p450 isozyme activities. Drug Metab. Dispos., 2017, 45(1), 49-55.
[http://dx.doi.org/10.1124/dmd.116.073213] [PMID: 27821437]
[123]
Yan, Y.D.; Marasini, N.; Choi, Y.K.; Kim, J.O.; Woo, J.S.; Yong, C.S.; Choi, H.G. Effect of dose and dosage interval on the oral bioavailability of docetaxel in combination with a curcumin self-emulsifying drug delivery system (SEDDS). Eur. J. Drug Metab. Pharmacokinet., 2012, 37(3), 217-224.
[http://dx.doi.org/10.1007/s13318-011-0078-1] [PMID: 22201019]
[124]
Liu, A.C.; Zhao, L.X.; Xing, J.; Liu, T.; Du, F.Y.; Lou, H.X. Pre-treatment with curcumin enhances plasma concentrations of losartan and its metabolite EXP3174 in rats. Biol. Pharm. Bull., 2012, 35(2), 145-150.
[http://dx.doi.org/10.1248/bpb.35.145] [PMID: 22293343]
[125]
Zhou, X.; Zhang, F.; Chen, C.; Guo, Z.; Liu, J.; Yu, J.; Xu, Y.; Zhong, D.; Jiang, H. Impact of curcumin on the pharmacokinetics of rosuvastatin in rats and dogs based on the conjugated metabolites. Xenobiotica, 2017, 47(3), 267-275.
[http://dx.doi.org/10.1080/00498254.2016.1183060] [PMID: 27174018]
[126]
Ma, S.; Dai, G.; Bi, X.; Gong, M.; Miao, C.; Chen, H.; Gao, L.; Zhao, W.; Liu, T.; Zhang, N. The herb-drug interaction of clopidogrel and xuesaitong dispersible tablet by modulation of the pharmacodynamics and liver carboxylesterase 1a metabolism. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/5651989] [PMID: 30498515]
[127]
Song, M.; Hwang, J.Y.; Lee, M.Y.; Jee, J.G.; Lee, Y.M.; Bae, J.S.; Kim, J.A.; Lee, S.H.; Lee, S. In vitro inhibitory effect of piperlonguminine isolated from Piper longum on human cytochrome P450 1A2. Arch. Pharm. Res., 2014, 37(8), 1063-1068.
[http://dx.doi.org/10.1007/s12272-013-0281-5] [PMID: 24194261]
[128]
Li, C.; Wang, Q.; Ren, T.; Zhang, Y.; Lam, C.W.K.; Chow, M.S.S.; Zuo, Z. Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats. J. Pharm. Biomed. Anal., 2016, 128, 286-293.
[http://dx.doi.org/10.1016/j.jpba.2016.05.041] [PMID: 27288758]
[129]
Makhov, P.; Golovine, K.; Canter, D.; Kutikov, A.; Simhan, J.; Corlew, M.M.; Uzzo, R.G.; Kolenko, V.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy viainhibition of CYP3A4 activity. Prostate, 2012, 72(6), 661-667.
[http://dx.doi.org/10.1002/pros.21469] [PMID: 21796656]
[130]
Basu, S.; Jana, S.; Patel, V.B.; Patel, H. Effects of piperine, cinnamic acid and gallic acid on rosuvastatin pharmacokinetics in rats. Phytother. Res., 2013, 27(10), 1548-1556.
[PMID: 23208983]
[131]
Qiang, F.; Kang, K.W.; Han, H.K. Repeated dosing of piperine induced gene expression of P-glycoprotein via stimulated pregnane-X-receptor activity and altered pharmacokinetics of diltiazem in rats. Biopharm. Drug Dispos., 2012, 33(8), 446-454.
[http://dx.doi.org/10.1002/bdd.1811] [PMID: 22927137]
[132]
Alhumayyd, M.S.; Bukhari, I.A.; Almotrefi, A.A. Effect of piperine, a major component of black pepper, on the pharmacokinetics of domperidone in rats. J. Physiol. Pharmacol., 2014, 65(6), 785-789.
[PMID: 25554982]
[133]
Zhang, F.; Huang, J.; He, R.J.; Wang, L.; Huo, P.C.; Guan, X.Q.; Fang, S.Q.; Xiang, Y.W.; Jia, S.N.; Ge, G.B. Herb-drug interaction between Styrax and warfarin: Molecular basis and mechanism. Phytomedicine, 2020, 77, 153287.
[http://dx.doi.org/10.1016/j.phymed.2020.153287] [PMID: 32739573]
[134]
Zhuang, X.M.; Zhong, Y.H.; Xiao, W.B.; Li, H.; Lu, C. Identification and characterization of psoralen and isopsoralen as potent CYP1A2 reversible and time-dependent inhibitors in human and rat preclinical studies. Drug Metab. Dispos., 2013, 41(11), 1914-1922.
[http://dx.doi.org/10.1124/dmd.113.053199] [PMID: 23975028]
[135]
Zhang, X.S.; Zhao, Z.Q.; Qin, Z.S.; Wu, K.; Xia, T.F.; Pang, L.Q. Herb-drug interaction between irinotecan and psoralidin-containing herbs. Eur. J. Drug Metab. Pharmacokinet., 2015, 40(4), 481-484.
[http://dx.doi.org/10.1007/s13318-014-0223-8] [PMID: 25216634]
[136]
Zhang, Y.H.; Zhang, Y.J.; Guo, Y.L.; Li, W.J.; Yu, C. Astragaloside IV inhibited the activity of CYP1A2 in liver microsomes and influenced theophylline pharmacokinetics in rats. J. Pharm. Pharmacol., 2012, 65(1), 149-155.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01579.x] [PMID: 23215698]
[137]
Chae, J.; Baek, I.; Kwon, K. Effect of decursin on the pharmacokinetics of theophylline and its metabolites in rats. J. Ethnopharmacol., 2012, 144(2), 248-254.
[http://dx.doi.org/10.1016/j.jep.2012.08.046] [PMID: 22981724]
[138]
Chae, J.; An, J.; Kang, W.; Ma, J.; Kwon, K. Effect of decursinol angelate on the pharmacokinetics of theophylline and its metabolites in rats. Food Chem. Toxicol., 2012, 50(10), 3666-3672.
[http://dx.doi.org/10.1016/j.fct.2012.06.049] [PMID: 22771369]
[139]
Athukuri, B.L.; Neerati, P. Enhanced oral bioavailability of diltiazem by the influence of gallic acid and ellagic acid in male wistar rats: Involvement of CYP3A and p-gp inhibition. Phytother. Res., 2017, 31(9), 1441-1448.
[http://dx.doi.org/10.1002/ptr.5873] [PMID: 28766866]
[140]
Vijayakumar, T.M.; Kumar, R.M.; Agrawal, A.; Dubey, G.P.; Ilango, K. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening. J. Food Sci. Technol., 2015, 52(7), 4537-4543.
[http://dx.doi.org/10.1007/s13197-014-1472-x] [PMID: 26139922]
[141]
Reddy, A.G.; Rao, G.S.; Kumar, M.V.; Reddy, G.D. Pharmacokinetic interaction of garlic and atorvastatin in dyslipidemic rats. Indian J. Pharmacol., 2012, 44(2), 246-252.
[http://dx.doi.org/10.4103/0253-7613.93860] [PMID: 22529485]
[142]
Bai, J.; Zhao, S.; Fan, X.; Chen, Y.; Zou, X.; Hu, M.; Wang, B.; Jin, J.; Wang, X.; Hu, J.; Zhang, D.; Li, Y. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships. Toxicol. Appl. Pharmacol., 2019, 369, 49-59.
[http://dx.doi.org/10.1016/j.taap.2019.02.010] [PMID: 30790579]
[143]
Choi, J.S.; Piao, Y.J.; Kang, K.W. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin. Arch. Pharm. Res., 2011, 34(4), 607-613.
[http://dx.doi.org/10.1007/s12272-011-0411-x] [PMID: 21544726]
[144]
Zhao, K.; Ding, M.; Cao, H.; Cao, Z. In-vitro metabolism of glycyrrhetinic acid by human and rat liver microsomes and its interactions with six CYP substrates. J. Pharm. Pharmacol., 2012, 64(10), 1445-1451.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01516.x] [PMID: 22943175]
[145]
Alunmed, S.K.M.; Mukherjee, P.K.; Bahadur, S.; Kar, A.; Al-Dhabi, N.A.; Duraipandiyan, V. Inhibition potential of Moringa oleifera lam. On drug metabolizing enzymes. Indian J. Tradit. Knowl., 2015, 14(4), 614-619.
[146]
Amaeze, O.; Marques, E.S.; Wei, W.; Lazzaro, S.; Johnson, N.; Varma, M.V.S.; Slitt, A. Evaluation of nigerian medicinal plants extract on human p-glycoprotein and cytochrome p450 enzyme induction: Implications for herb-drug interaction. Curr. Drug Metab., 2021, 22(14), 1103-1113.
[http://dx.doi.org/10.2174/1389200223666211216142904] [PMID: 34915831]
[147]
Bharathi, K.; Sandhya, M.; Prasad, K.V.S.R.G. Effect of Moringa oleifera on the pharmacokinetics and pharmacodynamics of pioglitazone. FASEB J., 2017, 31(1), 822.
[http://dx.doi.org/10.1096/fasebj.31.1_supplement.822.5]
[148]
Fasinu, P.; Manda, V.; Dale, O.; Egiebor, N.; Walker, L.; Khan, S. Modulation of cytochrome p450, p-glycoprotein and pregnane x receptor by selected antimalarial herbs-implication for herb-drug interaction. Molecules, 2017, 22(12), 2049.
[http://dx.doi.org/10.3390/molecules22122049] [PMID: 29168799]
[149]
Chen, H.W.; Huang, C.S.; Liu, P.F.; Li, C.C.; Chen, C.T.; Liu, C.T.; Chiang, J.R.; Yao, H.T.; Lii, C.K. Andrographis paniculata extract and andrographolide modulate the hepatic drug metabolism system and plasma tolbutamide concentrations in rats. Evid. Based Complement. Alternat. Med., 2013, 2013, 982689.
[PMID: 23997806]
[150]
Mouid, M.G.M.G. Effect of ethanolic extract of aerial parts of Andrographis paniculata on the pharmacokinetics of gliclazide in rats. Asian J. Biomed. Pharm. Sci., 2015, 5(51), 21-24.
[http://dx.doi.org/10.15272/ajbps.v5i51.755]
[151]
Samala, S.; Veeresham, C. Pharmacokinetic and pharmacodynamic interaction of boswellic acids and andrographolide with glyburide in diabetic rats: Including its pk/pd modeling. Phytother. Res., 2016, 30(3), 496-502.
[http://dx.doi.org/10.1002/ptr.5556] [PMID: 26762235]
[152]
Qiu, F.; Hou, X.L.; Takahashi, K.; Chen, L.X.; Azuma, J.; Kang, N. Andrographolide inhibits the expression and metabolic activity of cytochrome P450 3A4 in the modified Caco-2 cells. J. Ethnopharmacol., 2012, 141(2), 709-713.
[http://dx.doi.org/10.1016/j.jep.2011.09.002] [PMID: 21925256]
[153]
Sahu, K.; Siddiqui, A.A.; Shaharyar, M.; Malik, S. Pharmacokinetic interaction between febuxostat and morin in rats. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 307-312.
[http://dx.doi.org/10.1517/17425255.2014.885017] [PMID: 24506837]
[154]
Hsu, P.W.; Shia, C.S.; Lin, S.P.; Chao, P.D.L.; Juang, S.H.; Hou, Y.C. Potential risk of mulberry-drug interaction: Modulation on P-glycoprotein and cytochrome P450 3A. J. Agric. Food Chem., 2013, 61(18), 4464-4469.
[http://dx.doi.org/10.1021/jf3052384] [PMID: 23590720]
[155]
Oga, E.F.; Sekine, S.; Shitara, Y.; Horie, T. P-glycoprotein mediated efflux in Caco-2 cell monolayers: The influence of herbals on digoxin transport. J. Ethnopharmacol., 2012, 144(3), 612-617.
[http://dx.doi.org/10.1016/j.jep.2012.10.001] [PMID: 23064285]
[156]
Zhai, X.; Shi, F.; Chen, F.; Lu, Y. Capsaicin pretreatment increased the bioavailability of cyclosporin in rats: Involvement of P-glycoprotein and CYP 3A inhibition. Food Chem. Toxicol., 2013, 62, 323-328.
[http://dx.doi.org/10.1016/j.fct.2013.08.068] [PMID: 24013073]
[157]
Han, E.H.; Kim, H.G.; Choi, J.H.; Jang, Y.J.; Lee, S.S.; Kwon, K.; Kim, E.; Noh, K.; Jeong, T.C.; Hwang, Y.P.; Chung, Y.C.; Kang, W.; Jeong, H.G. Capsaicin induces CYP3A4 expression via pregnane X receptor and CCAAT/enhancer-binding protein β activation. Mol. Nutr. Food Res., 2012, 56(5), 797-809.
[http://dx.doi.org/10.1002/mnfr.201100697] [PMID: 22648626]
[158]
Kato, R.; Higashitani, A.; Irie, T.; Kusukawa, Y.; Yamamoto, Y.; Nakagawa, M.; Urashima, Y.; Nagata, M.; Hayashi, T.; Ijiri, Y.; Tanaka, K. Influence of capsaicin on fluctuation of digoxin pharmacokinetics in lipopolysaccharide-treated rats. Xenobiotica, 2012, 42(8), 798-807.
[http://dx.doi.org/10.3109/00498254.2012.663514] [PMID: 22416981]
[159]
Peng, C.; Lv, M.; Tian, J.; Huang, Y.; Tian, Y.; Zhang, Z. Herb-drug pharmacokinetic interaction of artificial calculus bovis with diclofenac sodium and chlorpheniramine maleate in rats. J. Pharm. Pharmacol., 2013, 65(7), 1064-1072.
[http://dx.doi.org/10.1111/jphp.12069] [PMID: 23738734]
[160]
Rodrigues, M.; Alves, G.; Francisco, J.; Fortuna, A.; Falcão, A. Herb-drug pharmacokinetic interaction between Carica papaya extract and amiodarone in rats. J. Pharm. Pharm. Sci., 2014, 17(3), 302-315.
[http://dx.doi.org/10.18433/J3559N] [PMID: 25224345]
[161]
Jaikang, C.; Niwatananun, K.; Narongchai, P.; Narongchai, S.; Chaiyasut, C. Inhibitory effect of caffeic acid and its derivatives on human liver cytochrome p450 3a4 activity. J. Med. Plants Res., 2011, 5(15), 3530-3536.
[162]
Chi, Y.C.; Lin, S.P.; Hou, Y.C. A new herb-drug interaction of Polygonum cuspidatum, a resveratrol‐rich nutraceutical, with carbamazepine in rats. Toxicol. Appl. Pharmacol., 2012, 263(3), 315-322.
[http://dx.doi.org/10.1016/j.taap.2012.07.003] [PMID: 22813711]
[163]
Xiao, C.Q.; Chen, R.; Lin, J.; Wang, G.; Chen, Y.; Tan, Z.R.; Zhou, H.H. Effect of genistein on the activities of cytochrome P450 3A and P-glycoprotein in Chinese healthy participants. Xenobiotica, 2012, 42(2), 173-178.
[http://dx.doi.org/10.3109/00498254.2011.615954] [PMID: 21943317]
[164]
Qiu, F.; Jiang, J.; Ma, Y.; Wang, G.; Gao, C.; Zhang, X.; Zhang, L.; Liu, S.; He, M.; Zhu, L.; Ye, Y.; Li, Q.; Miao, P. Opposite effects of single-dose and multidose administration of the ethanol extract of danshen on CYP3A in healthy volunteers. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/730734] [PMID: 24223062]
[165]
Zhang, R.; Sun, J.; Ma, L.; Wu, X.; Pan, G.; Hao, H.; Zhou, F. A, J.; Liu, C.; Ai, H.; Shang, L.; Gao, H.; Peng, Y.; Wan, P.; Wu, H.; Wang, G. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line. Toxicol. Appl. Pharmacol., 2011, 252(1), 18-27.
[http://dx.doi.org/10.1016/j.taap.2011.01.008] [PMID: 21262253]
[166]
Lee, K.S.; Chae, S.W.; Park, J.H.; Park, J.H.; Choi, J.M.; Rhie, S.J.Y.; Lee, H.J. Effects of single or repeated silymarin administration on pharmacokinetics of risperidone and its major metabolite, 9-hydroxyrisperidone in rats. Xenobiotica, 2013, 43(3), 303-310.
[http://dx.doi.org/10.3109/00498254.2012.731092] [PMID: 23205514]
[167]
Feng, R.; Zhou, X.; Or, P.M.Y.; Ma, J.Y.; Tan, X.S.; Fu, J.; Ma, C.; Shi, J.G.; Che, C.T.; Wang, Y.; Yeung, J.H.K. Enzyme kinetic and molecular docking studies on the metabolic interactions of 1-hydroxy-2,3,5-trimethoxy-xanthone, isolated from Halenia elliptica D. Don, with model probe substrates of human cytochrome P450 enzymes. Phytomedicine, 2012, 19(12), 1125-1133.
[http://dx.doi.org/10.1016/j.phymed.2012.06.009] [PMID: 22819301]
[168]
Spanakis, M.; Vizirianakis, I.S.; Batzias, G.; Niopas, I. Pharmacokinetic interaction between losartan and Rhodiola rosea in rabbits. Pharmacology, 2013, 91(1-2), 112-116.
[http://dx.doi.org/10.1159/000345929] [PMID: 23327826]
[169]
Tian, X.; Cheng, Z.Y.; Jin, H.; Gao, J.; Qiao, H.L. Inhibitory effects of baicalin on the expression and activity of cyp3a induce the pharmacokinetic changes of midazolam in rats. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/179643] [PMID: 23710212]
[170]
Jian, T.Y.; He, J.C.; He, G.H.; Feng, E.F.; Li, H.L.; Bai, M.; Xu, G.L. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats. Phytother. Res., 2012, 26(8), 1226-1230.
[http://dx.doi.org/10.1002/ptr.3723] [PMID: 22228482]
[171]
He, M.; Jiang, J.; Qiu, F.; Liu, S.; Peng, P.; Gao, C.; Miao, P. Inhibitory effects of gypenosides on seven human cytochrome P450 enzymes in vitro. Food Chem. Toxicol., 2013, 57, 262-265.
[http://dx.doi.org/10.1016/j.fct.2013.03.041] [PMID: 23583485]
[172]
Kim, H.; Choi, H.K.; Jeong, T.C.; Jahng, Y.; Kim, D.H.; Lee, S.H.; Lee, S. Selective inhibitory effects of mollugin on CYP1A2 in human liver microsomes. Food Chem. Toxicol., 2013, 51, 33-37.
[http://dx.doi.org/10.1016/j.fct.2012.09.013] [PMID: 23000442]
[173]
Goey, A.K.L.; Meijerman, I.; Rosing, H.; Marchetti, S.; Mergui-Roelvink, M.; Keessen, M.; Burgers, J.A.; Beijnen, J.H.; Schellens, J.H.M. The effect of St John’s wort on the pharmacokinetics of docetaxel. Clin. Pharmacokinet., 2014, 53(1), 103-110.
[http://dx.doi.org/10.1007/s40262-013-0102-5] [PMID: 24068654]
[174]
Fasinu, P.S.; Gutmann, H.; Schiller, H.; James, A.D.; Bouic, P.J.; Rosenkranz, B. The potential of Sutherlandia frutescens for herb-drug interaction. Drug Metab. Dispos., 2013, 41(2), 488-497.
[http://dx.doi.org/10.1124/dmd.112.049593] [PMID: 23209194]
[175]
Lan, T.; Fang, P.; Ye, X.; Lan, X.; Xu, R. Evaluation of herb-drug interaction of ambrisentan with shikonin based on UPLC-MS/MS. Pharm. Biol., 2021, 59(1), 1131-1136.
[http://dx.doi.org/10.1080/13880209.2021.1964544] [PMID: 34410882]
[176]
Kim, S.B.; Yoon, I.S.; Kim, K.S.; Cho, S.J.; Kim, Y.; Cho, H.J.; Chung, S.J.; Chong, S.; Kim, D.D. In vitro and in vivo evaluation of the effect of puerarin on hepatic cytochrome p450-mediated drug metabolism. Planta Med., 2014, 80(7), 561-567.
[http://dx.doi.org/10.1055/s-0034-1368350] [PMID: 24710899]
[177]
Malati, C.Y.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Alfaro, R.M.; Kovacs, J.A.; Penzak, S.R. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol., 2012, 52(6), 932-939.
[http://dx.doi.org/10.1177/0091270011407194] [PMID: 21646440]
[178]
Jeon, J.H.; Lee, S.; Lee, W.; Jin, S.; Kwon, M.; Shin, C.H.; Choi, M.K.; Song, I.S. Herb-drug interaction of red ginseng extract and ginsenoside RC with valsartan in rats. Molecules, 2020, 25(3), 622.
[http://dx.doi.org/10.3390/molecules25030622] [PMID: 32023909]
[179]
Kim, D.; Zheng, Y.F.; Min, J.S.; Park, J.B.; Bae, S.H.; Yoon, K.D.; Chin, Y.W.; Oh, E.; Bae, S.K. In vitro stereoselective inhibition of ginsenosides toward UDP-glucuronosyltransferase (UGT) isoforms. Toxicol. Lett., 2016, 259, 1-10.
[http://dx.doi.org/10.1016/j.toxlet.2016.07.108] [PMID: 27462006]
[180]
Shin, B.K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res., 2015, 39(4), 287-298.
[http://dx.doi.org/10.1016/j.jgr.2014.12.005] [PMID: 26869820]
[181]
Kim, J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res., 2018, 42(3), 264-269.
[http://dx.doi.org/10.1016/j.jgr.2017.10.004] [PMID: 29983607]
[182]
Hyun, S.H.; Bhilare, K.D. In, G.; Park, C.K.; Kim, J.H. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: Pharmacological and therapeutic roles. J. Ginseng Res., 2022, 46(1), 33-38.
[http://dx.doi.org/10.1016/j.jgr.2021.07.007] [PMID: 35058725]
[183]
Chen, W.; Balan, P.; Popovich, D.G. Review of ginseng anti-diabetic studies. Molecules, 2019, 24(24), 4501.
[http://dx.doi.org/10.3390/molecules24244501] [PMID: 31835292]
[184]
Im, D.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules, 2020, 10(3), 444.
[http://dx.doi.org/10.3390/biom10030444] [PMID: 32183094]
[185]
Zhuang, C.L.; Mao, X.Y.; Liu, S.; Chen, W.Z.; Huang, D.D.; Zhang, C.J.; Chen, B.C.; Shen, X.; Yu, Z. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats. Eur. J. Pharmacol., 2014, 740, 480-487.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.040] [PMID: 24975098]
[186]
Yamabe, N.; Kim, Y.J.; Lee, S.; Cho, E.J.; Park, S.H.; Ham, J.; Kim, H.Y.; Kang, K.S. Increase in antioxidant and anticancer effects of ginsenoside Re-lysine mixture by Maillard reaction. Food Chem., 2013, 138(2-3), 876-883.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.004] [PMID: 23411191]
[187]
Jin, Y.H.; Wang, Y.S.; Lin, Y.J.; Li, H.; Li, Y. Study on the molecular mechanism of ginsenoside RH2 anticancer activity. Cancer Sci., 2018, 109, 1000-1000.
[188]
Han, J.; Oh, J.P.; Yoo, M.; Cui, C.H.; Jeon, B.M.; Kim, S.C.; Han, J.H. Minor ginsenoside F1 improves memory in APP/PS1 mice. Mol. Brain, 2019, 12(1), 77.
[http://dx.doi.org/10.1186/s13041-019-0495-7] [PMID: 31488185]
[189]
Jiang, R.; Dong, J.; Li, X.; Du, F.; Jia, W.; Xu, F.; Wang, F.; Yang, J.; Niu, W.; Li, C. Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br. J. Pharmacol., 2015, 172(4), 1059-1073.
[http://dx.doi.org/10.1111/bph.12971] [PMID: 25297453]
[190]
Seong, S.J.; Kang, W.Y.; Heo, J.K.; Jo, J.; Choi, W.G.; Liu, K.H.; Lee, S.; Choi, M.K.; Han, Y.H.; Lee, H.S.; Ohk, B.; Lee, H.W.; Song, I.S.; Yoon, Y.R. A comprehensive in vivo and in vitro assessment of the drug interaction potential of red ginseng. Clin. Ther., 2018, 40(8), 1322-1337.
[http://dx.doi.org/10.1016/j.clinthera.2018.06.017] [PMID: 30078466]
[191]
Yang, L.; Li, C.L.; Tsai, T.H. Preclinical herb-drug pharmacokinetic interaction of panax ginseng extract and selegiline in freely moving rats. ACS Omega, 2020, 5(9), 4682-4688.
[http://dx.doi.org/10.1021/acsomega.0c00123] [PMID: 32175515]
[192]
Kim, Y.; Jo, J.J.; Cho, P.; Shrestha, R.; Kim, K.M.; Ki, S.H.; Song, K.S.; Liu, K.H.; Song, I.S.; Kim, J.H.; Lee, J.M.; Lee, S. Characterization of red ginseng-drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm. Drug Dispos., 2020, 41(7), 295-306.
[http://dx.doi.org/10.1002/bdd.2246] [PMID: 32557706]
[193]
Jin, S.; Lee, S.; Jeon, J.H.; Kim, H.; Choi, M.K.; Song, I.S. Enhanced intestinal permeability and plasma concentration of metformin in rats by the repeated administration of red ginseng extract. Pharmaceutics, 2019, 11(4), 189.
[http://dx.doi.org/10.3390/pharmaceutics11040189] [PMID: 31003498]
[194]
Kim, S.J.; Choi, S.; Kim, M.; Park, C.; Kim, G.L.; Lee, S.O.; Kang, W.; Rhee, D.K. Effect of Korean Red Ginseng extracts on drug-drug interactions. J. Ginseng Res., 2018, 42(3), 370-378.
[http://dx.doi.org/10.1016/j.jgr.2017.08.008] [PMID: 29989018]
[195]
Abushammala, I.M.; El-Shaikh Ali, F.K.; Abu Shammaleh, K.F.; Taha, M.M.; Miqdad, M.Y. Effect of Panax ginseng on carbamazepine pharmacokinetics in rabbits. Turkish J. Pharm. Sci., 2021, 18(1), 17-20.
[http://dx.doi.org/10.4274/tjps.galenos.2019.24993] [PMID: 33631926]
[196]
Bilgi, N.; Bell, K.; Ananthakrishnan, A.N.; Atallah, E. Imatinib and Panax ginseng: A potential interaction resulting in liver toxicity. Ann. Pharmacother., 2010, 44(5), 926-928.
[http://dx.doi.org/10.1345/aph.1M715] [PMID: 20332334]
[197]
Mateo-Carrasco, H.; Gálvez-Contreras, M.C.; Fernández-Ginés, F.D.; Nguyen, T.V. Elevated liver enzymes resulting from an interaction between Raltegravir and Panax ginseng: A case report and brief review. Drug Metabol. Drug Interact., 2012, 27(3), 171-175.
[http://dx.doi.org/10.1515/dmdi-2012-0019] [PMID: 23092794]
[198]
Ude, C.; Schubert-Zsilavecz, M.; Wurglics, M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin. Pharmacokinet., 2013, 52(9), 727-749.
[http://dx.doi.org/10.1007/s40262-013-0074-5] [PMID: 23703577]
[199]
Nowak, A.; Kojder, K.; Zielonka-Brzezicka, J.; Wróbel, J.; Bosiacki, M.; Fabiańska, M.; Wróbel, M.; Sołek-Pastuszka, J.; Klimowicz, A. The use of Ginkgo biloba l. As a neuroprotective agent in the Alzheimer’s disease. Front. Pharmacol., 2021, 12, 775034.
[http://dx.doi.org/10.3389/fphar.2021.775034] [PMID: 34803717]
[200]
Yang, X.M.; Wang, Y.F.; Li, Y.Y.; Ma, H.L. Thermal stability of ginkgolic acids from Ginkgo biloba and the effects of ginkgol C17:1 On the apoptosis and migration of SMMC7721 cells. Fitoterapia, 2014, 98, 66-76.
[http://dx.doi.org/10.1016/j.fitote.2014.07.003] [PMID: 25016955]
[201]
Chen, X.; Ren, S.; Dong, J.; Qiu, C.; Chen, Y.; Tao, H. Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. Drug Des. Devel. Ther., 2019, 13, 647-655.
[http://dx.doi.org/10.2147/DDDT.S191537] [PMID: 30858695]
[202]
Zamberlam, C.R.; Vendrasco, N.C.; Oliveira, D.R.; Gaiardo, R.B.; Cerutti, S.M. Effects of standardized Ginkgo biloba extract on the acquisition, retrieval and extinction of conditioned suppression: Evidence that short-term memory and long-term memory are differentially modulated. Physiol. Behav., 2016, 165, 55-68.
[http://dx.doi.org/10.1016/j.physbeh.2016.06.036] [PMID: 27378507]
[203]
Li, R.; Xia, Z.; Li, B.; Tian, Y.; Zhang, G.; Li, M.; Dong, J. Advances in supercritical carbon dioxide extraction of bioactive substances from different parts of Ginkgo biloba l. Molecules, 2021, 26(13), 4011.
[http://dx.doi.org/10.3390/molecules26134011] [PMID: 34209219]
[204]
He, N.; Edeki, T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am. J. Ther., 2004, 11(3), 206-212.
[http://dx.doi.org/10.1097/00045391-200405000-00009] [PMID: 15133536]
[205]
Chang, T.K.H.; Chen, J.; Yeung, E.Y.H. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1. Toxicol. Appl. Pharmacol., 2006, 213(1), 18-26.
[http://dx.doi.org/10.1016/j.taap.2005.09.007] [PMID: 16226778]
[206]
Zhou, S-F.; Deng, Y.; Bi, H.; Zhao, L.; Wang, X.; Chen, J.; Ou, Z.; Ding, L.; Xu, L.; Guan, S.; Chen, X.; Huang, M. Induction of cytochrome P450 3A by the Ginkgo biloba extract and bilobalides in human and rat primary hepatocytes. Drug Metab. Lett., 2008, 2(1), 60-66.
[http://dx.doi.org/10.2174/187231208783478489] [PMID: 19356072]
[207]
Mandery, K.; Bujok, K.; Schmidt, I.; Keiser, M.; Siegmund, W.; Balk, B.; König, J.; Fromm, M.F.; Glaeser, H. Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochem. Pharmacol., 2010, 80(11), 1746-1753.
[http://dx.doi.org/10.1016/j.bcp.2010.08.008] [PMID: 20797388]
[208]
Nabekura, T.; Yamaki, T.; Ueno, K.; Kitagawa, S. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother. Pharmacol., 2008, 62(5), 867-873.
[http://dx.doi.org/10.1007/s00280-007-0676-4] [PMID: 18204840]
[209]
Unger, M. Pharmacokinetic drug interactions involving Ginkgo biloba. Drug Metab. Rev., 2013, 45(3), 353-385.
[http://dx.doi.org/10.3109/03602532.2013.815200] [PMID: 23865865]
[210]
Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y.W. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin. Pharmacol. Ther., 2002, 72(3), 276-287.
[http://dx.doi.org/10.1067/mcp.2002.126913] [PMID: 12235448]
[211]
Markowitz, J.S.; Donovan, J.L.; Lindsay DeVane, C.; Sipkes, L.; Chavin, K.D. Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J. Clin. Psychopharmacol., 2003, 23(6), 576-581.
[http://dx.doi.org/10.1097/01.jcp.0000095340.32154.c6] [PMID: 14624188]
[212]
Yin, O.Q.P.; Tomlinson, B.; Waye, M.M.Y.; Chow, A.H.L.; Chow, M.S.S. Pharmacogenetics and herb???drug interactions. Pharmacogenetics, 2004, 14(12), 841-850.
[http://dx.doi.org/10.1097/00008571-200412000-00007] [PMID: 15608563]
[213]
Zuo, X.C.; Zhang, B.K.; Jia, S.J.; Liu, S.K.; Zhou, L.Y.; Li, J.; Zhang, J.; Dai, L.L.; Chen, B.M.; Yang, G.P.; Yuan, H. Effects of Ginkgo biloba extracts on diazepam metabolism: A pharmacokinetic study in healthy Chinese male subjects. Eur. J. Clin. Pharmacol., 2010, 66(5), 503-509.
[http://dx.doi.org/10.1007/s00228-010-0795-4] [PMID: 20186406]
[214]
Kim, H.S.; Kim, G.; Yeo, C.W.; Oh, M.; Ghim, J.; Shon, J.H.; Kim, E.Y.; Kim, D.H.; Shin, J.G. The effect of Ginkgo biloba extracts on the pharmacokinetics and pharmacodynamics of cilostazol and its active metabolites in healthy Korean subjects. Br. J. Clin. Pharmacol., 2014, 77(5), 821-830.
[http://dx.doi.org/10.1111/bcp.12236] [PMID: 24001154]
[215]
Li, Z.; Tian, S.; Wu, Z.; Xu, X.; Lei, L.; Li, Y.; Wang, B.; Huang, Y. Pharmacokinetic herb-disease-drug interactions: Effect of Ginkgo biloba extract on the pharmacokinetics of pitavastatin, a substrate of Oatp1b2, in rats with non-alcoholic fatty liver disease. J. Ethnopharmacol., 2021, 280, 114469.
[http://dx.doi.org/10.1016/j.jep.2021.114469] [PMID: 34329714]
[216]
Mandery, K.; Balk, B.; Bujok, K.; Schmidt, I.; Fromm, M.F.; Glaeser, H. Inhibition of hepatic uptake transporters by flavonoids. Eur. J. Pharm. Sci., 2012, 46(1-2), 79-85.
[http://dx.doi.org/10.1016/j.ejps.2012.02.014] [PMID: 22394605]
[217]
Deng, Y.; Mo, Y.; Chen, X.; Zhang, L.; Liao, C.; Song, Y.; Xu, C. Effect of Ginkgo biloba extract on the pharmacokinetics and metabolism of clopidogrel in rats. Phytother. Res., 2016, 30(11), 1886-1892.
[http://dx.doi.org/10.1002/ptr.5691] [PMID: 27487816]
[218]
Dai, L.L.; Fan, L.; Wu, H.Z.; Tan, Z.R.; Chen, Y.; Peng, X.D.; Shen, M.X.; Yang, G.P.; Zhou, H.H. Assessment of a pharmacokinetic and pharmacodynamic interaction between simvastatin and Ginkgo biloba extracts in healthy subjects. Xenobiotica, 2013, 43(10), 862-867.
[http://dx.doi.org/10.3109/00498254.2013.773385] [PMID: 23451885]
[219]
Dong, B.; Yuan, S.; Hu, J.; Yan, Y. Effects of Ginkgo leaf tablets on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its mechanism. Pharm. Biol., 2018, 56(1), 333-336.
[http://dx.doi.org/10.1080/13880209.2018.1481107] [PMID: 29953302]
[220]
Ren, Y.; Li, H.; Liu, X. Effects of Ginkgo leaf tablets on the pharmacokinetics of atovastatin in rats. Pharm. Biol., 2019, 57(1), 403-406.
[http://dx.doi.org/10.1080/13880209.2019.1622569] [PMID: 31188698]
[221]
Blonk, M.; Colbers, A.; Poirters, A.; Schouwenberg, B.; Burger, D. Effect of Ginkgo biloba on the pharmacokinetics of raltegravir in healthy volunteers. Antimicrob. Agents Chemother., 2012, 56(10), 5070-5075.
[http://dx.doi.org/10.1128/AAC.00672-12] [PMID: 22802250]
[222]
Stoddard, G.J.; Archer, M.; Shane-McWhorter, L.; Bray, B.E.; Redd, D.F.; Proulx, J.; Zeng-Treitler, Q. Ginkgo and warfarin interaction in a large veterans administration population. Annual Symposium Proceedings, 2015, pp. 1174-1183.
[PMID: 26958257]
[223]
MEIm. X.D.; Cao, Y.F.; Che, Y.Y.; Li, J.; Shang, Z.P.; Zhao, W.J.; Qiao, Y.J.; Zhang, J.Y. Danshen: A phytochemical and pharmacological overview. Chin. J. Nat. Med., 2019, 17(1), 59-80.
[http://dx.doi.org/10.1016/S1875-5364(19)30010-X] [PMID: 30704625]
[224]
Ren, J.; Fu, L.; Nile, S.H.; Zhang, J.; Kai, G. Salviamiltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications. Front. Pharmacol., 2019, 10, 753.
[http://dx.doi.org/10.3389/fphar.2019.00753] [PMID: 31338034]
[225]
Liu, C.; Liu, N.; Zhang, S.; Ma, G.; Yang, H.; Kong, L.; Du, G. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol. Sin., 2021, 42(3), 370-381.
[http://dx.doi.org/10.1038/s41401-020-00568-2] [PMID: 33303991]
[226]
Guo, Y.; Sun, J.; Zhang, R.; Yang, P.; Zhang, S.; Wu, Z. Salviamiltiorrhiza improves type 2 diabetes. Medicine, 2021, 100(6), e23843.
[http://dx.doi.org/10.1097/MD.0000000000023843] [PMID: 33578512]
[227]
Zhang, X.Z.; Qian, S.S.; Zhang, Y.J.; Wang, R.Q. Salviamiltiorrhiza: A source for anti-Alzheimer’s disease drugs. Pharm. Biol., 2016, 54(1), 18-24.
[http://dx.doi.org/10.3109/13880209.2015.1027408] [PMID: 25857808]
[228]
Jia, Q.; Zhu, R.; Tian, Y.; Chen, B.; Li, R.; Li, L.; Wang, L.; Che, Y.; Zhao, D.; Mo, F.; Gao, S.; Zhang, D. Salviamiltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine, 2019, 58, 152871.
[http://dx.doi.org/10.1016/j.phymed.2019.152871] [PMID: 30851580]
[229]
Wang, Q.; Hao, H.; Zhu, X.; Yu, G.; Lai, L.; Liu, Y.; Wang, Y.; Jiang, S.; Wang, G. Regioselective glucuronidation of tanshinone iia after quinone reduction: Identification of human UDP-glucuronosyltransferases, species differences, and interaction potential. Drug Metab. Dispos., 2010, 38(7), 1132-1140.
[http://dx.doi.org/10.1124/dmd.109.031864] [PMID: 20382756]
[230]
Li, X.X.; Zhou, Z.W.; Zhou, S.F. Role of P-glycoprotein in the transport of tanshinone I, one active triterpenoid from Salviamiltiorrhiza. Drug Metab. Lett., 2008, 2(3), 223-230.
[http://dx.doi.org/10.2174/187231208785425746] [PMID: 19356097]
[231]
Qiu, F.; Zhang, R.; Sun, J.A.J.; Hao, H.; Peng, Y.; Ai, H.; Wang, G. Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes. Drug Metab. Dispos., 2008, 36(7), 1308-1314.
[http://dx.doi.org/10.1124/dmd.108.021030] [PMID: 18411400]
[232]
Wang, X.; Yeung, J.H.K. Inhibitory effect of tanshinones on rat CYP3A2 and CYP2C11 activity and its structure-activity relationship. Fitoterapia, 2011, 82(4), 539-545.
[http://dx.doi.org/10.1016/j.fitote.2011.01.011] [PMID: 21262326]
[233]
Zhang, X.X.; Cao, Y.F.; Wang, L.X.; Yuan, X.L.; Fang, Z.Z. Inhibitory effects of tanshinones towards the catalytic activity of UDP-glucuronosyltransferases (UGTs). Pharm. Biol., 2017, 55(1), 1703-1709.
[http://dx.doi.org/10.3109/13880209.2015.1045621] [PMID: 28466663]
[234]
Tan, M.L.; Lim, L.E. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms’ activities, a review of possible herb-drug interaction risks. Drug Chem. Toxicol., 2015, 38(3), 241-253.
[http://dx.doi.org/10.3109/01480545.2014.947504] [PMID: 25156015]
[235]
Wang, R.; Zhang, H.; Wang, Y.; Yu, X.; Yuan, Y. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9. J. Ethnopharmacol., 2016, 180, 87-96.
[http://dx.doi.org/10.1016/j.jep.2016.01.021] [PMID: 26806573]
[236]
Zhang, H.; Han, X.; Li, Y.; Li, H.; Guo, X. Effects of Danshen tablets on pharmacokinetics of amlodipine in rats. Pharm. Biol., 2019, 57(1), 306-309.
[http://dx.doi.org/10.1080/13880209.2019.1604768] [PMID: 31060428]
[237]
Zhang, Z.; Ge, B.; Zhou, L.; Lam, T.N.; Zuo, Z. Induction of liver cytochrome P450s by Danshen-Gegen formula is the leading cause for its pharmacokinetic interactions with warfarin. J. Ethnopharmacol., 2014, 154(3), 672-686.
[http://dx.doi.org/10.1016/j.jep.2014.04.047] [PMID: 24832110]
[238]
Wan, R.Z.; Zhou, M.J.; Liu, C.X. The effects of salvianolic acid B from radix salviamiltiorrhizae on the oral pharmacokinetics of metoprolol and metoprolol acid in rats. Phytother. Res., 2010, 24(6), 846-851.
[http://dx.doi.org/10.1002/ptr.3030] [PMID: 19957247]
[239]
Zhou, C.; Xu, M.; Yu, H.; Zheng, X.T.; Zhong, Z.F.; Zhang, L. Effects of Danshen capsules on the pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. Food Chem. Toxicol., 2018, 119, 302-308.
[http://dx.doi.org/10.1016/j.fct.2018.02.051] [PMID: 29496531]
[240]
Qiu, F.; Wang, G.; Zhao, Y.; Sun, H.; Mao, G.A.J.; Sun, J. Effect of danshen extract on pharmacokinetics of theophylline in healthy volunteers. Br. J. Clin. Pharmacol., 2008, 65(2), 270-274.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03027.x] [PMID: 17961194]
[241]
Qiu, F.; Wang, G.; Zhang, R.; Sun, J.; Jiang, J.; Ma, Y. Effect of danshen extract on the activity of CYP3A4 in healthy volunteers. Br. J. Clin. Pharmacol., 2010, 69(6), 656-662.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03624.x] [PMID: 20565457]
[242]
Qiu, F.; Zeng, J.; Liu, S.; He, M.; Zhu, L.; Ye, Y.; Miao, P.; Shen, S.; Jiang, J. Effects of danshen ethanol extract on the pharmacokinetics of fexofenadine in healthy volunteers. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-5.
[http://dx.doi.org/10.1155/2014/473213] [PMID: 25538791]
[243]
Zhang, Y.; Yang, M.; Ho, N.J.; Mok, R.Y.; Zhang, Z.; Ge, B.; Leung, P.C.; Fung, K.P.; Lau, C.B.S.; Lee, V.H.L.; Lin, Z.; Wong, R.S.M.; Zuo, Z. Is it safe to take Radix Salvia Miltiorrhiza - Radix Pueraria lobate product with warfarin and aspirin? A pilot study in healthy human subjects. J. Ethnopharmacol., 2020, 262, 113151.
[http://dx.doi.org/10.1016/j.jep.2020.113151] [PMID: 32736050]
[244]
Chen, F.; Li, L.; Tian, D.D. Salviamiltiorrhiza roots against cardiovascular disease: Consideration of herb-drug interactions. BioMed Res. Int., 2017, 2017, 9868694.
[PMID: 28473993]
[245]
El-Saber Batiha, G.; Magdy Beshbishy, A.; G. Wasef, L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[246]
Meriga, B.; Mopuri, R. MuraliKrishna, T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med., 2012, 5(5), 391-395.
[http://dx.doi.org/10.1016/S1995-7645(12)60065-0] [PMID: 22546657]
[247]
Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol., 2018, 27(1), 219-225.
[http://dx.doi.org/10.1007/s10068-017-0246-4] [PMID: 30263743]
[248]
You, B.R.; Yoo, J.M.; Baek, S.Y.; Kim, M.R. Anti-inflammatory effect of aged black garlic on 12-O-tetradecanoylphorbol-13-acetate-induced dermatitis in mice. Nutr. Res. Pract., 2019, 13(3), 189-195.
[http://dx.doi.org/10.4162/nrp.2019.13.3.189] [PMID: 31214286]
[249]
Zhang, X.; Zhu, Y.; Duan, W.; Feng, C.; He, X. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol. Med. Rep., 2015, 11(4), 2755-2760.
[http://dx.doi.org/10.3892/mmr.2014.3109] [PMID: 25523417]
[250]
Dubey, H.; Singh, A.; Patole, A.M.; Tenpe, C.R. Antihypertensive effect of allicin in dexamethasone-induced hypertensive rats. Integr. Med. Res., 2017, 6(1), 60-65.
[http://dx.doi.org/10.1016/j.imr.2016.12.002] [PMID: 28462145]
[251]
Mathew, B.; Biju, R. Neuroprotective effects of garlic a review. Libyan J. Med., 2008, 3(1), 23-33.
[PMID: 21499478]
[252]
Wanwimolruk, S.; Prachayasittikul, V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1). EXCLI J., 2014, 13, 347-391.
[PMID: 26417265]
[253]
Davenport, D.M.; Wargovich, M.J. Modulation of cytochrome P450 enzymes by organosulfur compounds from garlic. Food Chem. Toxicol., 2005, 43(12), 1753-1762.
[http://dx.doi.org/10.1016/j.fct.2005.05.018] [PMID: 16000231]
[254]
Alkreathy, H.M.; AlShehri, N.F.; Kamel, F.O.; Alghamdi, A.K.; Esmat, A.; Karim, S. Aged garlic extract potentiates doxorubicin cytotoxicity in human breast cancer cells. Trop. J. Pharm. Res., 2020, 19(8), 1669-1676.
[http://dx.doi.org/10.4314/tjpr.v19i8.15]
[255]
Wang, Z.; Xia, Q.; Cui, J.; Diao, Y.; Li, J. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncol. Rep., 2014, 31(6), 2720-2726.
[http://dx.doi.org/10.3892/or.2014.3154] [PMID: 24788927]
[256]
Berginc, K.; Kristl, A. The mechanisms responsible for garlic - drug interactions and their in vivo relevance. Curr. Drug Metab., 2013, 14(1), 90-101.
[http://dx.doi.org/10.2174/138920013804545188] [PMID: 21838705]
[257]
Wang, Y.; Zou, M.; Zhao, N.; Ren, J.; Zhou, H.; Cheng, G. Effect of diallyl trisulfide on the pharmacokinetics of dipyridamole in rats. Arch. Pharm. Res., 2011, 34(11), 1957-1964.
[http://dx.doi.org/10.1007/s12272-011-1116-x] [PMID: 22139695]
[258]
Wang, Y.; Zou, M.J.; Zhao, N.; Ren, J.G.; Zhou, H.; Cheng, G. Effect of diallyl trisulfide on the pharmacokinetics of nifedipine in rats. J. Food Sci., 2011, 76(1), T30-T34.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01960.x] [PMID: 21535728]
[259]
Asdaq, S.M.B.; Inamdar, M.N. Pharmacodynamic and pharmacokinetic interactions of propranolol with garlic (Allium sativum) in rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-11.
[http://dx.doi.org/10.1093/ecam/neq076] [PMID: 21792365]
[260]
Berginc, K.; Milisav, I.; Kristl, A. Garlic flavonoids and organosulfur compounds: Impact on the hepatic pharmacokinetics of saquinavir and darunavir. Drug Metab. Pharmacokinet., 2010, 25(6), 521-530.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RG-053] [PMID: 20930421]
[261]
Asdaq, S.M.B.; Inamdar, M.N. The potential for interaction of hydrochlorothiazide with garlic in rats. Chem. Biol. Interact., 2009, 181(3), 472-479.
[http://dx.doi.org/10.1016/j.cbi.2009.07.022] [PMID: 19660444]
[262]
Wang, Z.; Yang, Y.; Liu, M.; Wei, Y.; Liu, J.; Pei, H.; Li, H. Rhizoma coptidis for alzheimer’s disease and vascular dementia: A literature review. Curr. Vasc. Pharmacol., 2020, 18(4), 358-368.
[http://dx.doi.org/10.2174/1570161117666190710151545] [PMID: 31291876]
[263]
Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol., 2019, 57(1), 193-225.
[http://dx.doi.org/10.1080/13880209.2019.1577466] [PMID: 30963783]
[264]
Ma, B.L.; Ma, Y.M. Pharmacokinetic properties, potential herb-drug interactions and acute toxicity of oral Rhizoma coptidis alkaloids. Expert Opin. Drug Metab. Toxicol., 2013, 9(1), 51-61.
[http://dx.doi.org/10.1517/17425255.2012.722995] [PMID: 22998215]
[265]
Han, Y.L.; Yu, H.L.; Li, D.; Meng, X.L.; Zhou, Z.Y.; Yu, Q.; Zhang, X.Y.; Wang, F.J.; Guo, C. In vitro inhibition of Huanglian [Rhizoma coptidis (L.)] and its six active alkaloids on six cytochrome P450 isoforms in human liver microsomes. Phytother. Res., 2011, 25(11), 1660-1665.
[http://dx.doi.org/10.1002/ptr.3475] [PMID: 21425377]
[266]
Vrzal, R.; Zdařilová, A.; Ulrichová, J.; Bláha, L.; Giesy, J.P.; Dvořák, Z. Activation of the aryl hydrocarbon receptor by berberine in HepG2 and H4IIE cells: Biphasic effect on CYP1A1. Biochem. Pharmacol., 2005, 70(6), 925-936.
[http://dx.doi.org/10.1016/j.bcp.2005.06.016] [PMID: 16046213]
[267]
Chu, C.C.; Pan, K.L.; Yao, H.T.; Hsu, J.T.A. Development of a whole-cell screening system for evaluation of the human CYP1A2-mediated metabolism. Biotechnol. Bioeng., 2011, 108(12), 2932-2940.
[http://dx.doi.org/10.1002/bit.23256] [PMID: 21755496]
[268]
Chatterjee, P.; Franklin, M.R. Human cytochrome p450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components. Drug Metab. Dispos., 2003, 31(11), 1391-1397.
[http://dx.doi.org/10.1124/dmd.31.11.1391] [PMID: 14570772]
[269]
Raner, G.M.; Cornelious, S.; Moulick, K.; Wang, Y.; Mortenson, A.; Cech, N.B. Effects of herbal products and their constituents on human cytochrome P4502E1 activity. Food Chem. Toxicol., 2007, 45(12), 2359-2365.
[http://dx.doi.org/10.1016/j.fct.2007.06.012] [PMID: 17658211]
[270]
Guo, Y.; Chen, Y.; Tan, Z.; Klaassen, C.D.; Zhou, H. Repeated administration of berberine inhibits cytochromes P450 in humans. Eur. J. Clin. Pharmacol., 2012, 68(2), 213-217.
[http://dx.doi.org/10.1007/s00228-011-1108-2] [PMID: 21870106]
[271]
Guo, Y.; Pope, C.; Cheng, X.; Zhou, H.; Klaassen, C.D. Dose-response of berberine on hepatic cytochromes P450 mRNA expression and activities in mice. J. Ethnopharmacol., 2011, 138(1), 111-118.
[http://dx.doi.org/10.1016/j.jep.2011.08.058] [PMID: 21920422]
[272]
Shi, R.; Xu, Z.; Xu, X.; Jin, J.; Zhao, Y.; Wang, T.; Li, Y.; Ma, Y. Organic cation transporter and multidrug and toxin extrusion 1 co-mediated interaction between metformin and berberine. Eur. J. Pharm. Sci., 2019, 127, 282-290.
[http://dx.doi.org/10.1016/j.ejps.2018.11.010] [PMID: 30428337]
[273]
Kwon, M.; Choi, Y.A.; Choi, M.K.; Song, I.S. Organic cation transporter-mediated drug-drug interaction potential between berberine and metformin. Arch. Pharm. Res., 2015, 38(5), 849-856.
[http://dx.doi.org/10.1007/s12272-014-0510-6] [PMID: 25359200]
[274]
Su, C.R.; Ueng, Y.F.; Dung, N.X.; Vijaya Bhaskar Reddy, M.; Wu, T.S. Cytochrome P3A4 inhibitors and other constituents of fibraurea tinctoria. J. Nat. Prod., 2007, 70(12), 1930-1933.
[http://dx.doi.org/10.1021/np0704248] [PMID: 17994701]
[275]
Zhou, Y.; He, P.; Liu, A.; Zhang, L.; Liu, Y.; Dai, R. Drug-drug interactions between ketoconazole and berberine in rats: Pharmacokinetic effects benefit pharmacodynamic synergism. Phytother. Res., 2012, 26(5), 772-777.
[http://dx.doi.org/10.1002/ptr.3621] [PMID: 22114028]
[276]
Liu, L.; Geng, G.H.; Sun, S.; Li, P.H.; Li, X.H. Effects of berberine on pharmacokinetics of amlodipine in rats and its potential mechanism. Lat. Am. J. Pharm., 2018, 37(7), 1354-1360.
[277]
Li, H.; Liu, L.; Xie, L.; Gan, D.; Jiang, X. Effects of berberine on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its mechanism. Pharm. Biol., 2016, 54(12), 2886-2894.
[http://dx.doi.org/10.1080/13880209.2016.1190762] [PMID: 27327872]
[278]
Cui, H.; Wang, J.; Zhang, Q.; Dang, M.; Liu, H.; Dong, Y.; Zhang, L.; Yang, F.; Wu, J.; Tong, X. In vivo and in vitro study on drug-drug interaction of lovastatin and berberine from pharmacokinetic and HEPG2 cell metabolism studies. Molecules, 2016, 21(4), 464.
[http://dx.doi.org/10.3390/molecules21040464] [PMID: 27070564]
[279]
Li, G.; Zhao, M.; Zhao, L. The drug interaction potential of berberine hydrochloride when co-administered with simvastatin, fenofibrate, gemfibrozil, metformin, glimepiride, nateglinide, pioglitazone and sitagliptin in beagles. Arab. J. Chem., 2022, 15(2), 103562.
[http://dx.doi.org/10.1016/j.arabjc.2021.103562]
[280]
Chrubasik-Hausmann, S.; Vlachojannis, J.; McLachlan, A.J. Understanding drug interactions with St John’s wort (Hypericum perforatum L.): Impact of hyperforin content. J. Pharm. Pharmacol., 2018, 71(1), 129-138.
[http://dx.doi.org/10.1111/jphp.12858] [PMID: 29411879]
[281]
Velingkar, V.S.; Gupta, G.L.; Hegde, N.B. A current update on phytochemistry, pharmacology and herb-drug interactions of] Hypericum perforatum. Phytochem. Rev., 2017, 16(4), 725-744.
[http://dx.doi.org/10.1007/s11101-017-9503-7]
[282]
Tian, J.; Zhang, F.; Cheng, J.; Guo, S.; Liu, P.; Wang, H. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. Sci. Rep., 2015, 4(1), 5632.
[http://dx.doi.org/10.1038/srep05632] [PMID: 25005489]
[283]
Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of parkinson’s disease. Cell. Mol. Neurobiol., 2016, 36(4), 521-530.
[http://dx.doi.org/10.1007/s10571-015-0230-6] [PMID: 26119304]
[284]
Hosseinzadeh, H.; Karimi, G.R.; Rakhshanizadeh, M. Anticonvulsant effect of Hypericum perforatum: Role of nitric oxide. J. Ethnopharmacol., 2005, 98(1-2), 207-208.
[http://dx.doi.org/10.1016/j.jep.2004.12.007] [PMID: 15763385]
[285]
Brenn, A.; Grube, M.; Jedlitschky, G.; Fischer, A.; Strohmeier, B.; Eiden, M.; Keller, M.; Groschup, M.H.; Vogelgesang, S.St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol., 2014, 24(1), 18-24.
[http://dx.doi.org/10.1111/bpa.12069] [PMID: 23701205]
[286]
Ševčovičová, A.; Šemeláková, M.; Plšíková, J.; Loderer, D.; Imreová, P.; Gálová, E.; Kožurková, M.; Miadoková, E.; Fedoročko, P. DNA-protective activities of hyperforin and aristoforin. Toxicol. in vitro, 2015, 29(3), 631-637.
[http://dx.doi.org/10.1016/j.tiv.2015.01.016] [PMID: 25678043]
[287]
Verotta, L.; Appendino, G.; Bombardelli, E.; Brun, R. In vitro antimalarial activity of hyperforin, a prenylated acylphloroglucinol. A structure-activity study. Bioorg. Med. Chem. Lett., 2007, 17(6), 1544-1548.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.100] [PMID: 17234416]
[288]
Mills, E.; Montori, V.M.; Wu, P.; Gallicano, K.; Clarke, M.; Guyatt, G. Interaction of St John’s wort with conventional drugs: Systematic review of clinical trials. BMJ, 2004, 329(7456), 27-30.
[http://dx.doi.org/10.1136/bmj.329.7456.27] [PMID: 15231618]
[289]
Dresser, G.; Schwarz, U.I.; Wilkinson, G.R.; Kim, R.B. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin. Pharmacol. Ther., 2003, 73(1), 41-50.
[http://dx.doi.org/10.1067/mcp.2003.10] [PMID: 12545142]
[290]
Schwarz, U.I.; Hanso, H.; Oertel, R.; Miehlke, S.; Kuhlisch, E.; Glaeser, H.; Hitzl, M.; Dresser, G.K.; Kim, R.B.; Kirch, W. Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther., 2007, 81(5), 669-678.
[http://dx.doi.org/10.1038/sj.clpt.6100191] [PMID: 17392718]
[291]
Nicolussi, S.; Drewe, J.; Butterweck, V.; Meyer zu Schwabedissen, H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol., 2020, 177(6), 1212-1226.
[http://dx.doi.org/10.1111/bph.14936] [PMID: 31742659]
[292]
Arold, G.; Donath, F.; Maurer, A.; Diefenbach, K.; Bauer, S.; Henneicke-von, Z.H.H.; Friede, M.; Roots, I. No relevant interaction with alprazolam, caffeine, tolbutamide, and digoxin by treatment with a low-hyperforin St John’s wort extract. Planta Med., 2005, 71(4), 331-337.
[http://dx.doi.org/10.1055/s-2005-864099] [PMID: 15856409]
[293]
Markert, C.; Ngui, P.; Hellwig, R.; Wirsching, T.; Kastner, I.M.; Riedel, K.D.; Burhenne, J.; Weiss, J.; Mikus, G.; Haefeli, W.E. Influence of St. John’s wort on the steadystate pharmacokinetics and metabolism of bosentan. Int. J. Clin. Pharmacol. Ther., 2014, 52(4), 328-336.
[http://dx.doi.org/10.5414/CP202048] [PMID: 24472406]
[294]
Markowitz, J.S.; Donovan, J.L.; DeVane, C.L.; Taylor, R.M.; Ruan, Y.; Wang, J.S.; Chavin, K.D. Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA, 2003, 290(11), 1500-1504.
[http://dx.doi.org/10.1001/jama.290.11.1500] [PMID: 13129991]
[295]
Lau, W.C.; Welch, T.D.; Shields, T.; Rubenfire, M.; Tantry, U.S.; Gurbel, P.A. The effect of St John’s wort on the pharmacodynamic response of clopidogrel in hyporesponsive volunteers and patients: Increased platelet inhibition by enhancement of CYP3A4 metabolic activity. J. Cardiovasc. Pharmacol., 2011, 57(1), 86-93.
[http://dx.doi.org/10.1097/FJC.0b013e3181ffe8d0] [PMID: 20980920]
[296]
Johne, A.; Schmider, J.; Brockmöller, J.; Stadelmann, A.M.; Störmer, E.; Bauer, S.; Scholler, G.; Langheinrich, M.; Roots, I. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John’s wort (Hypericum] perforatum). J. Clin. Psychopharmacol., 2002, 22(1), 46-54.
[http://dx.doi.org/10.1097/00004714-200202000-00008] [PMID: 11799342]
[297]
Lei, H.P.; Yu, X.Y.; Xie, H.T.; Li, H.H.; Fan, L.; Dai, L.L.; Chen, Y.; Zhou, H.H. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica, 2010, 40(4), 275-281.
[http://dx.doi.org/10.3109/00498250903509383] [PMID: 20102294]
[298]
Gurley, B.J.; Swain, A.; Hubbard, M.A.; Williams, D.K.; Barone, G.; Hartsfield, F.; Tong, Y.; Carrier, D.J.; Cheboyina, S.; Battu, S.K. Clinical assessment of CYP2D6‐mediated herb-drug interactions in humans: Effects of milk thistle, black cohosh, goldenseal, kava kava, St. John’s wort, and Echinacea. Mol. Nutr. Food Res., 2008, 52(7), 755-763.
[http://dx.doi.org/10.1002/mnfr.200600300] [PMID: 18214849]
[299]
Scholz, I.; Liakoni, E.; Hammann, F.; Grafinger, K.E.; Duthaler, U.; Nagler, M.; Krähenbühl, S.; Haschke, M. Effects of Hypericum perforatum (St John’s wort) on the pharmacokinetics and pharmacodynamics of rivaroxaban in humans. Br. J. Clin. Pharmacol., 2021, 87(3), 1466-1474.
[http://dx.doi.org/10.1111/bcp.14553] [PMID: 32959922]
[300]
Huppertz, A.; Werntz, L.; Meid, A.D.; Foerster, K.I.; Burhenne, J.; Czock, D.; Mikus, G.; Haefeli, W.E. Rivaroxaban and macitentan can be coadministered without dose adjustment but the combination of rivaroxaban and St John’s wort should be avoided. Br. J. Clin. Pharmacol., 2018, 84(12), 2903-2913.
[http://dx.doi.org/10.1111/bcp.13757] [PMID: 30192025]
[301]
Stage, T.B.; Pedersen, R.S.; Damkier, P.; Christensen, M.M.H.; Feddersen, S.; Larsen, J.T.; Højlund, K.; Brøsen, K. Intake of St John’s wort improves the glucose tolerance in healthy subjects who ingest metformin compared with metformin alone. Br. J. Clin. Pharmacol., 2015, 79(2), 298-306.
[http://dx.doi.org/10.1111/bcp.12510] [PMID: 25223504]
[302]
Fan, L.; Zhou, G.; Guo, D.; Liu, Y.L.; Chen, W.Q.; Liu, Z.Q.; Tan, Z.R.; Sheng, D.; Zhou, H.H.; Zhang, W. The pregnane X receptor agonist St John’s Wort has no effects on the pharmacokinetics and pharmacodynamics of repaglinide. Clin. Pharmacokinet., 2011, 50(9), 605-611.
[http://dx.doi.org/10.2165/11587310-000000000-00000] [PMID: 21827215]
[303]
Wang, Z.; Gorski, J.; Hamman, M.; Huang, S.; Lesko, L.; Hall, S. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin. Pharmacol. Ther., 2001, 70(4), 317-326.
[http://dx.doi.org/10.1016/S0009-9236(01)17221-8] [PMID: 11673747]
[304]
Xu, H.; Williams, K.M.; Liauw, W.S.; Murray, M.; Day, R.O.; McLachlan, A.J. Effects of St John’s wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br. J. Pharmacol., 2008, 153(7), 1579-1586.
[http://dx.doi.org/10.1038/sj.bjp.0707685] [PMID: 18204476]
[305]
Peltoniemi, M.A.; Saari, T.I.; Hagelberg, N.M.; Laine, K.; Neuvonen, P.J.; Olkkola, K.T. St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam. Clin. Pharmacol., 2012, 26(6), 743-750.
[http://dx.doi.org/10.1111/j.1472-8206.2011.00954.x] [PMID: 21635359]
[306]
Nieminen, T.H.; Hagelberg, N.M.; Saari, T.I.; Neuvonen, M.; Laine, K.; Neuvonen, P.J.; Olkkola, K.T. St John’s wort greatly reduces the concentrations of oral oxycodone. Eur. J. Pain, 2010, 14(8), 854-859.
[http://dx.doi.org/10.1016/j.ejpain.2009.12.007] [PMID: 20106684]
[307]
Smith, P.; Bullock, J.M.; Booker, B.M.; Haas, C.E.; Berenson, C.S.; Jusko, W.J. The influence of St. John’s wort on the pharmacokinetics and protein binding of imatinib mesylate. Pharmacotherapy, 2004, 24(11), 1508-1514.
[http://dx.doi.org/10.1592/phco.24.16.1508.50958] [PMID: 15537555]
[308]
Mathijssen, R.H.J.; Verweij, J.; de Bruijn, P.; Loos, W.J.; Sparreboom, A. Effects of St. John’s wort on irinotecan metabolism. J. Natl. Cancer Inst., 2002, 94(16), 1247-1249.
[http://dx.doi.org/10.1093/jnci/94.16.1247] [PMID: 12189228]
[309]
Sugimoto, K.; Ohmori, M.; Tsuruoka, S.; Nishiki, K.; Kawaguchi, A.; Harada, K.; Arakawa, M.; Sakamoto, K.; Masada, M.; Miyamori, I.; Fujimura, A. Different effects of St John’s Wort on the pharmacokinetics of simvastatin and pravastatin. Clin. Pharmacol. Ther., 2001, 70(6), 518-524.
[http://dx.doi.org/10.1067/mcp.2001.120025] [PMID: 11753267]
[310]
Gurley, B.J.; Swain, A.; Williams, D.K.; Barone, G.; Battu, S.K. Gauging the clinical significance of P‐glycoprotein‐mediated herb‐drug interactions: Comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol. Nutr. Food Res., 2008, 52(7), 772-779.
[http://dx.doi.org/10.1002/mnfr.200700081] [PMID: 18214850]
[311]
Tannergren, C.; Engman, H.; Knutson, L.; Hedeland, M.; Bondesson, U.; Lennernäs, H. St John’s wort decreases the bioavailability of R- and S-verapamil through induction of the first-pass metabolism*1. Clin. Pharmacol. Ther., 2004, 75(4), 298-309.
[http://dx.doi.org/10.1016/j.clpt.2003.12.012] [PMID: 15060508]
[312]
Lundahl, A.; Hedeland, M.; Bondesson, U.; Knutson, L.; Lennernäs, H. The effect of St. John’s wort on the pharmacokinetics, metabolism and biliary excretion of finasteride and its metabolites in healthy men. Eur. J. Pharm. Sci., 2009, 36(4-5), 433-443.
[http://dx.doi.org/10.1016/j.ejps.2008.11.009] [PMID: 19073252]
[313]
Wang, L.; Zhou, G.; Zhu, B.; Wu, J.; Wang, J.G.; Abd El-Aty, A.M.; Li, T.; Liu, J.; Yang, T.L.; Wang, D.; Zhong, X.Y.; Zhou, H.H. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin. Pharmacol. Ther., 2004, 75(3), 191-197.
[http://dx.doi.org/10.1016/j.clpt.2003.09.014] [PMID: 15001970]
[314]
Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol., 2004, 57(5), 592-599.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02051.x] [PMID: 15089812]
[315]
Wenk, M.; Todesco, L.; Krähenbühl, S. Effect of St John’s wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females. Br. J. Clin. Pharmacol., 2004, 57(4), 495-499.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02049.x] [PMID: 15025748]
[316]
Morimoto, T.; Kotegawa, T.; Tsutsumi, K.; Ohtani, Y.; Imai, H.; Nakano, S. Effect of St. John’s wort on the pharmacokinetics of theophylline in healthy volunteers. J. Clin. Pharmacol., 2004, 44(1), 95-101.
[http://dx.doi.org/10.1177/0091270003261496] [PMID: 14681347]
[317]
Baliga, M.S.; Haniadka, R.; Pereira, M.M.; D’Souza, J.J.; Pallaty, P.L.; Bhat, H.P.; Popuri, S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr., 2011, 51(6), 499-523.
[http://dx.doi.org/10.1080/10408391003698669] [PMID: 21929329]
[318]
Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem., 2020, 86, 108486.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108486] [PMID: 32827666]
[319]
Unuofin, J.O.; Masuku, N.P.; Paimo, O.K.; Lebelo, S.L. Ginger from farmyard to town: Nutritional and pharmacological applications. Front. Pharmacol., 2021, 12, 779352.
[http://dx.doi.org/10.3389/fphar.2021.779352] [PMID: 34899343]
[320]
Kimura, Y.; Ito, H.; Hatano, T. Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity. Biol. Pharm. Bull., 2010, 33(12), 1977-1982.
[http://dx.doi.org/10.1248/bpb.33.1977] [PMID: 21139236]
[321]
Nabekura, T.; Kamiyama, S.; Kitagawa, S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun., 2005, 327(3), 866-870.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.081] [PMID: 15649425]
[322]
Chiang, H.M.; Chao, P.D.L.; Hsiu, S.L.; Wen, K.C.; Tsai, S.Y.; Hou, Y.C. Ginger significantly decreased the oral bioavailability of cyclosporine in rats. Am. J. Chin. Med., 2006, 34(5), 845-855.
[http://dx.doi.org/10.1142/S0192415X06004338] [PMID: 17080549]
[323]
Ramli, E.S.M.; Suhaimi, F.; Asri, S.F.M.; Ahmad, F.; Soelaiman, I.N. Glycyrrhizic acid (GCA) as 11β-hydroxysteroid dehydrogenase inhibitor exerts protective effect against glucocorticoid-induced osteoporosis. J. Bone Miner. Metab., 2013, 31(3), 262-273.
[http://dx.doi.org/10.1007/s00774-012-0413-x] [PMID: 23274351]
[324]
Wang, C.; Chen, L.; Xu, C.; Shi, J.; Chen, S.; Tan, M.; Chen, J.; Zou, L.; Chen, C.; Liu, Z.; Liu, X. A comprehensive review for phytochemical, pharmacological, and biosynthesis studies on glycyrrhiza spp. Am. J. Chin. Med., 2020, 48(1), 17-45.
[http://dx.doi.org/10.1142/S0192415X20500020] [PMID: 31931596]
[325]
Hasan, M.K.; Ara, I.; Mondal, M.S.A.; Kabir, Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon, 2021, 7(6), e07240.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07240] [PMID: 34189299]
[326]
Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological effects of glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother. Res., 2015, 29(12), 1868-1886.
[http://dx.doi.org/10.1002/ptr.5487] [PMID: 26462981]
[327]
Jiang, M.; Zhao, S.; Yang, S.; Lin, X.; He, X.; Wei, X.; Song, Q.; Li, R.; Fu, C.; Zhang, J.; Zhang, Z. An “essential herbal medicine”—licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol., 2020, 249, 112439.
[http://dx.doi.org/10.1016/j.jep.2019.112439] [PMID: 31811935]
[328]
Wang, X.; Zhang, H.; Chen, L.; Shan, L.; Fan, G.; Gao, X. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol., 2013, 150(3), 781-790.
[http://dx.doi.org/10.1016/j.jep.2013.09.055] [PMID: 24201019]
[329]
Xin, H.; Qi, X.Y.; Wu, J.J.; Wang, X.X.; Li, Y.; Hong, J.Y.; He, W.; Xu, W.; Ge, G.B.; Yang, L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyl transferases. Food Chem. Toxicol., 2016, 90, 112-122.
[http://dx.doi.org/10.1016/j.fct.2016.02.007] [PMID: 26875642]
[330]
Tu, J.H.; Hu, D.L.; Dai, L.L.; Sun, Y.; Fan, L.; Zhang, M.; Tan, Z.R.; Chen, Y.; Li, Z.; Zhou, H.H. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Xenobiotica, 2010, 40(6), 393-399.
[http://dx.doi.org/10.3109/00498251003748095] [PMID: 20350051]
[331]
Tu, J.H.; He, Y.J.; Chen, Y.; Fan, L.; Zhang, W.; Tan, Z.R.; Huang, Y.F.; Guo, D.; Hu, D.L.; Wang, D.; Zhou, H-H. Effect of glycyrrhizin on the activity of CYP3A enzyme in humans. Eur. J. Clin. Pharmacol., 2010, 66(8), 805-810.
[http://dx.doi.org/10.1007/s00228-010-0814-5] [PMID: 20393696]
[332]
Li, G.; Simmler, C.; Chen, L.; Nikolic, D.; Chen, S.N.; Pauli, G.F.; van Breemen, R.B. Cytochrome p450 inhibition by three licorice species and fourteen licorice constituents. Eur. J. Pharm. Sci., 2017, 109, 182-190.
[http://dx.doi.org/10.1016/j.ejps.2017.07.034] [PMID: 28774812]
[333]
Lin, S.P.; Tsai, S.Y.; Hou, Y.C.; Chao, P.D.L. Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats. J. Agric. Food Chem., 2009, 57(5), 1854-1859.
[http://dx.doi.org/10.1021/jf8029918] [PMID: 19209930]
[334]
Abe, K.; Higurashi, T.; Takahashi, M.; Maeda-Minami, A.; Kawano, Y.; Miyazaki, S.; Mano, Y. Concomitant use of high-dose methotrexate and glycyrrhizin affects pharmacokinetics of methotrexate, resulting in hepatic toxicity. in vivo, 2021, 35(4), 2163-2169.
[http://dx.doi.org/10.21873/invivo.12487] [PMID: 34182493]
[335]
Song, J.; Dai, H.; Zhang, H.; Liu, Y.; Zhang, W. Influence of glycyrrhetinic acid on the pharmacokinetics of warfarin in rats. Xenobiotica, 2020, 50(5), 602-605.
[http://dx.doi.org/10.1080/00498254.2019.1671637] [PMID: 31542982]
[336]
Mima, M.; Mallah, E.; Abudayyih, W.; Elhajji, F.D.; Salih, H.; Zakaraya, Z.; Othman, B.; Arafat, T. Pharmacokinetics and pharmacodynamics interaction of warfarin in the presence of beverage juices (licorice and pomegranate) in rat plasma by using LC/MS. Lat. Am. J. Pharm., 2017, 36(6), 1181-1192.
[337]
Kim, S.B.; Cho, H.J.; Kim, Y.S.; Kim, D.D.; Yoon, I.S. Modulation of cytochrome p450 activity by 18-glycyrrhetic acid and its consequence on buspirone pharmacokinetics in rats. Phytother. Res., 2015, 29(8), 1188-1194.
[http://dx.doi.org/10.1002/ptr.5365] [PMID: 26010440]
[338]
Chen, Q.; Chen, H.; Wang, W.; Liu, J.; Liu, W.; Ni, P.; Sang, G.; Wang, G.; Zhou, F.; Zhang, J. Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition. Eur. J. Pharm. Sci., 2017, 106, 313-327.
[http://dx.doi.org/10.1016/j.ejps.2017.06.015] [PMID: 28627473]
[339]
Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle ( Silybum marianum ): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res., 2018, 32(11), 2202-2213.
[http://dx.doi.org/10.1002/ptr.6171] [PMID: 30080294]
[340]
Abenavoli, L.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle in liver diseases: Past, present, future. Phytother. Res., 2010, 24(10), 1423-1432.
[http://dx.doi.org/10.1002/ptr.3207] [PMID: 20564545]
[341]
Polachi, N.; Bai, G.; Li, T.; Chu, Y.; Wang, X.; Li, S.; Gu, N.; Wu, J.; Li, W.; Zhang, Y.; Zhou, S.; Sun, H.; Liu, C. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer - A comprehensive review. Eur. J. Med. Chem., 2016, 123, 577-595.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.070] [PMID: 27517806]
[342]
Stolf, A.M.; Cardoso, C.C.; Acco, A. Effects of silymarin on diabetes mellitus complications: A review. Phytother. Res., 2017, 31(3), 366-374.
[http://dx.doi.org/10.1002/ptr.5768] [PMID: 28124457]
[343]
Devi, K.P.; Malar, D.S.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. A mini review on the chemistry and neuroprotective effects of silymarin. Curr. Drug Targets, 2017, 18(13), 1529-1536.
[PMID: 28025940]
[344]
Beckmann-Knopp, S.; Rietbrock, S.; Weyhenmeyer, R.; Böcker, R.H.; Beckurts, K.T.; Lang, W.; Hunz, M.; Fuhr, U. Inhibitory effects of silibinin on cytochrome P-450 enzymes in human liver microsomes. Pharmacol. Toxicol., 2000, 86(6), 250-256.
[http://dx.doi.org/10.1111/j.0901-9928.2000.860602.x] [PMID: 10895987]
[345]
Poór, M.; Boda, G.; Mohos, V.; Kuzma, M.; Bálint, M.; Hetényi, C.; Bencsik, T. Pharmacokinetic interaction of diosmetin and silibinin with other drugs: Inhibition of CYP2C9-mediated biotransformation and displacement from serum albumin. Biomed. Pharmacother., 2018, 102, 912-921.
[http://dx.doi.org/10.1016/j.biopha.2018.03.146] [PMID: 29710546]
[346]
Jančová, P.; Anzenbacherová, E.; Papoušková, B.; Lemr, K.; Lužná, P.; Veinlichová, A.; Anzenbacher, P.; Šimánek, V. Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab. Dispos., 2007, 35(11), 2035-2039.
[http://dx.doi.org/10.1124/dmd.107.016410] [PMID: 17670841]
[347]
Faisal, Z.; Mohos, V.; Fliszár-Nyúl, E.; Valentová, K.; Káňová, K.; Lemli, B.; Kunsági-Máté, S.; Poór, M. Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. Biomed. Pharmacother., 2021, 138, 111459.
[http://dx.doi.org/10.1016/j.biopha.2021.111459] [PMID: 33706132]
[348]
Kawaguchi-Suzuki, M.; Frye, R.F.; Zhu, H.J.; Brinda, B.J.; Chavin, K.D.; Bernstein, H.J.; Markowitz, J.S. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab. Dispos., 2014, 42(10), 1611-1616.
[http://dx.doi.org/10.1124/dmd.114.057232] [PMID: 25028567]
[349]
Venkataramanan, R.; Ramachandran, V.; Komoroski, B.J.; Zhang, S.; Schiff, P.L.; Strom, S.C. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab. Dispos., 2000, 28(11), 1270-1273.
[PMID: 11038151]
[350]
Köck, K.; Xie, Y.; Hawke, R.L.; Oberlies, N.H.; Brouwer, K.L.R. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab. Dispos., 2013, 41(5), 958-965.
[http://dx.doi.org/10.1124/dmd.112.048272] [PMID: 23401473]
[351]
Nguyen, H.; Zhang, S.; Morris, M.E. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci., 2003, 92(2), 250-257.
[http://dx.doi.org/10.1002/jps.10283] [PMID: 12532374]
[352]
Mills, E.; Wilson, K.; Clarke, M.; Foster, B.; Walker, S.; Rachlis, B.; DeGroot, N.; Montori, V.M.; Gold, W.; Phillips, E.; Myers, S.; Gallicano, K. Milk thistle and indinavir: A randomized controlled pharmacokinetics study and meta-analysis. Eur. J. Clin. Pharmacol., 2005, 61(1), 1-7.
[http://dx.doi.org/10.1007/s00228-004-0843-z] [PMID: 15666173]
[353]
DiCenzo, R.; Shelton, M.; Jordan, K.; Koval, C.; Forrest, A.; Reichman, R.; Morse, G. Coadministration of milk thistle and indinavir in healthy subjects. Pharmacotherapy, 2003, 23(7), 866-870.
[http://dx.doi.org/10.1592/phco.23.7.866.32723] [PMID: 12885100]
[354]
Gurley, B.J.; Barone, G.W.; Williams, D.K.; Carrier, J.; Breen, P.; Yates, C.R.; Song, P.; Hubbard, M.A.; Tong, Y.; Cheboyina, S. Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab. Dispos., 2006, 34(1), 69-74.
[http://dx.doi.org/10.1124/dmd.105.006312] [PMID: 16221754]
[355]
Gurley, B.; Hubbard, M.A.; Williams, D.K.; Thaden, J.; Tong, Y.; Gentry, W.B.; Breen, P.; Carrier, D.J.; Cheboyina, S. Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J. Clin. Pharmacol., 2006, 46(2), 201-213.
[http://dx.doi.org/10.1177/0091270005284854] [PMID: 16432272]
[356]
Fuhr, U.; Beckmann-Knopp, S.; Jetter, A.; Lück, H.; Mengs, U. The effect of silymarin on oral nifedipine pharmacokinetics. Planta Med., 2007, 73(14), 1429-1435.
[http://dx.doi.org/10.1055/s-2007-990256] [PMID: 17968815]
[357]
Rao, B.N.; Srinivas, M.; Kumar, Y.S.; Rao, Y.M. Effect of silymarin on the oral bioavailability of ranitidine in healthy human volunteers. Drug Metabol. Drug Interact., 2007, 22(2-3), 175-185.
[http://dx.doi.org/10.1515/DMDI.2007.22.2-3.175] [PMID: 17708067]
[358]
Deng, J.W.; Shon, J.H.; Shin, H.J.; Park, S.J.; Yeo, C.W.; Zhou, H.H.; Song, I.S.; Shin, J.G. Effect of silymarin supplement on the pharmacokinetics of rosuvastatin. Pharm. Res., 2008, 25(8), 1807-1814.
[http://dx.doi.org/10.1007/s11095-007-9492-0] [PMID: 18236139]
[359]
Rajnarayana, K.; Reddy, M.S.; Vidyasagar, J.; Krishna, D.R. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Arzneimittelforschung, 2004, 54(2), 109-113.
[PMID: 15038460]
[360]
Yamsani, S.K.; Yamsani, M.R. Effect of silymarin pretreatment on the bioavailability of domperidone in healthy human volunteers. Drug Metabol. Drug Interact., 2014, 29(4), 261-267.
[http://dx.doi.org/10.1515/dmdi-2014-0013] [PMID: 25029082]
[361]
Liao, S.; Jin, X.; Li, J.; Zhang, T.; Zhang, W.; Shi, W.; Fan, S.; Wang, X.; Wang, J.; Zhong, B.; Zhang, Z. Effects of silymarin, glycyrrhizin, and oxymatrine on the pharmacokinetics of ribavirin and its major metabolite in rats. Phytother. Res., 2016, 30(4), 618-626.
[http://dx.doi.org/10.1002/ptr.5567] [PMID: 26800424]
[362]
Voruganti, S.; Yamsani, S.K.; Yamsani, M.R. Effect of silibinin on the pharmacokinetics of nitrendipine in rabbits. Eur. J. Drug Metab. Pharmacokinet., 2014, 39(4), 277-281.
[http://dx.doi.org/10.1007/s13318-013-0156-7] [PMID: 24092617]
[363]
Li, Y.; Wu, Y.; Li, Y.J.; Meng, L.; Ding, C.Y.; Dong, Z.J. Effects of silymarin on the in vivo pharmacokinetics of simvastatin and its active metabolite in rats. Molecules, 2019, 24(9), 1666.
[http://dx.doi.org/10.3390/molecules24091666] [PMID: 31035343]
[364]
Li, C.; Lee, M.Y.; Choi, J.S. Effects of silybinin, CYP3A4 and P-glycoprotein inhibitor in vitro, on the bioavailability of loratadine in rats. Pharmazie, 2010, 65(7), 510-514.
[PMID: 20662320]
[365]
Huang, S.; Zhang, D.; Li, Y.; Fan, H.; Liu, Y.; Huang, W.; Deng, C.; Wang, W.; Song, X. Schisandra sphenanthera: A comprehensive review of its botany, phytochemistry, pharmacology, and clinical applications. Am. J. Chin. Med., 2021, 49(7), 1577-1622.
[http://dx.doi.org/10.1142/S0192415X21500749] [PMID: 34559620]
[366]
Li, N.; Liu, J.; Wang, M.; Yu, Z.; Zhu, K.; Gao, J.; Wang, C.; Sun, J.; Chen, J.; Li, H. Sedative and hypnotic effects of Schisandrin B through increasing GABA/Glu ratio and upregulating the expression of GABAA in mice and rats. Biomed. Pharmacother., 2018, 103, 509-516.
[http://dx.doi.org/10.1016/j.biopha.2018.04.017] [PMID: 29677536]
[367]
Li, Z.; He, X.; Liu, F.; Wang, J.; Feng, J. A review of polysaccharides from schisandra chinensis and schisandra sphenanthera: Properties, functions and applications. Carbohydr. Polym., 2018, 184, 178-190.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.058] [PMID: 29352909]
[368]
Qin, X.L.; Yu, T.; Li, L.J.; Wang, Y.; Gu, H.M.; Wang, Y.T.; Huang, M.; Bi, H.C. Effect of long-term co-administration of Wuzhi tablet (Schisandra sphenanthera extract) and prednisone on the pharmacokinetics of tacrolimus. Phytomedicine, 2013, 20(3-4), 375-379.
[http://dx.doi.org/10.1016/j.phymed.2012.11.008] [PMID: 23267661]
[369]
Fu, R.; Wang, X.N.; Guo, C.H.; Li, Y.; Ding, C.Y.; Li, Y.J.; Dong, Z.J. Wuzhi capsule increased systemic exposure to methotrexate by inhibiting the expression of OAT1/3 and P-gp. Ann. Transl. Med., 2021, 9(10), 845.
[http://dx.doi.org/10.21037/atm-21-1303] [PMID: 34164479]
[370]
Liang, Y.; Zhou, Y.; Zhang, J.; Rao, T.; Zhou, L.; Xing, R.; Wang, Q.; Fu, H.; Hao, K.; Xie, L.; Wang, G. Pharmacokinetic compatibility of ginsenosides and Schisandra Lignans in Shengmai-san: From the perspective of p-glycoprotein. PLoS One, 2014, 9(6), e98717.
[http://dx.doi.org/10.1371/journal.pone.0098717] [PMID: 24922060]
[371]
Wei, H.; Tao, X.; Di, P.; Yang, Y.; Li, J.; Qian, X.; Feng, J.; Chen, W. Effects of traditional chinese medicine Wuzhi capsule on pharmacokinetics of tacrolimus in rats. Drug Metab. Dispos., 2013, 41(7), 1398-1403.
[http://dx.doi.org/10.1124/dmd.112.050302] [PMID: 23628674]
[372]
Xue, X.; Qin, X.; Xu, C.; Zhong, G.; Wang, Y.; Huang, M.; Bi, H. Effect of Wuzhi tablet (Schisandra sphenanthera extract) on the pharma-cokinetics of cyclosporin A in rats. Phytother. Res., 2013, 27(8), 1255-1259.
[http://dx.doi.org/10.1002/ptr.4849] [PMID: 22996305]
[373]
Yuan, F.; Liang, X.; Chen, X.; Qin, X.; Tan, C.; Wang, L. CYP2C19 is involved in the effect of Wuzhi tablet (Schisandra sphenanthera extract) and its constituents on the pharmacokinetics of intravenous voriconazole. Pharmazie, 2020, 75(11), 559-564.
[PMID: 33239129]
[374]
Luo, S.; Gu, E.; Chen, Y.; Zhou, S.; Fan, C.; Xu, R. Effect of quercetin on the pharmacokinetics of selexipag and its active metabolite in beagles. Pharm. Biol., 2022, 60(1), 1-8.
[http://dx.doi.org/10.1080/13880209.2021.2005636] [PMID: 34860644]
[375]
Cui, M.; Zhu, F.; Yin, Y.; Sui, Y.; Yan, X.; Chen, T. Influence of gegenqinlian decoction on pharmacokinetics and pharmacodynamics of atorvastatin calcium in hyperlipidemic rats. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(1), 117-126.
[http://dx.doi.org/10.1007/s13318-021-00738-5] [PMID: 34855161]
[376]
Cheng, Y.Y.; Tuzo, E.T.; Dalley, J.W.; Tsai, T.H. Dose-dependent effects of hedyotis diffusa extract on the pharmacokinetics of tamoxifen, 4-hydroxytamoxifen, and n-desmethyltamoxifen. Biomed. Pharmacother., 2022, 145, 112466.
[http://dx.doi.org/10.1016/j.biopha.2021.112466] [PMID: 34839255]
[377]
Yim, S.; You, B.H.; Chae, H.S.; Chin, Y.W.; Kim, H.; Choi, H.S.; Choi, Y.H. Multidrug and toxin extrusion protein 1-mediated interaction of metformin and Scutellariae radix in rats. Xenobiotica, 2017, 47(11), 998-1007.
[http://dx.doi.org/10.1080/00498254.2016.1257836] [PMID: 27817253]
[378]
Yu, C.P.; Hsieh, Y.C.; Shia, C.S.; Hsu, P.W.; Chen, J.Y.; Hou, Y.C.; Hsieh, Y.W. Increased systemic exposure of methotrexate by a poly-phenol-rich herb viamodulation on efflux transporters multidrug resistance-associated protein 2 and breast cancer resistance protein. J. Pharm. Sci., 2016, 105(1), 343-349.
[http://dx.doi.org/10.1016/j.xphs.2015.11.031] [PMID: 26852865]
[379]
Lai, M.Y.; Hsiu, S.L.; Hou, Y.C.; Tsai, S.Y.; Chao, P.D. Significant decrease of cyclosporine bioavailability in rats caused by a decoction of the roots of Scutellaria baicalensis. Planta Med., 2004, 70(2), 132-137.
[http://dx.doi.org/10.1055/s-2004-815489] [PMID: 14994190]
[380]
Tian, X.; Chang, Y.; Wei, J.; Liu, R.; Wang, L.; Zhang, J.; Zhang, X. Baicalin reduces ciclosporin bioavailability by inducing intestinal p-glycoprotein in rats. J. Pharm. Pharmacol., 2019, 71(5), 788-796.
[http://dx.doi.org/10.1111/jphp.13067] [PMID: 30663770]
[381]
Hwang, Y.H.; Yang, H.J.; Kim, D.G.; Ma, J.Y. Inhibitory effects of multiple-dose treatment with baicalein on the pharmacokinetics of ciprofloxacin in rats. Phytother. Res., 2017, 31(1), 69-74.
[http://dx.doi.org/10.1002/ptr.5728] [PMID: 27671796]
[382]
Li, C.; Kim, M.; Choi, H.; Choi, J. Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: Possible role of cytochrome p450 3A4 and P-glycoprotein inhibition by baicalein. Arch. Pharm. Res., 2011, 34(11), 1965-1972.
[http://dx.doi.org/10.1007/s12272-011-1117-9] [PMID: 22139696]
[383]
Zhang, Y.; Yu, Y.; Li, H.; Huang, W.; Wang, P. Effects of citri reticulatae pericarpium and grapefruit juice on the pharmacokinetics of omeprazole in rats. J. Food Biochem., 2022, 46(3), e13804.
[http://dx.doi.org/10.1111/jfbc.13804] [PMID: 34080214]
[384]
Zhang, X.; Xie, Z.; Chen, X.; Qiu, J.; Tan, Y.; Li, X.; Li, H.; Zhang, J. Herb-drug interaction in the protective effect of Alpinia officinarum against gastric injury induced by indomethacin based on pharmacokinetic, tissue distribution and excretion studies in rats. J. Pharm. Anal., 2021, 11(2), 200-209.
[http://dx.doi.org/10.1016/j.jpha.2020.05.009] [PMID: 34012696]
[385]
Zhang, F.; Huang, J.; Liu, W.; Wang, C.R.; Liu, Y.F.; Tu, D.Z.; Liang, X.M.; Yang, L.; Zhang, W.D.; Chen, H.Z.; Ge, G.B. Inhibition of drug-metabolizing enzymes by Qingfei Paidu decoction: Implication of herb-drug interactions in COVID-19 pharmacotherapy. Food Chem. Toxicol., 2021, 149, 111998.
[http://dx.doi.org/10.1016/j.fct.2021.111998] [PMID: 33476691]
[386]
Ye, L.; Cheng, L.; Deng, Y.; Liu, H.; Wu, X.; Wang, T.; Chang, Q.; Zhang, Y.; Wang, D.; Li, Z.; Yang, X. Herb-drug interaction between xiyanping injection and lopinavir/ritonavir, two agents used in COVID-19 pharmacotherapy. Front. Pharmacol., 2021, 12, 773126.
[http://dx.doi.org/10.3389/fphar.2021.773126] [PMID: 34899329]
[387]
Xia, H.; Zhao, X.; Zhang, Y.; Su, X.; Sun, B.; Qiu, X. Effect of sijunzi pills on pharmacokinetics of omeprazole in beagle dogs by hplc-uv: A herb-drug interaction study. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-6.
[http://dx.doi.org/10.1155/2021/4181196] [PMID: 34868331]
[388]
Wang, B.; Qiu, C.; Tang, C.; Zhang, J.; Zhang, Y.; Du, Q.; Feng, Y.; Qiu, X. Uplc-ms/ms for the herb-drug interactions of xiao-ai-ping injection on enasidenib in rats based on pharmacokinetics. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/6636266] [PMID: 33688498]
[389]
Thomas, A.B.; Choudhary, D.C.; Raje, A.; Nagrik, S.S. Pharmacokinetics and pharmacodynamic herb-drug interaction of piperine with atorvastatin in rats. J. Chromatogr. Sci., 2021, 59(4), 371-380.
[http://dx.doi.org/10.1093/chromsci/bmaa126] [PMID: 33434916]
[390]
Tan, H.J.; Ling, W.C.; Chua, A.L.; Lee, S.K. Oral epigallocatechin gallate reduces intestinal nadolol absorption viamodulation of Oatp1a5 and Oct1 transcriptional levels in spontaneously hypertensive rats. Phytomedicine, 2021, 90, 153623.
[http://dx.doi.org/10.1016/j.phymed.2021.153623] [PMID: 34303263]
[391]
Meng, L.; Li, Y.; Xue, C.; Ding, C.; Wang, X.; Fu, R.; Li, Y.; Li, X.; Dong, Z. Compound danshen dripping pills affect the pharmacokinetics of azisartan by regulating the expression of cytochrome P450 2B1, 2C6, and 2C11 in rats. J. Pharm. Biomed. Anal., 2021, 195, 113887.
[http://dx.doi.org/10.1016/j.jpba.2020.113887] [PMID: 33418444]
[392]
Lu, Y.; Pan, J.; Zhu, X.; Zhang, S.; Liu, C.; Sun, J.; Li, Y.; Chen, S.; Huang, J.; Cao, C.; Wang, Y.; Li, Y.; Liu, T. Pharmacokinetic herb-drug interactions between Aidi injection and doxorubicin in rats with diethylnitrosamine-induced hepatocellular carcinoma. BMC Pharmacol. Toxicol., 2021, 22(1), 48.
[http://dx.doi.org/10.1186/s40360-021-00515-9] [PMID: 34488896]
[393]
Jiang, M.; Zhou, Y.; Chen, J.; Zhang, W.; Sun, Z.; Qin, M.; Liu, Y.; Liu, G. Effects of herba erigerontis injection on pharmacodynamics and pharmacokinetics of warfarin in rats in vivo. Basic Clin. Pharmacol. Toxicol., 2021, 128(3), 386-393.
[http://dx.doi.org/10.1111/bcpt.13531] [PMID: 33155415]
[394]
Chen, H.; Yuan, L.; Ma, X.; Gong, Z.P.; Li, Y.T.; Chen, S.Y.; Pan, J.; Wang, A.M.; Zheng, L.; Huang, Y. Herb-drug interaction: The effect of Polygonum capitatum extract on pharmacokinetics of levofloxacin in rats. J. Pharm. Biomed. Anal., 2021, 195, 113832.
[http://dx.doi.org/10.1016/j.jpba.2020.113832] [PMID: 33349475]
[395]
Bae, M.; Han, S.Y.; Kim, E.S.; You, B.H.; Kim, Y.M.; Cho, J.; Chin, Y.W.; Choi, Y.H. Effect of water extract of mangosteen pericarp on donepezil pharmacokinetics in mice. Molecules, 2021, 26(17), 5246.
[http://dx.doi.org/10.3390/molecules26175246] [PMID: 34500680]
[396]
Adiwidjaja, J.; Sasongko, L. Effect of Nigella sativa oil on pharmacokinetics and pharmacodynamics of gliclazide in rats. Biopharm. Drug Dispos., 2021, 42(8), 359-371.
[http://dx.doi.org/10.1002/bdd.2300] [PMID: 34327715]
[397]
Yip, K.L.; Zhou, X.; Chook, P.; Leung, P.C.; Schachter, S.; Mok, V.C.T.; Leung, T.W.H.; Koon, C.M.; Leung, H. Herb-drug interaction of gastrodiae rhizoma on carbamazepine: A pharmacokinetic study in rats. Epilepsy Res., 2020, 165, 106376.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106376] [PMID: 32526641]
[398]
Sarangi, S.C.; Pattnaik, S.S.; Katyal, J.; Kaleekal, T.; Dinda, A.K. An interaction study of Ocimum sanctum L. and levetiracetam in pentylenetetrazole kindling model of epilepsy. J. Ethnopharmacol., 2020, 249, 112389.
[http://dx.doi.org/10.1016/j.jep.2019.112389] [PMID: 31739106]
[399]
Nurfaradilla, S.A.; Saputri, F.C.; Harahap, Y. Pharmacokinetic herb-drug interaction between Hibiscus sabdariffa calyces aqueous extract and captopril in rats. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/5013898] [PMID: 32655663]
[400]
Mekjaruskul, C.; Sripanidkulchai, B. In vivo effect of Kaempferia parviflora extract on pharmacokinetics of acetaminophen. Drug Chem. Toxicol., 2020, 43(6), 602-608.
[http://dx.doi.org/10.1080/01480545.2018.1542435] [PMID: 31195843]
[401]
Li, Y.; Li, J.; Yan, D.; Wang, Q.; Jin, J.; Tan, B.; Qiu, F. Influence of zuojin pill on the metabolism of venlafaxine in vitro and in rats and associated herb-drug interaction. Drug Metab. Dispos., 2020, 48(10), 1044-1052.
[http://dx.doi.org/10.1124/dmd.120.000048] [PMID: 32561594]
[402]
Ha, Y.; Wang, T.; Li, J.; Li, J.; Lu, R.; Li, J.; Chen, L.; Gan, P. Herb-drug interaction potential of licorice extract and paclitaxel: A pharmacokinetic study in rats. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(2), 257-264.
[http://dx.doi.org/10.1007/s13318-019-00593-5] [PMID: 31820303]
[403]
Fang, S.Q.; Huang, J.; Zhang, F.; Ni, H.M.; Chen, Q.L.; Zhu, J.R.; Fu, Z.C.; Zhu, L.; Hao, W.W.; Ge, G.B. Pharmacokinetic interaction between a chinese herbal formula huosu yangwei oral liquid and apatinib in vitro and in vivo. J. Pharm. Pharmacol., 2020, 72(7), 979-989.
[http://dx.doi.org/10.1111/jphp.13268] [PMID: 32285478]
[404]
Alam, M.A.; Bin Jardan, Y.A.; Raish, M.; Al-Mohizea, A.M.; Ahad, A.; Al-Jenoobi, F.I. Effect of Nigella sativa and fenugreek on the pharmacokinetics and pharmacodynamics of amlodipine in hypertensive rats. Curr. Drug Metab., 2020, 21(4), 318-325.
[http://dx.doi.org/10.2174/1389200221666200514121501] [PMID: 32407268]
[405]
Ahad, A.; Raish, M.; Bin Jardan, Y.A.; Alam, M.A.; Al-Mohizea, A.M.; Al-Jenoobi, F.I. Effect of Hibiscus sabdariffa and Zingiber officinale on the antihypertensive activity and pharmacokinetic of losartan in hypertensive rats. Xenobiotica, 2020, 50(7), 847-857.
[http://dx.doi.org/10.1080/00498254.2020.1729446] [PMID: 32048541]
[406]
Zhao, Q.; Wei, J.; Zhang, H. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica, 2019, 49(5), 563-568.
[http://dx.doi.org/10.1080/00498254.2018.1478168] [PMID: 29768080]
[407]
Zhang, F.; Sun, L.; Zhai, J.; Xia, T.; Jiang, W.; Li, M.; Gao, S.; Tao, X.; Chen, W.; Chai, Y. The effect of tanreqing injection on the pharmacokinetics of sirolimus in rats. BioMed Res. Int., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/1854323] [PMID: 30956975]
[408]
Yan, L.; Wang, S.; Zhao, L.; Qiu, J.; Zhou, L.; Wang, W.; Xu, X.; Wang, D.; Qiu, X.; Qin, D. The herb-drug pharmacokinetic interaction of fluoxetine and its metabolite norfluoxetine with a traditional chinese medicine in rats by lc-ms/ms. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/2471870] [PMID: 31871472]
[409]
Ventura, S.; Rodrigues, M.; Falcão, A.; Alves, G. Short-term effects of garcinia cambogia extract on the pharmacokinetics of lamotrigine given as a single-dose in wistar rats. Food Chem. Toxicol., 2019, 128, 61-67.
[http://dx.doi.org/10.1016/j.fct.2019.03.051] [PMID: 30940594]
[410]
Tian, J.; Sun, S.; Zhao, Z.; Li, X. Pharmacokinetic interaction between shuanghuanglian and azithromycin injection: A nonlinear mixed-effects model analysis in rats. Xenobiotica, 2019, 49(11), 1344-1351.
[http://dx.doi.org/10.1080/00498254.2018.1550588] [PMID: 30457423]
[411]
Sun, X.; Xu, X.; Chen, Y.; Guan, R.; Cheng, T.; Wang, Y.; Jin, R.; Song, M.; Hang, T. Danggui buxue decoction sensitizes the response of non-small-cell lung cancer to gemcitabine viaregulating deoxycytidine kinase and p-glycoprotein. Molecules, 2019, 24(10), 2011.
[http://dx.doi.org/10.3390/molecules24102011] [PMID: 31130654]
[412]
Shin, S.; Kim, N.S.; Kim, Y.A.; Oh, H.R.; Bang, O.S. Effect of the phragmitis rhizoma aqueous extract on the pharmacokinetics of docetaxel in rats. Comb. Chem. High Throughput Screen., 2019, 22(5), 326-332.
[http://dx.doi.org/10.2174/1386207322666190419110724] [PMID: 31446890]
[413]
Shi, M.Z.; Xing, T.Y.; Chen, J.J.; Jiang, B.; Xiao, X.; Yang, J.; Zhu, J.; Guo, C.; Hu, J.D.; Han, Y.L. Effect of xiao-ai-ping injection on paclitaxel pharmacokinetics in rats by LC-MS/MS method. J. Pharm. Biomed. Anal., 2019, 174, 728-733.
[http://dx.doi.org/10.1016/j.jpba.2019.07.003] [PMID: 31299453]
[414]
Raish, M.; Ahmad, A.; Ansari, M.A.; Alkharfy, K.M.; Ahad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Khan, A.; Ali, N. Effects of sinapic acid on hepatic cytochrome P450 3A2, 2C11, and intestinal P-glycoprotein on the pharmacokinetics of oral carbamazepine in rats: Potential food/herb-drug interaction. Epilepsy Res., 2019, 153, 14-18.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.03.012] [PMID: 30927680]
[415]
Patel, O.; Muller, C.J.F.; Joubert, E.; Rosenkranz, B.; Taylor, M.J.C.; Louw, J.; Awortwe, C. Pharmacokinetic interaction of green rooibos extract with atorvastatin and metformin in rats. Front. Pharmacol., 2019, 10, 1243.
[http://dx.doi.org/10.3389/fphar.2019.01243] [PMID: 31708777]
[416]
Lyu, Y.; Zhang, Y.; Yang, M.; Lin, L.; Yang, X.; Cheung, S.C.K.; Shaw, P.C.; Chan, P.K.S.; Kong, A.P.S.; Zuo, Z. Pharmacokinetic interactions between metformin and berberine in rats: Role of oral administration sequences and microbiota. Life Sci., 2019, 235, 116818.
[http://dx.doi.org/10.1016/j.lfs.2019.116818] [PMID: 31473193]
[417]
Han, X.; Zhang, H.; Hao, H.; Li, H.; Guo, X.; Zhang, D. Effect Of epigallocatechin-3-gallate on the pharmacokinetics of amlodipine in rats. Xenobiotica, 2019, 49(8), 970-974.
[http://dx.doi.org/10.1080/00498254.2018.1519732] [PMID: 30182817]
[418]
Loughren, M.J.; Kharasch, E.D.; Kelton-Rehkopf, M.C.; Syrjala, K.L.; Shen, D.D. Influence of st. John’s wort on intravenous fentanyl pharmacokinetics, pharmacodynamics, and clinical effects: A randomized clinical trial. Anesthesiology, 2020, 132(3), 491-503.
[http://dx.doi.org/10.1097/ALN.0000000000003065] [PMID: 31794512]
[419]
Markert, C.; Kastner, I.M.; Hellwig, R.; Kalafut, P.; Schweizer, Y.; Hoffmann, M.M.; Burhenne, J.; Weiss, J.; Mikus, G.; Haefeli, W.E. The effect of induction of CYP3A4 by St John’s wort on ambrisentan plasma pharmacokinetics in volunteers of known CYP2C19 genotype. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 423-428.
[http://dx.doi.org/10.1111/bcpt.12332] [PMID: 25286744]
[420]
Zhou, J.; Wu, J.; Wu, C.Y.; Long, F.; Shen, H.; Zhang, W.; Li, S.L. Herb-drug interaction: A case study of effects and involved mechanisms of cisplatin on the pharmacokinetics of ginsenoside Rb1 in tumor-bearing mice. Biomed. Pharmacother., 2019, 110, 95-104.
[http://dx.doi.org/10.1016/j.biopha.2018.11.021] [PMID: 30466007]
[421]
Balap, A.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Herb-drug interaction of Andrographis paniculata (nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J. Ethnopharmacol., 2017, 195, 214-221.
[http://dx.doi.org/10.1016/j.jep.2016.11.022] [PMID: 27847337]
[422]
Balap, A.; Atre, B.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Pharmacokinetic and pharmacodynamic herb-drug interaction of Andrographis paniculata ( Nees ) extract and andrographolide with etoricoxib after oral administration in rats. J. Ethnopharmacol., 2016, 183, 9-17.
[http://dx.doi.org/10.1016/j.jep.2015.11.011] [PMID: 26593212]
[423]
Moltó, J.; Valle, M.; Miranda, C.; Cedeño, S.; Negredo, E.; Clotet, B. Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrob. Agents Chemother., 2012, 56(10), 5328-5331.
[http://dx.doi.org/10.1128/AAC.01205-12] [PMID: 22869560]
[424]
Hsueh, T.; Wu, Y.T.; Lin, L.C.; Chiu, A.; Lin, C.H.; Tsai, T.H. Herb-drug interaction of Epimedium sagittatum (Sieb. et Zucc.) maxim extract on the pharmacokinetics of sildenafil in rats. Molecules, 2013, 18(6), 7323-7335.
[http://dx.doi.org/10.3390/molecules18067323] [PMID: 23792897]
[425]
Dai, G.; Jiang, Z.; Bai, Y.; Zhang, Q.; Zhu, L.; Bai, X.; Ju, W.; Pan, R. Pharmacokinetic herb-drug interaction of Xuesaitong dispersible tablet and aspirin after oral administration in blood stasis model rats. Phytomedicine, 2017, 26, 62-68.
[http://dx.doi.org/10.1016/j.phymed.2017.01.010] [PMID: 28257666]
[426]
Song, I.S.; Kong, T.Y.; Jeong, H.U.; Kim, E.N.; Kwon, S.S.; Kang, H.E.; Choi, S.Z.; Son, M.; Lee, H.S. Evaluation of the transporter-mediated herb-drug interaction potential of DA-9801, a standardized dioscorea extract for diabetic neuropathy, in human in vitro and rat in vivo. BMC Complement. Altern. Med., 2014, 14(1), 251.
[http://dx.doi.org/10.1186/1472-6882-14-251] [PMID: 25034211]
[427]
Sahu, R.; Ahmed, T.; Sangana, R.; Punde, R.; Subudhi, B.B. Effect of Tinospora cordifolia aqua-alcoholic extract on pharmacokinetic of Glibenclamide in rat: An herb-drug interaction study. J. Pharm. Biomed. Anal., 2018, 151, 310-316.
[http://dx.doi.org/10.1016/j.jpba.2018.01.010] [PMID: 29413979]
[428]
Ventura, S.; Rodrigues, M.; Falcão, A.; Alves, G. Effects of Paullinia cupana extract on lamotrigine pharmacokinetics in rats: A herb-drug interaction on the gastrointestinal tract with potential clinical impact. Food Chem. Toxicol., 2018, 115, 170-177.
[http://dx.doi.org/10.1016/j.fct.2018.03.011] [PMID: 29534980]
[429]
Jana, S.; Rastogi, H. Effects of caffeic acid and quercetin on in vitro permeability, metabolism and in vivo pharmacokinetics of melatonin in rats: Potential for herb-drug interaction. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(5), 781-791.
[http://dx.doi.org/10.1007/s13318-016-0393-7] [PMID: 28070878]
[430]
Hitoshi, K.; Katoh, M.; Tanaka, Y.; Kurono, S.; Nadai, M.; Hotta, K.; Saito, H.; Hasegawa, T. Mechanism of drug interaction between a Kampo medicine, byakkokaninjinto, and tetracycline in rats. J. Infect. Chemother., 2012, 18(1), 75-82.
[http://dx.doi.org/10.1007/s10156-011-0294-2] [PMID: 21901498]
[431]
Zhang, X.; Zhang, X.; Wang, X.; Zhao, M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharm. Biol., 2018, 56(1), 351-356.
[http://dx.doi.org/10.1080/13880209.2018.1478431] [PMID: 29983086]
[432]
Fong, S.Y.K.; Wong, Y.C.; Xie, C.; Zuo, Z. Herb-drug interactions between Scutellariae radix and mefenamic acid: Simultaneous investigation of pharmacokinetics, anti-inflammatory effect and gastric damage in rats. J. Ethnopharmacol., 2015, 170, 106-116.
[http://dx.doi.org/10.1016/j.jep.2015.04.036] [PMID: 25980420]
[433]
Lu, C.M.; Hou, M.L.; Lin, L.C.; Tsai, T.H. Development of a microdialysis system to monitor lamivudine in blood and liver for the pharmacokinetic application in herbal drug interaction and the gene expression in rats. J. Pharm. Biomed. Anal., 2014, 96, 231-240.
[http://dx.doi.org/10.1016/j.jpba.2014.04.001] [PMID: 24780924]
[434]
Wang, Z.; Chen, D.; Wang, Z. Effects of diclofenac on the pharmacokinetics of celastrol in rats and its transport. Pharm. Biol., 2018, 56(1), 269-274.
[http://dx.doi.org/10.1080/13880209.2018.1459740] [PMID: 29651912]
[435]
Ponnusankar, S.; Elango, H.; Sundaram, S. Assessment of pharmacodynamic and pharmacokinetic interaction of aqueous extract of Cassia auriculata L. And metformin in rats. Pharmacogn. Mag., 2015, 11(44)(Suppl. 3), 423.
[http://dx.doi.org/10.4103/0973-1296.168986] [PMID: 26929576]
[436]
Li, H.; Zhang, C.; Fan, R.; Sun, H.; Xie, H.; Luo, J.; Wang, Y.; Lv, H.; Tang, T. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. J. Ethnopharmacol., 2016, 193, 117-124.
[http://dx.doi.org/10.1016/j.jep.2016.08.005] [PMID: 27497635]
[437]
Zhang, Q.H.; Gong, C.; Yang, H.; Wei, H.; Zhou, W.B.; Qi, C.; Wang, C.H. Pharmacokinetics of cisplatin in the absence or presence of Zengmian Yiliu granules (a traditional Chinese medicine compound) in rats determined via ICP-MS: An investigation on drug-herb interactions. Pharm. Biol., 2015, 53(2), 159-166.
[http://dx.doi.org/10.3109/13880209.2014.912241] [PMID: 25339463]
[438]
Hu, Y.; Zhou, X.; Shi, H.; Shi, W.; Ye, S.; Zhang, H. The effect of tripterygium glucoside tablet on pharmacokinetics of losartan and its metabolite EXP3174 in rats. Biomed. Chromatogr., 2017, 31(10), e3973.
[http://dx.doi.org/10.1002/bmc.3973] [PMID: 28299812]
[439]
Chen, X.; Jin, J.; Chen, Y.; Peng, L.; Zhong, G.; Li, J.; Bi, H.; Cai, Y.; Huang, M. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm. Drug Dispos., 2015, 36(1), 64-68.
[http://dx.doi.org/10.1002/bdd.1918] [PMID: 25256597]
[440]
Balap, A.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Pharmacokinetic and pharmacodynamic interaction of andrographolide and standardized extract of Andrographis paniculata (nees) with nabumetone in wistar rats. Phytother. Res., 2017, 31(1), 75-80.
[http://dx.doi.org/10.1002/ptr.5731] [PMID: 27714886]
[441]
Showande, S.J.; Adegbolagun, O.M.; Igbinoba, S.I.; Fakeye, T.O. In vivo pharmacodynamic and pharmacokinetic interactions of Hibiscus sabdariffa calyces extracts with simvastatin. J. Clin. Pharm. Ther., 2017, 42(6), 695-703.
[http://dx.doi.org/10.1111/jcpt.12629] [PMID: 28925046]
[442]
Liu, A.C.; Zhao, L.X.; Yu, S.W.; Lou, H.X. Pre-treatment with puerarin affects pharmacokinetics of warfarin, but not clopidogrel, in experimental rats. Chin. J. Nat. Med., 2015, 13(4), 257-263.
[http://dx.doi.org/10.1016/S1875-5364(15)30012-1] [PMID: 25908622]
[443]
Du, X.; Ye, H.; Zhang, C.; Ye, L.; Lin, G. Effect of kanglaite on rat cytochrome P450. Pharm. Biol., 2015, 53(7), 995-1001.
[http://dx.doi.org/10.3109/13880209.2014.952833] [PMID: 25472767]
[444]
Zhou, L.; Wang, S.; Zhang, Z.; San Lau, B.; Pui Fung, K.; Chung Leung, P.; Zuo, Z. Pharmacokinetic and pharmacodynamic interaction of Danshen-Gegen extract with warfarin and aspirin. J. Ethnopharmacol., 2012, 143(2), 648-655.
[http://dx.doi.org/10.1016/j.jep.2012.07.029] [PMID: 22867637]
[445]
Taesotikul, T.; Nakajima, M.; Tassaneeyakul, W.; Yokoi, T. Effects of Phyllanthus amarus on the pharmacokinetics of midazolam and cytochrome P450 activities in rats. Xenobiotica, 2012, 42(7), 641-648.
[http://dx.doi.org/10.3109/00498254.2012.655703] [PMID: 22339466]
[446]
Ventura, S.; Rodrigues, M.; Falcão, A.; Alves, G. Evaluation of the effects of Citrus aurantium (bitter orange) extract on lamotrigine pharmacokinetics: Insights from in vivo studies in rats. Food Chem. Toxicol., 2018, 121, 166-172.
[http://dx.doi.org/10.1016/j.fct.2018.08.069] [PMID: 30172847]
[447]
Al-Jenoobi, F.I.; Ahad, A.; Mahrous, G.M.; Al-Mohizea, A.M.; AlKharfy, K.M.; Al-Suwayeh, S.A. Effects of fenugreek, garden cress, and black seed on theophylline pharmacokinetics in beagle dogs. Pharm. Biol., 2015, 53(2), 296-300.
[http://dx.doi.org/10.3109/13880209.2014.916312] [PMID: 25243874]
[448]
Mekjaruskul, C.; Sripanidkulchai, B. Pharmacokinetic interaction between Kaempferia parviflora extract and sildenafil in rats. J. Nat. Med., 2015, 69(2), 224-231.
[http://dx.doi.org/10.1007/s11418-014-0882-4] [PMID: 25567192]
[449]
Raish, M.; Ahmad, A.; Alkharfy, K.M.; Jan, B.L.; Mohsin, K.; Ahad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Effects of paeonia emodi on hepatic cytochrome p450 (cyp3a2 and cyp2c11) expression and pharmacokinetics of carbamazepine in rats. Biomed. Pharmacother., 2017, 90, 694-698.
[http://dx.doi.org/10.1016/j.biopha.2017.04.015] [PMID: 28419964]
[450]
Varghese, A.; Savai, J.; Mistry, S.; Khandare, P.; Barve, K.; Pandita, N.; Gaud, R. In vitro cyp2d inhibitory effect and influence on pharmacokinetics and pharmacodynamic parameters of metoprolol succinate by Terminalia arjuna in rats. Drug Metab. Lett., 2016, 10(2), 124-135.
[http://dx.doi.org/10.2174/1872312810666160219121415] [PMID: 26891872]
[451]
Ju, A.; Li, Y.; Qu, Z.; Li, Q. Impact of the herbal breviscapine on the pharmacokinetics of simvastatin in rats: The involvement of cyp3a4. Drug Res., 2017, 67(5), 271-274.
[http://dx.doi.org/10.1055/s-0042-118170] [PMID: 28288489]
[452]
Li, R.; Guo, W.; Fu, Z.; Ding, G.; Wang, Z.; Fu, H. A study about drug combination therapy of Schisandra sphenanthera extract and Rapamycin in healthy subjects. Can. J. Physiol. Pharmacol., 2012, 90(7), 941-945.
[http://dx.doi.org/10.1139/y2012-080] [PMID: 22686837]
[453]
Olawoye, O.S.; Adeagbo, B.A.; Bolaji, O.O. Moringa oleifera leaf powder alters the pharmacokinetics of amodiaquine in healthy human volunteers. J. Clin. Pharm. Ther., 2018, 43(5), 626-632.
[http://dx.doi.org/10.1111/jcpt.12725] [PMID: 29920710]
[454]
Liu, Z.; Liu, S.; Zhou, L.; Gao, X.; Ju, W.; Tan, H.; Yang, C. Effects of HuangKui capsules on glibenclamide pharmacokinetics in rats. J. Ethnopharmacol., 2012, 139(1), 1-5.
[http://dx.doi.org/10.1016/j.jep.2011.03.043] [PMID: 21527329]
[455]
Bedada, S.K.; Yellu, N.R.; Neerati, P. Effect of resveratrol treatment on the pharmacokinetics of diclofenac in healthy human volunteers. Phytother. Res., 2016, 30(3), 397-401.
[http://dx.doi.org/10.1002/ptr.5539] [PMID: 26633237]
[456]
Jing, X.Y.; Peng, Y.R.; Wang, X.M.; Duan, J.A. Effects of Ziziphus jujuba fruit extracts on cytochrome P450 (CYP1A2) activity in rats. Chin. J. Nat. Med., 2015, 13(8), 588-594.
[http://dx.doi.org/10.1016/S1875-5364(15)30054-6] [PMID: 26253491]
[457]
Nduka, S.O.; Okonta, M.J.; Esimone, C.O. Effects of Zingiber officinale on the plasma pharmacokinetics and lung penetrations of ciprofloxacin and isoniazid. Am. J. Ther., 2013, 20(5), 507-513.
[http://dx.doi.org/10.1097/MJT.0b013e31820544be] [PMID: 23344089]
[458]
Chen, X.; Zhao, Z.; Chen, Y.; Gou, X.; Zhou, Z.; Zhong, G.; Cai, Y.; Huang, M.; Jin, J. Mechanistic understanding of the effect of Dengzhan Shengmai capsule on the pharmacokinetics of clopidogrel in rats. J. Ethnopharmacol., 2016, 192, 362-369.
[http://dx.doi.org/10.1016/j.jep.2016.07.066] [PMID: 27459888]
[459]
Alkharfy, K.M.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Al-Suwayeh, S.A.; Khan, R.M.A.; Ahmad, A. Effects of lepidium sativum, nigella sativa and trigonella foenum-graceum on phenytoin pharmacokinetics in beagle dogs. Phytother. Res., 2013, 27(12), 1800-1804.
[http://dx.doi.org/10.1002/ptr.4947] [PMID: 23401262]
[460]
He, J.X.; Ohno, K.; Tang, J.; Hattori, M.; Tani, T.; Akao, T. Da-Chaihu-Tang alters the pharmacokinetics of nifedipine in rats and a treatment regimen to avoid this. J. Pharm. Pharmacol., 2014, 66(11), 1623-1630.
[http://dx.doi.org/10.1111/jphp.12285] [PMID: 24961584]
[461]
Shi, Z.; Gao, J.; Yuan, Y.; Zhu, S.; Yao, M. Effect of raw radix rehmanniae on the pharmacokinetics of pioglitazone in rats. Pak. J. Pharm. Sci., 2014, 27(3), 537-539.
[PMID: 24811814]
[462]
Guo, C.X.; Pei, Q.; Yin, J.Y.; Peng, X.D.; Zhou, B.T.; Zhao, Y.C.; Wu, L.X.; Meng, X.G.; Wang, G.; Li, Q.; Ouyang, D.S.; Liu, Z.Q.; Zhang, W.; Zhou, H.H. Effects of Ginkgo biloba extracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices. Xenobiotica, 2012, 42(8), 784-790.
[http://dx.doi.org/10.3109/00498254.2012.661100] [PMID: 22381135]
[463]
Fukunaga, K.; Orito, K. Time-course effects of St John’s wort on the pharmacokinetics of cyclosporine in dogs. J. Vet. Pharmacol. Ther., 2012, 35(5), 446-451.
[http://dx.doi.org/10.1111/j.1365-2885.2011.01348.x] [PMID: 22091645]
[464]
Misaka, S.; Miyazaki, N.; Fukushima, T.; Yamada, S.; Kimura, J. Effects of green tea extract and (−)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomedicine, 2013, 20(14), 1247-1250.
[http://dx.doi.org/10.1016/j.phymed.2013.07.003] [PMID: 23920278]
[465]
Vora, A.; Varghese, A.; Kachwala, Y.; Bhaskar, M.; Laddha, A.; Jamal, A.; Yadav, P. Eugenia jambolana extract reduces the systemic exposure of Sitagliptin and improves conditions associated with diabetes: A pharmacokinetic and a pharmacodynamic herb-drug interaction study. J. Tradit. Complement. Med., 2019, 9(4), 364-371.
[http://dx.doi.org/10.1016/j.jtcme.2018.10.001] [PMID: 31453133]
[466]
Zhang, X.; Liu, J.; Ye, F.; Ji, S.; Zhang, N.; Cao, R.; He, L.; Wu, J.; Li, X. Effects of triptolide on the pharmacokinetics of cyclophosphamide in rats: A possible role of Cytochrome P3A4 inhibition. Chin. J. Integr. Med., 2014, 20(7), 534-539.
[http://dx.doi.org/10.1007/s11655-014-1710-0] [PMID: 24420925]
[467]
Wang, X.; Zhang, X.; Liu, F.; Wang, M.; Qin, S. The effects of triptolide on the pharmacokinetics of sorafenib in rats and its potential mechanism. Pharm. Biol., 2017, 55(1), 1863-1867.
[http://dx.doi.org/10.1080/13880209.2017.1340963] [PMID: 28614959]
[468]
Kim, T.E.; Ha, N.; Kim, Y.; Kim, H.; Lee, J.W.; Jeon, J.Y.; Kim, M.G. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des. Devel. Ther., 2017, 11, 1409-1416.
[http://dx.doi.org/10.2147/DDDT.S130050] [PMID: 28533679]
[469]
Dogra, A.; Bhatt, S.; Magotra, A.; Sharma, A.; Kotwal, P.; Gour, A.; Wazir, P.; Singh, G.; Nandi, U. Intervention of curcumin on oral pharmacokinetics of daclatasvir in rat: A possible risk for long-term use. Phytother. Res., 2018, 32(10), 1967-1974.
[http://dx.doi.org/10.1002/ptr.6123] [PMID: 29806225]
[470]
Liu, A.C.; Zhao, L.X.; Lou, H.X. Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Med., 2013, 79(11), 971-977.
[http://dx.doi.org/10.1055/s-0032-1328652] [PMID: 23807811]
[471]
Chen, H.; Min, J.; Li, W.; Zhao, W.; Mi, S.; Wang, N.; Zhu, C. The pharmacokinetics change of cefepime after Shuanghuanglian injection administration in subjects with the renal damage. Drug Chem. Toxicol., 2016, 39(2), 129-136.
[http://dx.doi.org/10.3109/01480545.2015.1053565] [PMID: 26108148]
[472]
Qiu, F.; Liu, S.; Miao, P.; Zeng, J.; Zhu, L.; Zhao, T.; Ye, Y.; Jiang, J. Effects of the chinese herbal formula “zuojin pill” on the pharmacokinetics of dextromethorphan in healthy chinese volunteers with cyp2d6*10 genotype. Eur. J. Clin. Pharmacol., 2016, 72(6), 689-695.
[http://dx.doi.org/10.1007/s00228-016-2048-7] [PMID: 27023460]
[473]
Zhang, C.; Gao, Z.; Niu, L.; Chen, X. Effects of triptolide on pharmacokinetics of amlodipine in rats by using LC-MS/MS. Pharm. Biol., 2018, 56(1), 132-137.
[http://dx.doi.org/10.1080/13880209.2018.1430835] [PMID: 29385884]
[474]
Zhang, Y.; Wu, J.; Zhou, Y.; Yin, Y.; Chen, H. Effects of psoralen on the pharmacokinetics of anastrozole in rats. Pharm. Biol., 2018, 56(1), 433-439.
[http://dx.doi.org/10.1080/13880209.2018.1501584] [PMID: 30345900]
[475]
Mamindla, S.; Koganti, V.S.R.G.P.; Ravouru, N.; Koganti, B. Effect of cinnamomum cassia on the pharmacokinetics and pharmacodynamics of pioglitazone. Curr. Clin. Pharmacol., 2017, 12(1), 41-49.
[PMID: 28176623]
[476]
Rodrigues, M.; Alves, G.; Lourenço, N.; Falcão, A. Herb-drug interaction of Paullinia cupana (guarana) seed extract on the pharmacokinetics of amiodarone in rats. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/428560] [PMID: 23304200]
[477]
Shi, L.; Dang, X.L.; Liu, X.Y.; Wei, H.M.; Yang, M.M.; Zhang, Y. Effect of Sophora flavescens on the pharmacokinetics of carbamazepine in rats. Arch. Pharm. Res., 2014, 37(12), 1617-1623.
[http://dx.doi.org/10.1007/s12272-014-0375-8] [PMID: 24691829]
[478]
Wang, T.; Long, F.; Jiang, G.; Cai, H.; Jiang, Q.; Cheng, K.; Hu, Z.; Wang, Y. Pharmacokinetic properties of wogonin and its herb-drug interactions with docetaxel in rats with mammary tumors. Biomed. Chromatogr., 2018, 32(9), e4264.
[http://dx.doi.org/10.1002/bmc.4264] [PMID: 29679509]
[479]
Igbinoba, S.I.; Onyeji, C.O.; Akanmu, M.A.; Soyinka, J.O.; Pullela, S.S.V.V.; Cook, J.M.; Nathaniel, T.I. Effect of dehusked Garcinia kola seeds on the overall pharmacokinetics of quinine in healthy Nigerian volunteers. J. Clin. Pharmacol., 2015, 55(3), 348-354.
[http://dx.doi.org/10.1002/jcph.414] [PMID: 25328082]
[480]
Wang, R.; Zhang, H.; Sun, S.; Wang, Y.; Chai, Y.; Yuan, Y. Effect of ginkgo leaf tablets on the pharmacokinetics of amlodipine in rats. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(6), 825-833.
[http://dx.doi.org/10.1007/s13318-015-0312-3] [PMID: 26650374]
[481]
Hou, M.L.; Lu, C.M.; Tsai, T.H. Effects of jia-wei-xiao-yao-san on the peripheral and lymphatic pharmacokinetics of paclitaxel in rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/5614747] [PMID: 27057200]
[482]
Gao, N.; Zou, D.; Qiao, H.L. Concentration-dependent inhibitory effect of Baicalin on the plasma protein binding and metabolism of chlorzoxazone, a CYP2E1 probe substrate, in rats in vitro and in vivo. PLoS One, 2013, 8(1), e53038.
[http://dx.doi.org/10.1371/journal.pone.0053038] [PMID: 23301016]
[483]
Lu, Y.; Gong, Z.; Xie, Y.; Pan, J.; Sun, J.; Li, Y.; Chen, S.; Li, Y.; Wang, Y.; Huang, Y. Herb-drug interaction: Effects of relinqing® granule on the pharmacokinetics of ciprofloxacin, sulfamethoxazole, and trimethoprim in rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/6194206] [PMID: 27688790]
[484]
Liu, Y.; Liu, S.; Shi, Y.; Qin, M.; Sun, Z.; Liu, G. Effects of safflower injection on the pharmacodynamics and pharmacokinetics of warfarin in rats. Xenobiotica, 2018, 48(8), 818-823.
[http://dx.doi.org/10.1080/00498254.2017.1361051] [PMID: 28783419]
[485]
Liu, R.; Qin, M.; Hang, P.; Liu, Y.; Zhang, Z.; Liu, G. Effects of panax notoginseng saponins on the activities of cyp1a2, cyp2c9, cyp2d6 and cyp3a4 in rats in vivo. Phytother. Res., 2012, 26(8), 1113-1118.
[http://dx.doi.org/10.1002/ptr.3688] [PMID: 22162298]
[486]
Shia, C.S.; Juang, S.H.; Tsai, S.Y.; Lee Chao, P.D.; Hou, Y.C. Interaction of rhubarb and methotrexate in rats: In vivo and ex vivo approaches. Am. J. Chin. Med., 2013, 41(6), 1427-1438.
[http://dx.doi.org/10.1142/S0192415X1350095X] [PMID: 24228610]
[487]
Markowitz, J.; Zhu, H.J. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med., 2012, 78(13), 1421-1427.
[http://dx.doi.org/10.1055/s-0032-1315025] [PMID: 22814819]
[488]
Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications, and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol., 2011, 2011, 1-13.
[http://dx.doi.org/10.1155/2011/907461] [PMID: 21716673]
[489]
Brantley, S.J.; Argikar, A.A.; Lin, Y.S.; Nagar, S.; Paine, M.F. Herb-drug interactions: Challenges and opportunities for improved predictions. Drug Metab. Dispos., 2014, 42(3), 301-317.
[http://dx.doi.org/10.1124/dmd.113.055236] [PMID: 24335390]
[490]
Umegaki, K.; Saito, K.; Kubota, Y.; Sanada, H.; Yamada, K.; Shinozuka, K. Ginkgo biloba extract markedly induces pentoxyresorufin O-dealkylase activity in rats. Jpn. J. Pharmacol., 2002, 90(4), 345-351.
[http://dx.doi.org/10.1254/jjp.90.345] [PMID: 12501011]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy