Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Impacts of Plant-derived Secondary Metabolites for Improving Flora in Type 2 Diabetes

Author(s): Lin Zehao Li, Yan Yan, Qinghe Song, Zhibin Wang, Wei Zhang, Yanli Hou* and Xiandang Zhang*

Volume 19, Issue 7, 2023

Published on: 27 January, 2023

Article ID: e160123212750 Pages: 14

DOI: 10.2174/1573399819666230116111856

Price: $65

Abstract

Background: Diabetes has become a problem that plagues public healthcare systems. Recent studies have shown that intestinal flora exerts positive therapeutic effects on metabolic diseases, and plant-derived secondary metabolites are safe, effective and easy to prepare and also have an impact on intestinal flora and diabetes; these drugs have rarely been reviewed before as a class of drugs for diabetes, especially focusing on the intestinal flora. Therefore, studying the relationship between plant-derived secondary metabolites and diabetes mellitus is crucial.

Objective: The objective of this study is to summarize and investigate the therapeutic mechanism of drugs extracted from natural plants effects on type 2 diabetes mellitus.

Methods: The relationship between flora and type 2 diabetes was investigated by reviewing the recent experimental literature, and the pathways available for natural plant-derived secondary metabolites in the treatment of type 2 diabetes were summarized.

Results: The therapeutic mechanisms of common plant-derived secondary metabolites for type 2 diabetes were summarized with a focus on the prebiotic efficacy of natural plant-derived secondary metabolites and the modulation of intestinal flora, and the mechanisms through which plantderived secondary metabolites treat type 2 diabetes via effects on intestinal flora are further reviewed.

Conclusion: Common plant-derived secondary metabolites can play a role in regulating bacteria in the intestinal tract by enriching beneficial bacteria and removing harmful bacteria to achieve their therapeutic effect on type 2 diabetes. In addition, due to their excellent ability to regulate intestinal flora, plant-derived secondary metabolites may also have excellent efficacy in cancer and obesity, among other diseases.

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013; 36(S1): S67-74.
[http://dx.doi.org/10.2337/dc13-S067]
[2]
Pang B, Zhao LH, Zhou Q, et al. Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015; 2015: 905749.
[http://dx.doi.org/10.1155/2015/905749]
[3]
Valerón PF, de Pablos-Velasco PL. Limitaciones de los fármacos dependientes de insulina para el tratamiento de la diabetes mellitus tipo 2. Med Clin 2013; 141(S2): 20-5.
[http://dx.doi.org/10.1016/S0025-7753(13)70059-9] [PMID: 24444520]
[4]
Zaynab M, Fatima M, Abbas S, et al. Role of secondary metabolites in plant defense against pathogens. Microb Pathog 2018; 124: 198-202.
[http://dx.doi.org/10.1016/j.micpath.2018.08.034] [PMID: 30145251]
[5]
Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr Med Chem 2019; 26(29): 5501-41.
[http://dx.doi.org/10.2174/0929867325666180831144344] [PMID: 30182844]
[6]
Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit 2011; 17(7): RA164-7.
[http://dx.doi.org/10.12659/MSM.881842] [PMID: 21709646]
[7]
Dingeo G, Brito A, Samouda H, Iddir M, La Frano MR, Bohn T. Phytochemicals as modifiers of gut microbial communities. Food Funct 2020; 11(10): 8444-71.
[http://dx.doi.org/10.1039/D0FO01483D] [PMID: 32996966]
[8]
Lewis K, Ausubel FM. Prospects for plant-derived antibacterials. Nat Biotechnol 2006; 24(12): 1504-7.
[http://dx.doi.org/10.1038/nbt1206-1504] [PMID: 17160050]
[9]
More NV, Kharat KR, Kharat AS. Berberine from Argemone mexicana L exhibits a broadspectrum antibacterial activity. Acta Biochim Pol 2017; 64(4): 653-60.
[http://dx.doi.org/10.18388/abp.2017_1621] [PMID: 29232416]
[10]
Lan J, Zhao Y, Dong F, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 2015; 161: 69-81.
[http://dx.doi.org/10.1016/j.jep.2014.09.049] [PMID: 25498346]
[11]
Liu M, Gao L, Zhang N. Berberine reduces neuroglia activation and inflammation in streptozotocin-induced diabetic mice. Int J Immunopathol Pharmacol 2019; 33.
[http://dx.doi.org/10.1177/2058738419866379] [PMID: 31337260]
[12]
Zhang X, Zhao Y, Xu J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 2015; 5(1): 14405.
[http://dx.doi.org/10.1038/srep14405] [PMID: 26396057]
[13]
Lee YS, Han SH, Lee SH, et al. The mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. Foodborne Pathog Dis 2012; 9(8): 686-91.
[http://dx.doi.org/10.1089/fpd.2011.1119] [PMID: 22845553]
[14]
Song C, Ji Y, Zou G, Wan C. Tetrandrine down-regulates expression of miRNA-155 to inhibit signal-induced NF-κB activation in a rat model of diabetes mellitus. Int J Clin Exp Med 2015; 8(3): 4024-30.
[PMID: 26064305]
[15]
Sitarek P, Rijo P, Garcia C, et al. Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid Med Cell Longev 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/7384061] [PMID: 28191277]
[16]
Xu W, Cui J, Zhou F, Bai M, Deng R, Wang W. Leonurine protects against dexamethasone-induced cytotoxicity in pancreatic β-cells via PI3K/Akt signaling pathway. Biochem Biophys Res Commun 2020; 529(3): 652-8.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.184] [PMID: 32736688]
[17]
Yang L, Liu G, Zhu X, Luo Y, Shang Y, Gu XL. The anti-inflammatory and antioxidant effects of leonurine hydrochloride after lipopolysaccharide challenge in broiler chicks. Poult Sci 2019; 98(4): 1648-57.
[http://dx.doi.org/10.3382/ps/pey532] [PMID: 30476291]
[18]
Ling F, Wu Z-Q, Jiang C, Liu L, Wang G-X. Antibacterial efficacy and pharmacokinetic evaluation of sanguinarine in common carp (Cyprinus carpio) following a single intraperitoneal administration. J Fish Dis 2016; 39(8): 993-1000.
[http://dx.doi.org/10.1111/jfd.12433] [PMID: 26763075]
[19]
Basini G, Santini SE, Bussolati S, Grasselli F. Sanguinarine inhibits VEGF-induced Akt phosphorylation. Ann N Y Acad Sci 2007; 1095(1): 371-6.
[http://dx.doi.org/10.1196/annals.1397.040] [PMID: 17404049]
[20]
Choi J, He N, Sung MK, Yang Y, Yoon S. Sanguinarine is an allosteric activator of AMP-activated protein kinase. Biochem Biophys Res Commun 2011; 413(2): 259-63.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.081] [PMID: 21884681]
[21]
Wang L, Yang X, Qin P, Shan F, Ren G. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract. Ind Crops Prod 2013; 49: 312-7.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.039]
[22]
Lee DG, Jang IS, Yang KE, et al. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes. Acta Pharm 2016; 66(2): 297-302.
[http://dx.doi.org/10.1515/acph-2016-0021] [PMID: 27279072]
[23]
Xiang WL, Jin LQ, Gao F, Xiao M, Chen Y. (Treatment of type 2 diabetes mellitus with the stem and leaf of blacktartary buckwheat and its effects on the pancreas and spleen). Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih 2019; 35(2): 140-4.
[http://dx.doi.org/10.12047/j.cjap.5670.2019.031] [PMID: 31250605]
[24]
Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 2018; 81(1): 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[25]
Jaishree V, Narsimha S. Swertiamarin and quercetin combination ameliorates hyperglycemia, hyperlipidemia and oxidative stress] in streptozotocin-induced type 2 diabetes mellitus in wistar rats. Biomed Pharmacother 2020; 130: 110561.
[http://dx.doi.org/10.1016/j.biopha.2020.110561] [PMID: 32795923]
[26]
Lin CF, Kuo YT, Chen TY, Chien CT. Quercetin-rich guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules 2016; 21(3): 334.
[http://dx.doi.org/10.3390/molecules21030334] [PMID: 26978332]
[27]
Zhang W, Jiang W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int J Biol Macromol 2020; 155: 1252-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.093] [PMID: 31726160]
[28]
Mahmoud F, Haines D, Al-Ozairi E, Dashti A. Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients. Phytother Res 2016; 30(3): 454-62.
[http://dx.doi.org/10.1002/ptr.5548] [PMID: 26692322]
[29]
Wang A, Xu Y. Synthesis and antibacterial activity of novel icariin derivatives. Pharmazie 2019; 74(2): 73-8.
[http://dx.doi.org/10.1691/ph.2019.8866] [PMID: 30782254]
[30]
Li X, Wang YX, Shi P, et al. Icariin treatment reduces blood glucose levels in type 2 diabetic rats and protects pancreatic function. Exp Ther Med 2020; 19(4): 2690-6.
[http://dx.doi.org/10.3892/etm.2020.8490] [PMID: 32256750]
[31]
Yao W, Wang K, Wang X, et al. Icariin ameliorates endothelial dysfunction in type 1 diabetic rats by suppressing ER stress via the PPARα/Sirt1/AMPKα pathway. J Cell Physiol 2021; 236(3): 1889-902.
[http://dx.doi.org/10.1002/jcp.29972] [PMID: 32770555]
[32]
Wu J, Du J, Xu C, et al. In vivo and in vitro anti-inflammatory effects of a novel derivative of icariin. Immunopharmacol Immunotoxicol 2011; 33(1): 49-54.
[http://dx.doi.org/10.3109/08923971003725144] [PMID: 20337501]
[33]
Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect 1999; 1(2): 125-9.
[http://dx.doi.org/10.1016/S1286-4579(99)80003-3] [PMID: 10594976]
[34]
Shi X, Zhou X, Chu X, et al. Allicin improves metabolism in high-fat diet-induced obese mice by modulating the gut microbiota. Nutrients 2019; 11(12): 2909.
[http://dx.doi.org/10.3390/nu11122909] [PMID: 31810206]
[35]
Li C, Liu X, Qiao Y, et al. Allicin alleviates inflammation of diabetic macroangiopathy via the Nrf2 and NF-kB pathway. Eur J Pharmacol 2020; 876: 173052.
[http://dx.doi.org/10.1016/j.ejphar.2020.173052] [PMID: 32135124]
[36]
Sultana B, Anwar F, Mushtaq M, Aslam M, Ijaz S. In vitro antimutagenic, antioxidant activities and total phenolics of clove (Syzygium aromaticum L.) seed extracts. Pak J Pharm Sci 2014; 27(4): 893-9.
[PMID: 25015457]
[37]
Ghaffar S, Afridi SK, Aftab MF, et al. Clove and its active compound attenuate free fatty acid-mediated insulin resistance in skeletal muscle cells and in mice. J Med Food 2017; 20(4): 335-44.
[http://dx.doi.org/10.1089/jmf.2016.3835] [PMID: 28338397]
[38]
Banerjee M, Parai D, Chattopadhyay S, Mukherjee SK. Andrographolide: antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol 2017; 62(3): 237-44.
[http://dx.doi.org/10.1007/s12223-017-0496-9] [PMID: 28097636]
[39]
Naik RR, Munipally PK, Nagaraju T. Andrographolide reorganise hyperglycaemia and distorted antioxidant profile in streptozotocin-induced diabetic rats. Cardiovasc Hematol Agents Med Chem 2017; 15(2): 121-7.
[http://dx.doi.org/10.2174/1871525715666171026115248] [PMID: 29076435]
[40]
Su H, Mo J, Ni J, et al. Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila. Oxid Med Cell Longev 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/6538930] [PMID: 32774682]
[41]
Abdullah S, Jang SE, Kwak MK, Chong K. Ganoderma boninense mycelia for phytochemicals and secondary metabolites with antibacterial activity. J Microbiol 2020; 58(12): 1054-64.
[http://dx.doi.org/10.1007/s12275-020-0208-z] [PMID: 33263896]
[42]
Bach E, Hi E, Martins A, Nascimento P, Wadt N. Hypoglicemic and hypolipedimic effects of Ganoderma lucidum in Streptozotocin-induced diabetic rats. Medicines 2018; 5(3): 78.
[http://dx.doi.org/10.3390/medicines5030078] [PMID: 30060545]
[43]
Sekita Y, Murakami K, Yumoto H, et al. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice. Biosci Biotechnol Biochem 2016; 80(6): 1205-13.
[http://dx.doi.org/10.1080/09168451.2016.1151339] [PMID: 27023331]
[44]
Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361(9356): 512-9.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[45]
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489(7415): 242-9.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[46]
Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5(2): e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[47]
Suri RS, Mahon JL, Clark WF, Moist LM, Salvadori M, Garg AX. Relationship between Escherichia coli O157:H7 and diabetes mellitus. Kidney Int 2009; 75(112): S44-6.
[http://dx.doi.org/10.1038/ki.2008.619] [PMID: 19180134]
[48]
Srikanth P, Pushpanathan P, Seshadri K, et al. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a tertiary care centre in Chennai, India. Indian J Endocrinol Metab 2016; 20(4): 523-30.
[http://dx.doi.org/10.4103/2230-8210.183474] [PMID: 27366720]
[49]
Jena PK, Singh S, Prajapati B, Nareshkumar G, Mehta T, Seshadri S. Impact of targeted specific antibiotic delivery for gut microbiota modulation on high-fructose-fed rats. Appl Biochem Biotechnol 2014; 172(8): 3810-26.
[http://dx.doi.org/10.1007/s12010-014-0772-y] [PMID: 24574250]
[50]
Fu C, Wang W, Zhang B. Research on the intestinal flora of the 239 patients in the elderly non-intestinal diseases. Chongqing Med 2012; 41(23): 2400-1.
[http://dx.doi.org/10.1538/expanim.17-0021]
[51]
Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim 2017; 66(4): 405-16.
[http://dx.doi.org/10.1538/expanim.17-0021] [PMID: 28701620]
[52]
Liu CS, Zheng YR, Zhang YF, Long XY. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016; 109: 274-82.
[http://dx.doi.org/10.1016/j.fitote.2016.02.001] [PMID: 26851175]
[53]
Li CN, Wang X, Lei L, et al. Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice. Phytother Res 2020; 34(5): 1166-74.
[http://dx.doi.org/10.1002/ptr.6588] [PMID: 31833107]
[54]
Zhao L, Li M, Sun K, Su S, Geng T, Sun H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol 2020; 155: 1202-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.088] [PMID: 31730993]
[55]
Ma Q, Li Y, Li P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother 2019; 117: 109138.
[http://dx.doi.org/10.1016/j.biopha.2019.109138] [PMID: 31247468]
[56]
Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2017; 50(2): e450.
[http://dx.doi.org/10.1038/emm.2017.282]
[57]
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23(1): 107-13.
[http://dx.doi.org/10.1038/nm.4236] [PMID: 27892954]
[58]
Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 2017; 8(12): 4644-56.
[http://dx.doi.org/10.1039/C7FO01383C] [PMID: 29152632]
[59]
Liu B, Zhang J, Sun P, Yi R, Han X, Zhao X. Raw bowl tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice. Biomolecules 2019; 9(9): 435.
[http://dx.doi.org/10.3390/biom9090435] [PMID: 31480575]
[60]
Xing YW, Lei GT, Wu QH, Jiang Y, Huang MX. Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease via the modulation of the gut microbiota in rabbits. World J Gastroenterol 2019; 25(8): 955-66.
[http://dx.doi.org/10.3748/wjg.v25.i8.955] [PMID: 30833801]
[61]
Chen K, Nakasone Y, Xie K, Sakao K, Hou DX. Modulation of allicin-free garlic on gut microbiome. Molecules 2020; 25(3): 682.
[http://dx.doi.org/10.3390/molecules25030682] [PMID: 32033507]
[62]
Wang JH, Bose S, Lim SK, et al. Houttuynia cordata facilitates metformin on ameliorating insulin resistance associated with gut microbiota alteration in OLETF rats. Genes (Basel) 2017; 8(10): 239.
[http://dx.doi.org/10.3390/genes8100239] [PMID: 28937612]
[63]
Li L, Chang L, Zhang X, et al. Berberine and its structural analogs have differing effects on functional profiles of individual gut microbiomes. Gut Microbes 2020; 11(5): 1348-61.
[http://dx.doi.org/10.1080/19490976.2020.1755413] [PMID: 32372706]
[64]
Zhu L, Zhang D, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe mice. Atherosclerosis 2018; 268: 117-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.023] [PMID: 29202334]
[65]
Dagdeviren S, Young Jung D, Friedline RH, et al. IL‐10 prevents aging‐associated inflammation and insulin resistance in skeletal muscle. FASEB J 2017; 31(2): 701-10.
[http://dx.doi.org/10.1096/fj.201600832R] [PMID: 27811060]
[66]
Li Y, Rahman SU, Huang Y, et al. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem 2020; 78: 108324.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108324] [PMID: 32004926]
[67]
Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018; 138(22): 2486-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033714] [PMID: 30571343]
[68]
Rodriguez-Castaño GP, Dorris MR, Liu X, Bolling BW, Acosta-Gonzalez A, Rey FE. Bacteroides thetaiotaomicron starch utilization promotes quercetin degradation and butyrate production by Eubacterium ramulus. Front Microbiol 2019; 10: 1145.
[http://dx.doi.org/10.3389/fmicb.2019.01145] [PMID: 31191482]
[69]
Roshan N, Riley TV, Hammer KA. Antimicrobial activity of natural products against Clostridium difficile in vitro. J Appl Microbiol 2017; 123(1): 92-103.
[http://dx.doi.org/10.1111/jam.13486] [PMID: 28489336]
[70]
Chen M, Xiao D, Liu W, et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol 2020; 155: 890-902.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.047] [PMID: 31712153]
[71]
Lemos MPL, Saraiva MMS, Leite EL, et al. The posthatch prophylactic use of ceftiofur affects the cecal microbiota similar to the dietary sanguinarine supplementation in broilers. Poult Sci 2020; 99(11): 6013-21.
[http://dx.doi.org/10.1016/j.psj.2020.06.078] [PMID: 33142520]
[72]
Wu T, Pei J, Ge L, et al. Characterization of a α-l-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorg Chem 2018; 81: 461-7.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.004] [PMID: 30243237]
[73]
Kim SH, Huh CS, Choi ID, et al. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol 2014; 117(3): 834-45.
[http://dx.doi.org/10.1111/jam.12573] [PMID: 24925305]
[74]
Booyens J, Labuschagne MC, Thantsha MS. In vitro antibacterial mechanism of action of crude garlic (Allium sativum) clove extract on selected probiotic Bifidobacterium species as revealed by SEM, TEM, and SDS-PAGE analysis. Probiotics Antimicrob Proteins 2014; 6(2): 82-7.
[http://dx.doi.org/10.1007/s12602-013-9145-z] [PMID: 24676721]
[75]
Zhang C, He X, Sheng Y, et al. Allicin‐induced host‐gut microbe interactions improves energy homeostasis. FASEB J 2020; 34(8): 10682-98.
[http://dx.doi.org/10.1096/fj.202001007R] [PMID: 32619085]
[76]
Kawabata K, Baba N, Sakano T, et al. Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis. Biosci Biotechnol Biochem 2018; 82(4): 689-97.
[http://dx.doi.org/10.1080/09168451.2017.1401916] [PMID: 29165050]
[77]
Liu WC, Yang MC, Wu YY, Chen PH, Hsu CM, Chen LW. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways. PLoS One 2018; 13(5): e0196511.
[http://dx.doi.org/10.1371/journal.pone.0196511] [PMID: 29851956]
[78]
Zhang W, Xu JH, Yu T, Chen QK. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother 2019; 118: 109131.
[http://dx.doi.org/10.1016/j.biopha.2019.109131] [PMID: 31545226]
[79]
Li X, Wang E, Yin B, et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes 2017; 8(3): 421-32.
[http://dx.doi.org/10.3920/BM2016.0167] [PMID: 28504567]
[80]
Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct 2017; 8(9): 3155-64.
[http://dx.doi.org/10.1039/C7FO00593H] [PMID: 28782784]
[81]
Elgamily H, Safy R, Makharita R. Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: an in vitro study. Open Access Maced J Med Sci 2019; 7(14): 2328-34.
[http://dx.doi.org/10.3889/oamjms.2019.653] [PMID: 31592282]
[82]
dos Santos AS, de Albuquerque TMR, de Brito Alves JL, de Souza EL. Effects of quercetin and resveratrol on in vitro properties related to the functionality of potentially probiotic Lactobacillus strains. Front Microbiol 2019; 10: 2229.
[http://dx.doi.org/10.3389/fmicb.2019.02229] [PMID: 31608042]
[83]
Xiong W, Ma H, Zhang Z, et al. Icariin enhances intestinal barrier function by inhibiting NF-κB signaling pathways and modulating gut microbiota in a piglet model. RSC Advances 2019; 9(65): 37947-56.
[http://dx.doi.org/10.1039/C9RA07176H] [PMID: 35541789]
[84]
Khalid M, Andreoli S. Extrarenal manifestations of the hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli (STEC HUS). Pediatr Nephrol 2019; 34(12): 2495-507.
[http://dx.doi.org/10.1007/s00467-018-4105-1] [PMID: 30382336]
[85]
Radünz M, da Trindade MLM, Camargo TM, et al. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem 2019; 276(276): 180-6.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.173] [PMID: 30409582]
[86]
Wang J, Bie M, Zhou W, Xie B, Sun Z. Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbohydr Polym 2019; 212: 11-20.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.030] [PMID: 30832837]
[87]
Reiter J, Hübbers AM, Albrecht F, Leichert LIO, Slusarenko AJ. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. Int J Med Microbiol 2020; 310(1): 151359.
[http://dx.doi.org/10.1016/j.ijmm.2019.151359] [PMID: 31585716]
[88]
Petronio Petronio G, Cutuli MA, Magnifico I, et al. In vitro and in vivo biological activity of berberine chloride against uropathogenic E. coli strains using Galleria mellonella as a host model. Molecules 2020; 25(21): 5010.
[http://dx.doi.org/10.3390/molecules25215010] [PMID: 33137930]
[89]
Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012; 28(5): 539-43.
[http://dx.doi.org/10.1016/j.nut.2011.08.013] [PMID: 22129852]
[90]
Hulston CJ, Churnside AA, Venables MC. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br J Nutr 2015; 113(4): 596-602.
[http://dx.doi.org/10.1017/S0007114514004097] [PMID: 25630516]
[91]
Mohamadshahi M, Veissi M, Haidari F, Shahbazian H, Kaydani GA, Mohammadi F. Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes. Bioimpacts 2014; 4(2): 83-8.
[http://dx.doi.org/10.5681/bi.2014.007] [PMID: 25035851]
[92]
Ankolekar C, Johnson D, Pinto MS, Johnson K, Labbe R, Shetty K. Inhibitory potential of tea polyphenolics and influence of extraction time against Helicobacter pylori and lack of inhibition of beneficial lactic acid bacteria. J Med Food 2011; 14(11): 1321-9.
[http://dx.doi.org/10.1089/jmf.2010.0237] [PMID: 21663484]
[93]
Silvan JM, Gutiérrez-Docio A, Moreno-Fernandez S, Alarcón-Cavero T, Prodanov M, Martinez-Rodriguez AJ. Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods 2020; 9(10): 1370.
[http://dx.doi.org/10.3390/foods9101370] [PMID: 32993186]
[94]
Li H, Xia XJ, Zhang LF, et al. Comparative study of allicin-containing quadruple therapy vs. bismuth-containing quadruple therapy for the treatment of Helicobacter pylori infection: a prospective randomized study. Eur J Gastroenterol Hepatol 2021; 32(2): 194-200.
[http://dx.doi.org/10.1097/MEG.0000000000001896] [PMID: 32804837]
[95]
Zhang S, Huang J, Xie X, He Y, Mo F, Luo Z. Quercetin from Polygonum capitatum protects against gastric inflammation and apoptosis associated with Helicobacter pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX. Molecules 2017; 22(5): 744.
[http://dx.doi.org/10.3390/molecules22050744] [PMID: 28481232]
[96]
Shang X, Tan Q, Liu R, Yu K, Li P, Zhao GP. In vitro anti-Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s Mane mushroom, Hericium erinaceus (higher Basidiomycetes). Int J Med Mushrooms 2013; 15(2): 165-74.
[http://dx.doi.org/10.1615/IntJMedMushr.v15.i2.50] [PMID: 23557368]
[97]
Mo ZZ, Wang XF, Zhang X, et al. Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism. BMC Complement Altern Med 2015; 15(1): 238.
[http://dx.doi.org/10.1186/s12906-015-0775-4] [PMID: 26179287]
[98]
Yang T, Wang R, Liu H, et al. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis. Life Sci 2021; 266: 118903.
[http://dx.doi.org/10.1016/j.lfs.2020.118903] [PMID: 33340526]
[99]
Jung DH, Park MH, Kim CJ, et al. Effect of β-caryophyllene from cloves extract on Helicobacter pylori eradication in mouse model. Nutrients 2020; 12(4): 1000.
[http://dx.doi.org/10.3390/nu12041000] [PMID: 32260414]
[100]
Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther 2005; 12(6): 580-91.
[http://dx.doi.org/10.1097/01.mjt.0000178767.67857.63] [PMID: 16280652]
[101]
Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat Commun 2019; 10(1): 2474.
[http://dx.doi.org/10.1038/s41467-019-10189-x] [PMID: 31171772]
[102]
Xie X, Yang H, An JJ, et al. Activation of anxiogenic circuits instigates resistance to diet-induced obesity via increased energy expenditure. Cell Metab 2019; 29(4): 917-931.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.12.018] [PMID: 30661931]
[103]
Chueh WH, Lin JY. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J Agric Food Chem 2011; 59(14): 8021-7.
[http://dx.doi.org/10.1021/jf201627w] [PMID: 21696141]
[104]
Zhang L, Cao N, Wang Y, et al. Improvement of oxazolone-induced ulcerative colitis in rats using andrographolide. Molecules 2019; 25(1): 76.
[http://dx.doi.org/10.3390/molecules25010076] [PMID: 31878303]
[105]
Shin HY, Kim SH, Kang SM, et al. Anti-inflammatory activity of Motherwort (Leonurus sibiricus L.). Immunopharmacol Immunotoxicol 2009; 31(2): 209-13.
[http://dx.doi.org/10.1080/08923970802135443] [PMID: 19514995]
[106]
Kittl M, Beyreis M, Tumurkhuu M, et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem 2016; 39(1): 278-93.
[http://dx.doi.org/10.1159/000445623] [PMID: 27336168]
[107]
Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm 2016; 2016: 1-5.
[http://dx.doi.org/10.1155/2016/9340637] [PMID: 28003714]
[108]
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913-6.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031]
[109]
Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019; 15(5): 261-73.
[http://dx.doi.org/10.1038/s41574-019-0156-z] [PMID: 30670819]
[110]
Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep 2019; 8(3): 317-32.
[http://dx.doi.org/10.1007/s13679-019-00352-2] [PMID: 31175629]
[111]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165(6): 1332-45.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[112]
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 2019; 66(1): 1-12.
[http://dx.doi.org/10.18388/abp.2018_2648] [PMID: 30831575]
[113]
Sawicki C, Livingston K, Obin M, Roberts S, Chung M, McKeown N. Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients 2017; 9(2): 125.
[http://dx.doi.org/10.3390/nu9020125] [PMID: 28208609]
[114]
Zhang X, Zhao Y, Zhang M, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 2012; 7(8): e42529.
[http://dx.doi.org/10.1371/journal.pone.0042529] [PMID: 22880019]
[115]
Wang J, Li P, Liu S, et al. Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota. Food Nutr Res 2020; 64.
[http://dx.doi.org/10.29219/fnr.v64.3672] [PMID: 33281537]
[116]
Niu D, An S, Chen X, et al. Corni fructus as a natural resource can treat type 2 diabetes by regulating gut microbiota. Am J Chin Med 2020; 48(6): 1385-407.
[http://dx.doi.org/10.1142/S0192415X20500688] [PMID: 32907359]
[117]
Zhang T, Qiu F. Icariin protects mouse insulinoma min6 cell function by activating the PI3K/AKT pathway. Med Sci Monit 2020; 26: e924453-1.
[118]
Sun P, Wang T, Chen L, et al. Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro. Acta Pharmacol Sin 2016; 37(8): 1083-90.
[http://dx.doi.org/10.1038/aps.2016.29] [PMID: 27238208]
[119]
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51(1): 9.
[http://dx.doi.org/10.1186/s40659-018-0157-8] [PMID: 29604956]
[120]
Hou BY, Zhao YR, Ma P, et al. Hypoglycemic activity of puerarin through modulation of oxidative stress and mitochondrial function via AMPK. Chin J Nat Med 2020; 18(11): 818-26.
[http://dx.doi.org/10.1016/S1875-5364(20)60022-X] [PMID: 33308602]
[121]
Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 2012; 14: e1.
[http://dx.doi.org/10.1017/S1462399411002109] [PMID: 22233681]
[122]
Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017; 169(3): 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[123]
Govers R. Cellular regulation of glucose uptake by glucose transporter GLUT4. Adv Clin Chem 2014; 66: 173-240.
[http://dx.doi.org/10.1016/B978-0-12-801401-1.00006-2] [PMID: 25344989]
[124]
Kousteni S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 2012; 50(2): 437-43.
[http://dx.doi.org/10.1016/j.bone.2011.06.034] [PMID: 21816244]
[125]
Pan ZK. Toll-like receptors and TLR-mediated signaling: more questions than answers. Am J Physiol Lung Cell Mol Physiol 2004; 286(5): L918-20.
[http://dx.doi.org/10.1152/ajplung.00381.2003] [PMID: 15064238]
[126]
Amyot J, Semache M, Ferdaoussi M, Fontés G, Poitout V. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLoS One 2012; 7(4): e36200.
[http://dx.doi.org/10.1371/journal.pone.0036200] [PMID: 22558381]
[127]
Fujishiro M, Gotoh Y, Katagiri H, et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 2003; 17(3): 487-97.
[http://dx.doi.org/10.1210/me.2002-0131] [PMID: 12554784]
[128]
Hwang JT, Park IJ, Shin JI, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 2005; 338(2): 694-9.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.195] [PMID: 16236247]
[129]
Joshi T, Singh AK, Haratipour P, et al. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J Cell Physiol 2019; 234(10): 17212-31.
[http://dx.doi.org/10.1002/jcp.28528] [PMID: 30916407]
[130]
Fujiwara H, Docampo MD, Riwes M, et al. Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat Commun 2018; 9(1): 3674.
[http://dx.doi.org/10.1038/s41467-018-06048-w] [PMID: 30201970]
[131]
Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology 2018; 68(4): 1574-88.
[http://dx.doi.org/10.1002/hep.29857] [PMID: 29486523]
[132]
Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull 2005; 28(8): 1431-7.
[http://dx.doi.org/10.1248/bpb.28.1431] [PMID: 16079488]
[133]
Li M, Zhou W, Dang Y, Li C, Ji G, Zhang L. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice. Biomed Pharmacother 2020; 132: 110953.
[http://dx.doi.org/10.1016/j.biopha.2020.110953] [PMID: 33254441]
[134]
Yu Y, Liu L, Wang X, et al. Modulation of glucagon-like peptide-1 release by berberine: In vivo and in vitro studies. Biochem Pharmacol 2010; 79(7): 1000-6.
[http://dx.doi.org/10.1016/j.bcp.2009.11.017] [PMID: 19945441]
[135]
Panchal S, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients 2018; 10(5): 630.
[http://dx.doi.org/10.3390/nu10050630] [PMID: 29772784]
[136]
Ladurner A, Zehl M, Grienke U, et al. Allspice and clove as source of triterpene acids activating the G protein-coupled bile acid receptor TGR5. Front Pharmacol 2017; 8: 468.
[http://dx.doi.org/10.3389/fphar.2017.00468] [PMID: 28769799]
[137]
Liu CY, Huang CJ, Huang LH, Chen IJ, Chiu JP, Hsu CH. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One 2014; 9(3): e91163.
[http://dx.doi.org/10.1371/journal.pone.0091163] [PMID: 24614112]
[138]
Kato M, Nakanishi T, Tani T, Tsuda T. Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats. Nutr Res 2017; 37: 37-45.
[http://dx.doi.org/10.1016/j.nutres.2016.12.002] [PMID: 28215313]
[139]
Liu C, Hu M, Zhang M, et al. Association of GLP-1 secretion with anti-hyperlipidemic effect of ginsenosides in high-fat diet fed rats. Metabolism 2014; 63(10): 1342-51.
[http://dx.doi.org/10.1016/j.metabol.2014.06.015] [PMID: 25060691]
[140]
Lv W, Wang X, Xu Q, Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem 2020; 20(1): 37-56.
[http://dx.doi.org/10.2174/1568026620666191224141617] [PMID: 31884929]
[141]
Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 2017; 49(2): 139-57.
[http://dx.doi.org/10.1080/03602532.2017.1306544] [PMID: 28290706]
[142]
Li ZQ, Zuo DY, Qie XD, et al. Berberine acutely inhibits the digestion of maltose in the intestine. J Ethnopharmacol 2012; 142(2): 474-80.
[http://dx.doi.org/10.1016/j.jep.2012.05.022]
[143]
Kalra S, Gupta Y. Sulfonylureas. J Pak Med Assoc 2015; 65(1): 101-4.
[PMID: 25831689]
[144]
Ahmad J, Khan I, Blundell R. Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytother Res 2019; 33(11): 2841-8.
[http://dx.doi.org/10.1002/ptr.6473] [PMID: 31429148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy