Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Combined Application of Salinomycin and ATRA Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells by Inhibiting WNT/β-Catenin Pathway

Author(s): Hui-Min Xi, Hao Lu, Xiang-Qin Weng, Yan Sheng, Jing Wu, Lu Li and Xun Cai*

Volume 23, Issue 9, 2023

Published on: 30 January, 2023

Page: [1074 - 1084] Pages: 11

DOI: 10.2174/1871520623666230110121629

Price: $65

Abstract

Background and Objective: All-trans retinoic acid (ATRA) is only effective in acute promyelocytic leukemia (APL), but not in other subtype of acute myeloid leukemia (AML). Salinomycin targets tumor cells rather than non-tumorigenic cells, and WNT/β-catenin pathway inhibition is one of the mechanisms of its anti-tumor activity. There is a crosstalk between RA and WNT/β-catenin pathway. Here, we investigate the effect of the combination of salinomycin and ATRA (S+RA) in non-APL AML cells.

Methods: Apoptosis was evaluated by cell viability and Annexin-V assay. Cell differentiation was analyzed by CD11c expression and morphology. To explore the underlying mechanisms, Western blot analysis and mitochondrial transmembrane potentials (ΔΨm) were used.

Results & Discussion: S+RA induced differentiation and apoptosis in AML cell lines and AML primary cells. S+RA inhibited the β-catenin signal pathway as determined by the decreased protein levels of β-catenin, the low-density lipoprotein receptor-related proteins 6 (LRP6), and its downstream proteins such as survivin, c-Myc, caspase-3/7, cdc25A and cyclinD1 and reduced phosphorylation level of GSK3β S9. S+RA also increased the protein levels of CCAAT/enhancer-binding proteins (C/EBPs) and PU.1 and collapsed Δψm. The above molecular and cellular changes induced by S+RA were inhibited by β-catenin specific activator and promoted by β-catenin specific inhibitor.

Conclusion: S+RA induced differentiation by β-catenin-inhibition-mediated up-regulation of C/EBPs and PU.1 and suppression of c-Myc. S+RA triggered apoptosis through β-catenin-inhibition-regulated ΔΨm collapse and caspase-3/7 activation. Taken together, our findings may provide novel therapeutic strategies for AML patients by targeting the WNT/β-catenin pathway.

Graphical Abstract

[1]
Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J., 2021, 11(2), 41.
[http://dx.doi.org/10.1038/s41408-021-00425-3] [PMID: 33619261]
[2]
Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 1988, 72(2), 567-572.
[http://dx.doi.org/10.1182/blood.V72.2.567.567] [PMID: 3165295]
[3]
Taciak, B.; Pruszynska, I.; Kiraga, L.; Bialasek, M.; Krol, M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol., 2018, 69(2), 12.
[PMID: 29980141]
[4]
Reya, T.; Duncan, A.W.; Ailles, L.; Domen, J.; Scherer, D.C.; Willert, K.; Hintz, L.; Nusse, R.; Weissman, I.L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423(6938), 409-414.
[http://dx.doi.org/10.1038/nature01593] [PMID: 12717450]
[5]
Staal, F.J.T.; Clevers, H.C. WNT signalling and haematopoiesis: A WNT-WNT situation. Nat. Rev. Immunol., 2005, 5(1), 21-30.
[http://dx.doi.org/10.1038/nri1529] [PMID: 15630426]
[6]
Ysebaert, L.; Chicanne, G.; Demur, C.; De Toni, F.; Prade-Houdellier, N.; Ruidavets, J-B.; Mansat-De Mas, V.; Rigal-Huguet, F.; Laurent, G.; Payrastre, B.; Manenti, S.; Racaud-Sultan, C. Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia, 2006, 20(7), 1211-1216.
[http://dx.doi.org/10.1038/sj.leu.2404239] [PMID: 16688229]
[7]
Mikesch, J-H.; Steffen, B.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 2007, 21(8), 1638-1647.
[http://dx.doi.org/10.1038/sj.leu.2404732] [PMID: 17554387]
[8]
Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 2010, 327(5973), 1650-1653.
[http://dx.doi.org/10.1126/science.1186624] [PMID: 20339075]
[9]
Kode, A.; Manavalan, J.S.; Mosialou, I.; Bhagat, G.; Rathinam, C.V.; Luo, N.; Khiabanian, H.; Lee, A.; Murty, V.V.; Friedman, R.; Brum, A.; Park, D.; Galili, N.; Mukherjee, S.; Teruya-Feldstein, J.; Raza, A.; Rabadan, R.; Berman, E.; Kousteni, S. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature, 2014, 506(7487), 240-244.
[http://dx.doi.org/10.1038/nature12883] [PMID: 24429522]
[10]
Cardona-Echeverry, A.; Prada-Arismendy, J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: How alterations in DNA methylation come into play in patients’ prognosis. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3097-3109.
[http://dx.doi.org/10.1007/s00432-020-03407-3] [PMID: 32980885]
[11]
Jiang, X.; Mak, P.Y.; Mu, H.; Tao, W.; Mak, D.H.; Kornblau, S.; Zhang, Q.; Ruvolo, P.; Burks, J.K.; Zhang, W.; McQueen, T.; Pan, R.; Zhou, H.; Konopleva, M.; Cortes, J.; Liu, Q.; Andreeff, M.; Carter, B.Z. Disruption of Wnt/β-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin. Cancer Res., 2018, 24(10), 2417-2429.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1556] [PMID: 29463558]
[12]
Suknuntha, K.; Thita, T.; Togarrati, P.P.; Ratanachamnong, P.; Wongtrakoongate, P.; Srihirun, S.; Slukvin, I.; Hongeng, S. Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines. Int. J. Hematol., 2017, 105(2), 196-205.
[http://dx.doi.org/10.1007/s12185-016-2116-x] [PMID: 27766528]
[13]
Takam Kamga, P.; Dal Collo, G.; Cassaro, A.; Bazzoni, R.; Delfino, P.; Adamo, A.; Bonato, A.; Carbone, C.; Tanasi, I.; Bonifacio, M.; Krampera, M. Small molecule inhibitors of microenvironmental Wnt/β-catenin signaling enhance the chemosensitivity of acute myeloid leukemia. Cancers, 2020, 12(9), 2696.
[http://dx.doi.org/10.3390/cancers12092696] [PMID: 32967262]
[14]
Easwaran, V.; Pishvaian, M.; Salimuddin; Byers, S. Cross-regulation of β-catenin-LEF/TCF and retinoid signaling pathways. Curr. Biol., 1999, 9(23), 1415-1419.
[http://dx.doi.org/10.1016/S0960-9822(00)80088-3] [PMID: 10607566]
[15]
Zhu, X.; Wang, W.; Zhang, X.; Bai, J.; Chen, G.; Li, L.; Li, M. All-trans retinoic acid-induced deficiency of the Wnt/β-catenin pathway enhances hepatic carcinoma stem cell differentiation. PLoS One, 2015, 10(11), e0143255.
[http://dx.doi.org/10.1371/journal.pone.0143255] [PMID: 26571119]
[16]
Wang, S.; Huang, H.; Xiang, H.; Gu, B.; Li, W.; Chen, L.; Zhang, M. Wnt signaling modulates routes of retinoic acid-induced differentiation of embryonic stem cells. Stem Cells Dev., 2019, 28(19), 1334-1345.
[http://dx.doi.org/10.1089/scd.2019.0065] [PMID: 31337269]
[17]
Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A new paradigm in cancer therapy. Tumour Biol., 2017, 39(3)
[http://dx.doi.org/10.1177/1010428317695035] [PMID: 28349817]
[18]
Zhao, Y.; Zhong, L.; Liu, L.; Yao, S.F.; Chen, M.; Li, L.W.; Shan, Z.L.; Xiao, C.L.; Gan, L.G.; Xu, T.; Liu, B.Z. Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells. Oncol. Rep., 2018, 40(2), 877-886.
[http://dx.doi.org/10.3892/or.2018.6513] [PMID: 29989650]
[19]
Roulston, G.D.R.; Burt, C.L.; Kettyle, L.M.J.; Matchett, K.B.; Keenan, H.L.; Mulgrew, N.M.; Ramsey, J.M.; Dougan, C.; McKiernan, J.; Grishagin, I.V.; Mills, K.I.; Thompson, A. Low-dose salinomycin induces anti-leukemic responses in AML and MLL. Oncotarget, 2016, 7(45), 73448-73461.
[http://dx.doi.org/10.18632/oncotarget.11866] [PMID: 27612428]
[20]
Fuchs, D.; Daniel, V.; Sadeghi, M.; Opelz, G.; Naujokat, C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem. Biophys. Res. Commun., 2010, 394(4), 1098-1104.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.138] [PMID: 20350531]
[21]
Lu, D.; Choi, M.Y.; Yu, J.; Castro, J.E.; Kipps, T.J.; Carson, D.A. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13253-13257.
[http://dx.doi.org/10.1073/pnas.1110431108] [PMID: 21788521]
[22]
Li, Y.P.; Said, F.; Gallagher, R.E. Retinoic acid-resistant HL-60 cells exclusively contain mutant retinoic acid receptor-α. Blood, 1994, 83(11), 3298-3302.
[http://dx.doi.org/10.1182/blood.V83.11.3298.3298] [PMID: 8193365]
[23]
Lu, H.; Li, Z.; Ding, M.; Liang, C.; Weng, X.; Sheng, Y.; Wu, J.; Cai, X. Trametinib enhances ATRA-induced differentiation in AML cells. Leuk. Lymphoma, 2021, 62(14), 3361-3372.
[http://dx.doi.org/10.1080/10428194.2021.1961231] [PMID: 34355652]
[24]
Liang, C.; Ding, M.; Weng, X.Q.; Sheng, Y.; Wu, J.; Li, Z.Y.; Cai, X. Combination of enzastaurin and ATRA exerts dose-dependent dual effects on ATRA-resistant acute promyelocytic leukemia cells. Am. J. Cancer Res., 2019, 9(5), 906-926.
[PMID: 31218101]
[25]
Tetsu, O.; McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999, 398(6726), 422-426.
[http://dx.doi.org/10.1038/18884] [PMID: 10201372]
[26]
Vijayakumar, S.; Liu, G.; Rus, I.A.; Yao, S.; Chen, Y.; Akiri, G.; Grumolato, L.; Aaronson, S.A. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell, 2011, 19(5), 601-612.
[http://dx.doi.org/10.1016/j.ccr.2011.03.010] [PMID: 21575861]
[27]
Ma, H.; Nguyen, C.; Lee, K.S.; Kahn, M. Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene, 2005, 24(22), 3619-3631.
[http://dx.doi.org/10.1038/sj.onc.1208433] [PMID: 15782138]
[28]
Huang, Y.H.; Yeh, C.T. Functional compartmentalization of HSP60-survivin interaction between mitochondria and cytosol in cancer cells. Cells, 2019, 9(1), 23.
[http://dx.doi.org/10.3390/cells9010023] [PMID: 31861751]
[29]
van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.; van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A.P.; Tjon-Pon-Fong, M.; Moerer, P.; van den Born, M.; Soete, G.; Pals, S.; Eilers, M.; Medema, R.; Clevers, H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002, 111(2), 241-250.
[http://dx.doi.org/10.1016/S0092-8674(02)01014-0] [PMID: 12408868]
[30]
Song, J.H.; Park, E.; Kim, M.S.; Cho, K.M.; Park, S.H.; Lee, A.; Song, J.; Kim, H.J.; Koh, J.T.; Kim, T.S. L -Asparaginase-mediated downregulation of c-Myc promotes 1,25(OH)2 D3-induced myeloid differentiation in acute myeloid leukemia cells. Int. J. Cancer, 2017, 140(10), 2364-2374.
[http://dx.doi.org/10.1002/ijc.30662] [PMID: 28224619]
[31]
Li, Z.Y.; Liang, C.; Ding, M.; Weng, X.Q.; Sheng, Y.; Wu, J.; Lu, H.; Cai, X. Enzastaurin enhances ATRA-induced differentiation of acute myeloid leukemia cells. Am. J. Transl. Res., 2020, 12(12), 7836-7854.
[PMID: 33437364]
[32]
Sheng, Y.; Ju, W.; Huang, Y.; Li, J.; Ozer, H.; Qiao, X.; Qian, Z. Activation of wnt/β-catenin signaling blocks monocyte-macrophage differentiation through antagonizing PU.1-targeted gene transcription. Leukemia, 2016, 30(10), 2106-2109.
[http://dx.doi.org/10.1038/leu.2016.146] [PMID: 27211263]
[33]
Moldes, M.; Zuo, Y.; Morrison, R.F.; Silva, D.; Park, B.H.; Liu, J.; Farmer, S.R. Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. Biochem. J., 2003, 376(3), 607-613.
[http://dx.doi.org/10.1042/bj20030426] [PMID: 12954078]
[34]
Rosenbauer, F.; Owens, B.M.; Yu, L.; Tumang, J.R.; Steidl, U.; Kutok, J.L.; Clayton, L.K.; Wagner, K.; Scheller, M.; Iwasaki, H.; Liu, C.; Hackanson, B.; Akashi, K.; Leutz, A.; Rothstein, T.L.; Plass, C.; Tenen, D.G. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet., 2006, 38(1), 27-37.
[http://dx.doi.org/10.1038/ng1679] [PMID: 16311598]
[35]
Hirouchi, T.; Takabatake, T.; Yoshida, K.; Nitta, Y.; Nakamura, M.; Tanaka, S.; Ichinohe, K.; Oghiso, Y.; Tanaka, K. Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp. Hematol., 2008, 36(7), 871-885.
[http://dx.doi.org/10.1016/j.exphem.2008.01.015] [PMID: 18375040]
[36]
Park, D.J.; Chumakov, A.M.; Vuong, P.T.; Chih, D.Y.; Gombart, A.F.; Miller, W.H., Jr; Koeffler, H.P. CCAAT/enhancer binding protein ε is a potential retinoid target gene in acute promyelocytic leukemia treatment. J. Clin. Invest., 1999, 103(10), 1399-1408.
[http://dx.doi.org/10.1172/JCI2887] [PMID: 10330422]
[37]
Yoshida, H.; Ichikawa, H.; Tagata, Y.; Katsumoto, T.; Ohnishi, K.; Akao, Y.; Naoe, T.; Pandolfi, P.P.; Kitabayashi, I. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EB Pepsilon expression in myeloid differentiation. Mol. Cell. Biol., 2007, 27(16), 5819-5834.
[http://dx.doi.org/10.1128/MCB.02422-06] [PMID: 17562868]
[38]
Hoffman, B.; Amanullah, A.; Shafarenko, M.; Liebermann, D.A. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene, 2002, 21(21), 3414-3421.
[http://dx.doi.org/10.1038/sj.onc.1205400] [PMID: 12032779]
[39]
Coller, H.A. Regulation of cell cycle entry and exit: A single cell perspective. Compr. Physiol., 2019, 10(1), 317-344.
[http://dx.doi.org/10.1002/cphy.c190014] [PMID: 31853969]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy