Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Macroporous Nanostructured Calcium Phosphate/Chitosan-Gelatin Composite Bone Tissue Engineering Scaffold

Author(s): Efaf Beman, Shokoufeh Borhan, Saeed Hesaraki and Nader Nezafati*

Volume 16, Issue 4, 2023

Published on: 08 February, 2023

Page: [443 - 452] Pages: 10

DOI: 10.2174/2666145416666230111104341

Price: $65

Abstract

Background: Tissue engineering is an emerging technology developed for the therapeutic reconstruction of damaged tissue.

Objective: In this study, a ceramic/polymer nanocomposite bone tissue engineering scaffold was prepared by coating a tetracalcium phosphate/dicalcium phosphate mixture slurry on a porous 3D chitosan-gelatin construction.

Methods: The phase composition, structural groups, and morphological aspects of the samples were characterized. Furthermore, the 3D composite scaffold was immersed in simulated body fluid (SBF) solution at 37ºC for various periods to track its compositional and structural changes.

Results: Based on the results, the coated layer is composed of needle-like carbonated apatite nanosized crystals with some tetracalcium phosphate/dicalcium phosphate initial materials. The nanocomposite was porous with an average macropore size of about 410 μm. The in vitro tests revealed that the composition of the coated layer tends to be apatite crystals, which are similar to natural bone in terms of chemistry and morphology.

Conclusion: The results suggest that a simple coating of chitosan-gelatin scaffolds using reactive calcium phosphate particles may introduce a novel nanocomposite scaffold with improved mechanical strength, bioactivity, and osteoconductivity.

Graphical Abstract

[1]
Xu Q, Lu H, Zhang J, Lu G, Deng Z, Mo A. Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66. Int J Nanomedicine 2010; 5: 331-5.
[PMID: 20517477]
[2]
Xu Y, Xia D, Han J, Yuan S, Lin H, Zhao C. Design and fabrication of porous chitosan scaffolds with tunable structures and mechan-ical properties. Carbohydr Polym 2017; 177: 210-6.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.069] [PMID: 28962760]
[3]
Cao S, Zhao Y, Hu Y, Zou L, Chen J. New perspectives: In-situ tissue engineering for bone repair scaffold. Compos, Part B Eng 2020; 202: 108445.
[http://dx.doi.org/10.1016/j.compositesb.2020.108445]
[4]
Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chi-tosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119: 1228-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.056] [PMID: 30107161]
[5]
Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ. In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater 2013; 8(2): 025002-12.
[http://dx.doi.org/10.1088/1748-6041/8/2/025002] [PMID: 23343569]
[6]
Hamlehkhan A, Mozafari M, Nezafati N, Azami M, Samadikuchaksaraei A. Novel bioactive poly(ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffolds for bone regeneration. Key Eng Mater 2011; 493-494: 909-15.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.493-494.909]
[7]
López Angulo DE, do Amaral Sobral PJ. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for bio-medical purpose. Int J Biol Macromol 2016; 92: 645-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.029] [PMID: 27453523]
[8]
Chen T, Embree HD, Brown EM, Taylor MM, Payne GF. Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 2003; 24(17): 2831-41.
[http://dx.doi.org/10.1016/S0142-9612(03)00096-6] [PMID: 12742721]
[9]
Mao J, Zhao L, de Yao K, Shang Q, Yang G, Cao Y. Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res 2003; 64A(2): 301-8.
[http://dx.doi.org/10.1002/jbm.a.10223] [PMID: 12522817]
[10]
Nouri-Felekori M, Khakbiz M, Nezafati N, Mohammadi J, Baghaban Eslaminejad M. Comparative analysis and properties evaluation of gelatin microspheres crosslinked with glutaraldehyde and 3-glycidoxypropyltrimethoxysilane as drug delivery systems for the antibiotic vancomycin. Int J Pharm 2019; 557: 208-20.https://doi.org/10.1016/j.ijpharm.2018.12.054
[11]
Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K. Preparation and characterization of macroporous chitosan-gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res 2003; 67A(3): 844-55.
[http://dx.doi.org/10.1002/jbm.a.10153] [PMID: 14613233]
[12]
Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng 2021; 21(4): 139.
[http://dx.doi.org/10.1007/s43452-021-00291-7]
[13]
Zerrouki R, Karas A, Zidour M, et al. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct Eng Mech 2021; 78(2): 117-24.
[14]
Heidari F, Taheri K, Sheybani M, Janghorban M, Tounsi A. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Compos Struct 2021; 38(5): 533-45.
[15]
Bourada F, Bousahla AA, Tounsi A, et al. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concr 2020; 25(6): 485-95.
[16]
Rajkumar M, Kavitha K, Prabhu M, Shisundaram NM, Rajendran V. Mater Sci Eng C 2013; 33: 3237.
[http://dx.doi.org/10.1016/j.msec.2013.04.005]
[17]
Kavya KC, Jayakumar R, Nair S, Chennazhi KP. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 2013; 59: 255-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.023] [PMID: 23591473]
[18]
Padilla S, Román J, Sánchezsalcedo S, Valletregí M. Hydroxyapatite/SiO2–CaO–P2O5 glass materials: In vitro bioactivity and bio-compatibility. Acta Biomater 2006; 2(3): 331-42.
[http://dx.doi.org/10.1016/j.actbio.2006.01.006] [PMID: 16701892]
[19]
Li X, Koller G, Huang J, et al. A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance. J R Soc Interface 2010; 7(42): 189-97.
[http://dx.doi.org/10.1098/rsif.2009.0101] [PMID: 19493897]
[20]
Ahmad Z, Rasekh M, Edirisinghe M. Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol Mater Eng 2010; 295(4): 315-9.
[http://dx.doi.org/10.1002/mame.200900396]
[21]
Baghbani F, Moztarzadeh F, Gafari Nazari A, et al. Biological response of biphasic hydroxyapatite/tricalcium phosphate scaffolds intended for low load-bearing orthopaedic applications. Adv Compos Lett 2012; 21(1): 16-24.
[22]
Li L, Li G, Wang Y, Jiang J. Apatite formation on Poly (vinyl alcohol)-coated Poly (ɛ-caprolactone) films by incubation in simulated body fluids. Appl Surf Sci 2009; 255(17): 7734-8.
[http://dx.doi.org/10.1016/j.apsusc.2009.04.154]
[23]
Hesaraki S, Moztarzadeh F, Sharifi D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J Biomed Mater Res A 2007; 83A(1): 80-7.
[http://dx.doi.org/10.1002/jbm.a.31196] [PMID: 17380498]
[24]
Vargas-Becerril N, Sánchez-Téllez DA, Zarazúa-Villalobos L, et al. Structure of biomimetic apatite grown on hydroxyapatite (HA). Ceram Int 2020; 46(18): 28806-13.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.044]
[25]
Dridi A, Riahi KZ, Somrani S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C. J Phys Chem Solids 2021; 156: 110122.
[http://dx.doi.org/10.1016/j.jpcs.2021.110122]
[26]
Shin JY, Jeong SJ, Lee WK. Fabrication of porous scaffold by ternary combination of chitosan, gelatin, and calcium phosphate for tissue engineering. J Ind Eng Chem 2019; 80: 862-9.
[http://dx.doi.org/10.1016/j.jiec.2019.07.042]
[27]
Singh YP, Dasgupta S, Bhaskar R. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin–chitosan scaffolds for bone tissue engineering. J Biomater Sci Polym Ed 2019; 30(18): 1756-78.
[http://dx.doi.org/10.1080/09205063.2019.1663474] [PMID: 31526176]
[28]
Chun HJ, Kim G-W, Kim C-H. Fabrication of porous chitosan scaffold in order to improve biocompatibility. J Phys Chem Solids 2008; 69(5-6): 1573-6.
[http://dx.doi.org/10.1016/j.jpcs.2007.10.104]
[29]
Nezafati N, Farokhi M, Heydari M, Hesaraki S, Nasab NA. In vitro bioactivity and cytocompatablity of an injectable calcium phos-phate cement/silanated gelatin microsphere composite bone cement. Compos, Part B Eng 2019; 175: 107146.
[http://dx.doi.org/10.1016/j.compositesb.2019.107146]
[30]
Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 1990; 24(6): 721-34.
[http://dx.doi.org/10.1002/jbm.820240607] [PMID: 2361964]
[31]
Sudheesh Kumar PT, Lakshmanan VK, Anilkumar TV, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite band-ages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 2012; 4(5): 2618-29.
[http://dx.doi.org/10.1021/am300292v] [PMID: 22489770]
[32]
Mao JS, Zhao LG, Yin YJ, Yao KD. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials 2003; 24(6): 1067-74.
[http://dx.doi.org/10.1016/S0142-9612(02)00442-8] [PMID: 12504529]
[33]
Kim SY, Jeon SH. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J Ind Eng Chem 2012; 18(1): 128-36.
[http://dx.doi.org/10.1016/j.jiec.2011.11.001]
[34]
Thein-Han WW, Saikhun J, Pholpramoo C, Misra RDK, Kitiyanant Y. Chitosan–gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater 2009; 5(9): 3453-66.
[http://dx.doi.org/10.1016/j.actbio.2009.05.012] [PMID: 19460465]
[35]
Meng ZX, Li HF, Sun ZZ, Zheng W, Zheng YF. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater Sci Eng C 2013; 33(2): 699-706.
[http://dx.doi.org/10.1016/j.msec.2012.10.021] [PMID: 25427476]
[36]
Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engi-neering. J Biomed Mater Res 2001; 55(3): 304-12.
[http://dx.doi.org/10.1002/1097-4636(20010605)55:3<304:AID-JBM1018>3.0.CO;2-J] [PMID: 11255183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy