Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Systematic Review Article

A Systematic Review of Linezolid Pharmacokinetics/Pharmacodynamics in Patients Undergoing Continuous Renal Replacement Therapy: Does One Size Fit All?

Author(s): Yao Liu, Xu-Hua Ge, Hong-Li Guo, Feng Chen, Yong Zhang, Jing Xu, Xing Ji* and Hong-jun Miao*

Volume 24, Issue 1, 2023

Published on: 17 January, 2023

Page: [70 - 77] Pages: 8

DOI: 10.2174/1389200224666221228144117

Price: $65

Abstract

Background: Selection of the optimal antimicrobial posology in critically ill patients remains a challenge, especially in patients with sepsis who undergo continuous renal replacement therapy (CRRT). This systematic review aimed to analyze factors that influence the extracorporeal removal of linezolid.

Methods: A comprehensive search was performed to identify studies published up to March 2022 in PubMed, MEDLINE and EMBASE databases. Studies involving adults receiving CRRT and treatment with linezolid were considered eligible if the CRRT setting and linezolid’s pharmacokinetic parameters were clearly mentioned.

Results: Six out of 110 potentially relevant studies were included. A total of 101 treatments were identified among 97 enrolled patients. Our analysis showed that continuous veno-venous hemodiafiltration (CVVHDF) was the most frequential used modality (52 cases). Despite distribution volume, the clearance (CL) of linezolid in these studies had large variability. Extracorporeal linezolid removal may be markedly impacted by CRRT dose. There is significant between-subject variability in the probability of pharmacokinetics-pharmacodynamics (PK-PD) target attainment of patients treated with CRRT.

Conclusion: Dose adjustment, shortening the dosing interval, and continuous infusion were proposed as regimen optimization. Therapeutic drug monitoring is recommended due to the high variability of linezolid exposure among patients with CRRT, specifically for those whose bodyweight is high, renal function is preserved, and the MIC of infection bacteria is above 2 μg/mL.

« Previous
Graphical Abstract

[1]
Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; Rybak, M.J.; Talan, D.A.; Chambers, H.F. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis., 2011, 52(3), e18-e55.
[http://dx.doi.org/10.1093/cid/ciq146] [PMID: 21208910]
[2]
Hashemian, S.M.; Farhadi, T.; Ganjparvar, M. Linezolid: a review of its properties, function, and use in critical care. Drug Des. Devel. Ther., 2018, 12, 1759-1767.
[http://dx.doi.org/10.2147/DDDT.S164515] [PMID: 29950810]
[3]
Rao, G.G.; Konicki, R.; Cattaneo, D.; Alffenaar, J.W.; Marriott, D.J.E.; Neely, M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: A review of linezolid pharmacokinetics and pharmacodynamics. Ther. Drug Monit., 2020, 42(1), 83-92.
[http://dx.doi.org/10.1097/FTD.0000000000000710] [PMID: 31652190]
[4]
Abdul-Aziz, M.H.; Alffenaar, J.W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; Timsit, J.F.; Udy, A.A.; Wicha, S.G.; Zeitlinger, M.; De Waele, J.J.; Roberts, J.A. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med., 2020, 46(6), 1127-1153.
[http://dx.doi.org/10.1007/s00134-020-06050-1] [PMID: 32383061]
[5]
Stalker, D.J.; Jungbluth, G.L. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin. Pharmacokinet., 2003, 42(13), 1129-1140.
[http://dx.doi.org/10.2165/00003088-200342130-00004] [PMID: 14531724]
[6]
Dryden, M.S. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J. Antimicrob. Chemother., 2011, 66(Suppl. 4), iv7-iv15.
[http://dx.doi.org/10.1093/jac/dkr072] [PMID: 21521707]
[7]
Barrasa, H.; Soraluce, A.; Usón, E.; Sainz, J.; Martín, A.; Sánchez-Izquierdo, J. Impact of augmented renal clearance on the pharmacokinetics of linezolid: Advantages of continuous infusion from a pharmacokinetic/pharmacodynamic perspective. Int. J. Infect. Dis., 2020, 93, 329-338.
[8]
Boak, L.M.; Rayner, C.R.; Grayson, M.L.; Paterson, D.L.; Spelman, D.; Khumra, S.; Capitano, B.; Forrest, A.; Li, J.; Nation, R.L.; Bulitta, J.B. Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob. Agents Chemother., 2014, 58(4), 2334-2343.
[http://dx.doi.org/10.1128/AAC.01885-13] [PMID: 24514086]
[9]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[10]
Jamal, J.A.; Mueller, B.A.; Choi, G.Y.S.; Lipman, J.; Roberts, J.A. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn. Microbiol. Infect. Dis., 2015, 82(1), 92-103.
[http://dx.doi.org/10.1016/j.diagmicrobio.2015.01.013] [PMID: 25698632]
[11]
Fiore, M.; Peluso, L.; Taccone, F.S.; Hites, M. The impact of continuous renal replacement therapy on antibiotic pharmacokinetics in critically ill patients. Expert Opin. Drug Metab. Toxicol., 2021, 17(5), 543-554.
[http://dx.doi.org/10.1080/17425255.2021.1902985] [PMID: 33733979]
[12]
Carcelero, E.; Soy, D.; Guerrero, L.; Poch, E.; Fernandez, J.; Castro, P.; Ribas, J. Linezolid pharmacokinetics in patients with acute renal failure undergoing continuous venovenous hemodiafiltration. J. Clin. Pharmacol., 2012, 52(9), 1430-1435.
[http://dx.doi.org/10.1177/0091270011417717] [PMID: 21960670]
[13]
Santini, A.; Ronchi, D.; Garbellini, M.; Piga, D.; Protti, A. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin. Drug Saf., 2017, 16(7), 833-843.
[http://dx.doi.org/10.1080/14740338.2017.1335305] [PMID: 28538105]
[14]
Tsuji, Y.; Holford, N.H.G.; Kasai, H.; Ogami, C.; Heo, Y.A.; Higashi, Y.; Mizoguchi, A.; To, H.; Yamamoto, Y. Population pharmacokinetics and pharmacodynamics of linezolid-induced thrombocytopenia in hospitalized patients. Br. J. Clin. Pharmacol., 2017, 83(8), 1758-1772.
[http://dx.doi.org/10.1111/bcp.13262] [PMID: 28186644]
[15]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[16]
MacGowan, A.P. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J. Antimicrob. Chemother., 2003, 51(90002)(Suppl. 2), 17ii-25.
[http://dx.doi.org/10.1093/jac/dkg248] [PMID: 12730139]
[17]
Roger, C.; Muller, L.; Wallis, S.C.; Louart, B.; Saissi, G.; Lipman, J.; Lefrant, J.Y.; Roberts, J.A. Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J. Antimicrob. Chemother., 2016, 71(2), 464-470.
[http://dx.doi.org/10.1093/jac/dkv349] [PMID: 26538503]
[18]
Campion, M.; Scully, G. Antibiotic use in the intensive care unit: Optimization and de-escalation. J. Intensive Care Med., 2018, 33(12), 647-655.
[http://dx.doi.org/10.1177/0885066618762747] [PMID: 29534630]
[19]
Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; Tolwani, A.; Oudemans-van Straaten, H.; Ronco, C.; Kellum, J.A. Continuous renal replacement therapy: A worldwide practice survey. Intensive Care Med., 2007, 33(9), 1563-1570.
[http://dx.doi.org/10.1007/s00134-007-0754-4] [PMID: 17594074]
[20]
Blot, S.; Lipman, J.; Roberts, D.M.; Roberts, J.A. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary? Diagn. Microbiol. Infect. Dis., 2014, 79(1), 77-84.
[http://dx.doi.org/10.1016/j.diagmicrobio.2014.01.015] [PMID: 24602849]
[21]
Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: a two-center prospective study (EXPAT). Crit. Care, 2020, 24(1), 558.
[http://dx.doi.org/10.1186/s13054-020-03272-z] [PMID: 32933574]
[22]
Neri, M.; Villa, G.; Garzotto, F.; Bagshaw, S.; Bellomo, R.; Cerda, J.; Ferrari, F.; Guggia, S.; Joannidis, M.; Kellum, J.; Kim, J.C.; Mehta, R.L.; Ricci, Z.; Trevisani, A.; Marafon, S.; Clark, W.R.; Vincent, J.L.; Ronco, C. Nomenclature for renal replacement therapy in acute kidney injury: basic principles. Crit. Care, 2016, 20(1), 318.
[http://dx.doi.org/10.1186/s13054-016-1489-9] [PMID: 27719682]
[23]
Soraluce, A.; Barrasa, H.; Asín-Prieto, E.; Sánchez-Izquierdo, J.Á.; Maynar, J.; Isla, A.; Rodríguez-Gascón, A. Novel population pharmacokinetic model for linezolid in critically Ill patients and evaluation of the adequacy of the current dosing recommendation. Pharmaceutics, 2020, 12(1), 54.
[http://dx.doi.org/10.3390/pharmaceutics12010054] [PMID: 31936614]
[24]
Barrasa, H.; Soraluce, A.; Isla, A.; Martín, A.; Maynar, J.; Canut, A.; Sánchez-Izquierdo, J.A.; Rodríguez-Gascón, A. Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: Influence of residual renal function on PK/PD target attainment. J. Crit. Care, 2019, 50, 69-76.
[http://dx.doi.org/10.1016/j.jcrc.2018.11.016] [PMID: 30496913]
[25]
Meyer, B.; Kornek, G.V.; Nikfardjam, M.; Karth, G.D.; Heinz, G.; Locker, G.J.; Jaeger, W.; Thalhammer, F. Multiple-dose pharmacokinetics of linezolid during continuous venovenous haemofiltration. J. Antimicrob. Chemother., 2005, 56(1), 172-179.
[http://dx.doi.org/10.1093/jac/dki133] [PMID: 15905303]
[26]
Schroeder, T.H.; Hansen, M.; Stephan, M.; Hoffmann, E.; Unertl, K.; Krueger, W.A. Elimination of linezolid by an in vitro extracorporeal circuit model. Int. J. Artif. Organs, 2004, 27(6), 473-479.
[http://dx.doi.org/10.1177/039139880402700605] [PMID: 15293354]
[27]
Whitehouse, T.; Cepeda, J.A.; Shulman, R.; Aarons, L.; Nalda-Molina, R.; Tobin, R. Pharmacokinetic studies of linezolid and teicoplanin in the critically ill. J. Antimicrob. Chemother., 2005, 55(3), 333-340.
[28]
Taubert, M.; Zoller, M.; Maier, B.; Frechen, S.; Scharf, C.; Holdt, L.M.; Frey, L.; Vogeser, M.; Fuhr, U.; Zander, J. Predictors of inadequate linezolid concentrations after standard dosing in critically Ill Patients. Antimicrob. Agents Chemother., 2016, 60(9), 5254-5261.
[http://dx.doi.org/10.1128/AAC.00356-16] [PMID: 27324768]
[29]
Pea, F.; Furlanut, M.; Cojutti, P.; Cristini, F.; Zamparini, E.; Franceschi, L. Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob. Agents Chemother., 2010, 54(11), 4605-4610.
[30]
Thallinger, C.; Buerger, C.; Plock, N.; Kljucar, S.; Wuenscher, S.; Sauermann, R.; Kloft, C.; Joukhadar, C. Effect of severity of sepsis on tissue concentrations of linezolid. J. Antimicrob. Chemother., 2007, 61(1), 173-176.
[http://dx.doi.org/10.1093/jac/dkm431] [PMID: 17999976]
[31]
Ide, T.; Takesue, Y.; Ikawa, K.; Morikawa, N.; Ueda, T.; Takahashi, Y. Population pharmacokinetics/pharmacodynamics of linezolid in sepsis patients with and without continuous renal replacement therapy. Int. J. Antimicrob. Agents, 2018, 51(5), 745-751.
[32]
Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van, A.H.; Wempe, C.; Pavenstädt, H. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: The elain randomized clinical trial. JAMA, 2016, 315(20), 2190-2199.
[33]
Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T.; Schneider, A. Acute kidney injury in sepsis. Intensive Care Med., 2017, 43(6), 816-828.
[http://dx.doi.org/10.1007/s00134-017-4755-7] [PMID: 28364303]
[34]
Nukui, Y.; Hatakeyama, S.; Okamoto, K.; Yamamoto, T.; Hisaka, A.; Suzuki, H.; Yata, N.; Yotsuyanagi, H.; Moriya, K. High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J. Antimicrob. Chemother., 2013, 68(9), 2128-2133.
[http://dx.doi.org/10.1093/jac/dkt133] [PMID: 23625638]
[35]
Souza, E.; Crass, R.L.; Felton, J.; Hanaya, K.; Pai, M.P. Accumulation of major linezolid metabolites in patients with renal impairment. Antimicrob. Agents Chemother., 2020, 64(5), e00027-e20.
[http://dx.doi.org/10.1128/AAC.00027-20] [PMID: 32152085]
[36]
Zhang, S.; Zhu, Z.; Chen, Z.; Li, Y.; Zou, Y.; Yan, M.; Xu, Y.; Wang, F.; Liu, M.; Zhang, M.; Zhang, B. Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob. Agents Chemother., 2020, 64(6), e00133-e20.
[http://dx.doi.org/10.1128/AAC.00133-20] [PMID: 32253210]
[37]
Zheng, J.; Sun, Z.; Sun, L.; Zhang, X.; Hou, G.; Han, Q.; Li, X.; Liu, G.; Gao, Y.; Ye, M.; Wang, H.; Yu, K. Pharmacokinetics and pharmacodynamics of linezolid in patients with sepsis receiving continuous venovenous hemofiltration and extended daily hemofiltration. J. Infect. Dis., 2020, 221(Suppl. 2), S279-S287.
[http://dx.doi.org/10.1093/infdis/jiz566] [PMID: 32176792]
[38]
Cattaneo, D.; Orlando, G.; Cozzi, V.; Cordier, L.; Baldelli, S.; Merli, S.; Fucile, S.; Gulisano, C.; Rizzardini, G.; Clementi, E. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with Gram-positive infections. Int. J. Antimicrob. Agents, 2013, 41(6), 586-589.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.02.020] [PMID: 23562639]
[39]
Pea, F.; Viale, P.; Cojutti, P.; Del Pin, B.; Zamparini, E.; Furlanut, M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J. Antimicrob. Chemother., 2012, 67(8), 2034-2042.
[http://dx.doi.org/10.1093/jac/dks153] [PMID: 22553142]
[40]
Dong, H.; Wang, X.; Dong, Y.; Lei, J.; Li, H.; You, H.; Wang, M.; Xing, J.; Sun, J.; Zhu, H. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int. J. Antimicrob. Agents, 2011, 38(4), 296-300.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.05.007] [PMID: 21741222]
[41]
Hui, L.A.; Bodolea, C.; Vlase, L.; Hiriscau, E.I.; Popa, A. Linezolid administration to critically Ill patients: Intermittent or continuous infusion? a systematic literature search and review. Antibiotics (Basel), 2022, 11(4), 436.
[http://dx.doi.org/10.3390/antibiotics11040436] [PMID: 35453188]
[42]
Wicha, S.G.; Mair, A.; Chiriac, U.; Frey, O.R.; Fuchs, T.; Gaasch, M.; Hagel, S.; Richter, D.C.; Roberts, J.A.; Röhr, A.C.; Weigand, M.A.; Brinkmann, A. Population pharmacokinetics and toxicodynamics of continuously infused linezolid in critically ill patients. Int. J. Antimicrob. Agents, 2022, 59(5), 106572.
[http://dx.doi.org/10.1016/j.ijantimicag.2022.106572] [PMID: 35307562]
[43]
Taubert, M.; Zander, J.; Frechen, S.; Scharf, C.; Frey, L.; Vogeser, M.; Fuhr, U.; Zoller, M. Optimization of linezolid therapy in the critically ill: the effect of adjusted infusion regimens. J. Antimicrob. Chemother., 2017, 72(8), 2304-2310.
[http://dx.doi.org/10.1093/jac/dkx149] [PMID: 28541510]
[44]
El-Gaml, R.M.; El-Khodary, N.M.; Abozahra, R.R.; El-Tayar, A.A.; El-Masry, S.M. Applying pharmacokinetic/pharmacodynamic measurements for linezolid in critically ill patients: optimizing efficacy and reducing resistance occurrence. Eur. J. Clin. Pharmacol., 2022, 78(8), 1301-1310.
[http://dx.doi.org/10.1007/s00228-022-03340-z] [PMID: 35610318]
[45]
Tandukar, S.; Palevsky, P.M. Continuous renal replacement therapy. Chest, 2019, 155(3), 626-638.
[http://dx.doi.org/10.1016/j.chest.2018.09.004] [PMID: 30266628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy