Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Complete Inhibition of Human Rotavirus Infection by the Aqueous Extract of Scrophularia variegata

Author(s): Pegah Khales, Fariba Shahi, Saied Ghorbani, Abdoulreza Esteghamati, Shirin Sayyahfar, Khadijeh Khanaliha, Farah Bokharaei-Salim, Seyed Jalal Kiani, Seyed Hamidreza Monavari, Sara Minaeian, Mohammad Farahmand, Vahdat Poortahmasebi, Fatemeh Faraji, Mehri Naghdalipoor, Zahra Habib, Mohammad Mehdi Saghafi* and Ahmad tavakoli*

Volume 21, Issue 2, 2023

Published on: 23 January, 2023

Article ID: e060123212406 Pages: 8

DOI: 10.2174/2211352521666230106100045

Price: $65

conference banner
Abstract

Background: Recently, plant-based medications have been considered promising. Scrophularia has been demonstrated to have antibacterial, antifungal, antiparasitic, anticancer, and antiinflammatory effects; however, no evidence of its antiviral potency is available.

Objective: This study aimed to evaluate whether the aqueous extract of Scrophularia variegata has antiviral activity against rotavirus as the leading cause of severe diarrhea and acute gastroenteritis in children.

Methods: The neutral red assay was utilized to assess the cytotoxicity of the aqueous extract on the cell line. Cytopathic effect (CPE) inhibition, TCID50 (50% cell culture infectious dose), and real-time PCR assays were performed to determine the extract's impact on human rotavirus at non-toxic dilutions.

Results: Cell viability was raised following treatment with the aqueous extract at all dilutions. Rotavirus- induced CPEs were considerably reduced when higher dilutions of the aqueous extract were applied to the infected cells. The most substantial inhibitory effect was observed at the highest dilution with no detectable infectious rotavirus titer using the TCID50 assay and no Ct value using the real-time PCR assay.

Conclusion: Our findings show that the aqueous extract of Scrophularia variegata may be a promising candidate for the treatment of rotavirus-induced gastroenteritis.

Graphical Abstract

[1]
Güzel, M. Akpınar, O.; Kılıç, M.B. Prevalence of rotavirus-associated acute gastroenteritis cases in early childhood in Turkey: Meta-analysis. Children (Basel), 2020, 7(10), 159.
[http://dx.doi.org/10.3390/children7100159] [PMID: 33023241]
[2]
Girish Kumar, C.P.; Giri, S.; Chawla-Sarkar, M.; Gopalkrishna, V.; Chitambar, S.D.; Ray, P.; Venkatasubramanian, S.; Borkakoty, B.; Roy, S.; Bhat, J.; Dwibedi, B.; Paluru, V.; Das, P.; Arora, R.; Kang, G.; Mehendale, S.M. Epidemiology of rotavirus diarrhea among children less than 5 years hospitalized with acute gastroenteritis prior to rotavirus vaccine introduction in India. Vaccine, 2020, 38(51), 8154-8160.
[http://dx.doi.org/10.1016/j.vaccine.2020.10.084] [PMID: 33168345]
[3]
Muendo, C.; Laving, A.; Kumar, R.; Osano, B.; Egondi, T.; Njuguna, P. Prevalence of rotavirus infection among children with acute diarrhoea after rotavirus vaccine introduction in Kenya, a hospital cross-sectional study. BMC Pediatr., 2018, 18(1), 323.
[http://dx.doi.org/10.1186/s12887-018-1291-8] [PMID: 30309343]
[4]
Gonzalez-Ochoa, G.; Flores-Mendoza, L.K.; Icedo-Garcia, R.; Gomez-Flores, R.; Tamez-Guerra, P. Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics. Arch. Microbiol., 2017, 199(7), 953-961.
[http://dx.doi.org/10.1007/s00203-017-1400-3] [PMID: 28634691]
[5]
Yousefi, M.; Khorshidian, N.; Hosseini, H. Potential application of essential oils for mitigation of Listeria monocytogenes in meat and poultry products. Front. Nutr., 2020, 7, 577287.
[http://dx.doi.org/10.3389/fnut.2020.577287] [PMID: 33330578]
[6]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2008, 131(2), 111-120.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[7]
Ganjhu, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S.; Arunkumar, G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease, 2015, 26(4), 225-236.
[http://dx.doi.org/10.1007/s13337-015-0276-6] [PMID: 26645032]
[8]
Pasdaran, A.; Hamedi, A. The genus Scrophularia: A source of iridoids and terpenoids with a diverse biological activity. Pharm. Biol., 2017, 55(1), 2211-2233.
[http://dx.doi.org/10.1080/13880209.2017.1397178] [PMID: 29125010]
[9]
Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Alizadeh, S.; Maggi, F. Phytotoxic potential and phenolic profile of extracts from Scrophularia striata. Plants, 2021, 10(1), 135.
[http://dx.doi.org/10.3390/plants10010135] [PMID: 33440883]
[10]
Dobignard, A.; Chatelain, C. Index Synonymique; Afrique du Nord.Edition of Conservatories and Botanical Gardens: Genève, Switzerland, 2013, Vol. 5, p. 301.
[11]
Valiyari, S.; Baradaran, B.; Delazar, A.; Pasdaran, A.; Zare, F. Dichloromethane and methanol extracts of Scrophularia oxysepala induces apoptosis in MCF-7 human breast cancer cells. Adv. Pharm. Bull., 2012, 2(2), 223-231.
[PMID: 24312797]
[12]
de Santos Galíndez, J.; Díaz Lanza, A.M.; Fernández Matellano, L. Biologically active substances from the genus Scrophularia. Pharm. Biol., 2002, 40(1), 45-59.
[http://dx.doi.org/10.1076/phbi.40.1.45.5864]
[13]
Crisan, G.; Kiss, B.; Vlase, L.; Balica, G.; Tamas, M. HPLC determination of some phenolic compounds of Scrophularia nodosa and S. scopolii. Chem. Nat. Compd., 2009, 45(6), 885-888.
[http://dx.doi.org/10.1007/s10600-010-9478-8]
[14]
Huang, T.; Chen, N.; Lai, Y.; Wang, D.; Yan, J.; Gu, J. Rapid determination of cinnamic acid and harpagoside in a traditional Chinese medicine of Scrophularia ningpoensis by microwave-assisted extraction followed by high performance liquid chromatography (HPLC). J. Med. Plants Res., 2011, 5(8), 1313-1320.
[15]
Lee, M.K.; Choi, O.G.; Park, J.H.; Cho, H.J.; Ahn, M.J.; Kim, S.H.; Kim, Y.C.; Sung, S.H. Simultaneous determination of four active constituents in the roots of Scrophularia buergeriana by HPLC-DAD and LC-ESI-MS. J. Sep. Sci., 2007, 30(15), 2345-2350.
[http://dx.doi.org/10.1002/jssc.200700117] [PMID: 17628873]
[16]
Nikkhah, E.; Heshmati Afshar, F.; Babaei, H.; Asgharian, P.; Delazar, A. Phytochemical analysis and in-vitro bioactivity of Scrophularia umbrosa rhizome (Scrophulariaceae). Iran. J. Pharm. Res., 2018, 17(2), 685-694.
[PMID: 29881426]
[17]
Renda, G.; Korkmaz, B.; Yildirim, S.; Ahu, R.E.; Bektas, N.Y.; Sevgi, S.; Turkis, S.; Uzunhisarcikli, M.E.; Yasar, A. Tosun, İ. Antimicrobial activity and the phenolic profile of five Scrophularia L. Species. Saglik Bilim. Derg., 2018, 27(1), 10-15.
[18]
Azadmehr, A.; Hajiaghaee, R.; Baradaran, B.; Haghdoost-Yazdi, H. Apoptosis cell death effect of Scrophularia variegata on breast cancer cells via mitochondrial intrinsic pathway. Adv. Pharm. Bull., 2015, 5(3), 443-446.
[http://dx.doi.org/10.15171/apb.2015.060] [PMID: 26504768]
[19]
Azadmehr, A.; Hajiaghaee, R.; Afshari, A.; Amirghofran, Z.; Refieian-Kopaei, M.; Yousofi Darani, H.; Shirzad, H. Evaluation of in vivo immune response activity and in vitro anticancer effect by Scrophularia megalantha. J. Med. Plants Res., 2011, 5(11), 2365-2368.
[20]
Azadmehr, A.; Oghyanous, K.A.; Hajiaghaee, R.; Amirghofran, Z.; Azadbakht, M. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity. Cell. Mol. Neurobiol., 2013, 33(8), 1135-1141.
[http://dx.doi.org/10.1007/s10571-013-9979-7] [PMID: 23999721]
[21]
Mahboubi, M.; Kazempour, N.; Boland Nazar, A.R. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur J. Nat. Pharm. Prod., 2013, 8(1), 15-19.
[http://dx.doi.org/10.17795/jjnpp-7621] [PMID: 24624181]
[22]
Bermejo, P.; Abad, M.J.; Díaz, A.M.; Fernández, L.; Santos, J.D.; Sanchez, S.; Villaescusa, L.; Carrasco, L.; Irurzun, A. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med., 2002, 68(2), 106-110.
[http://dx.doi.org/10.1055/s-2002-20238] [PMID: 11859457]
[23]
Kernan, M.R.; Amarquaye, A.; Chen, J.L.; Chan, J.; Sesin, D.F.; Parkinson, N.; Ye, Z.; Barrett, M.; Bales, C.; Stoddart, C.A.; Sloan, B.; Blanc, P.; Limbach, C.; Mrisho, S.; Rozhon, E.J. Antiviral phenylpropanoid glycosides from the medicinal plant Markhamia lutea. J. Nat. Prod., 1998, 61(5), 564-570.
[http://dx.doi.org/10.1021/np9703914] [PMID: 9599250]
[24]
Guzzo, F.; Russo, R.; Sanna, C.; Celaj, O.; Caredda, A.; Corona, A.; Tramontano, E.; Fiorentino, A.; Esposito, F.; D’Abrosca, B. Chemical characterization and anti-HIV-1 activity assessment of iridoids and flavonols from Scrophularia trifoliata. Molecules, 2021, 26(16), 4777.
[http://dx.doi.org/10.3390/molecules26164777] [PMID: 34443358]
[25]
Behbahani, M. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. Int. Immunopharmacol., 2014, 23(1), 262-266.
[http://dx.doi.org/10.1016/j.intimp.2014.09.003] [PMID: 25239814]
[26]
Weber, C.; Sliva, K.; von Rhein, C.; Kümmerer, B.M.; Schnierle, B.S. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res., 2015, 113, 1-3.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.001] [PMID: 25446334]
[27]
Xu, J.; Gu, W.; Li, C.; Li, X.; Xing, G.; Li, Y.; Song, Y.; Zheng, W. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J. Nat. Med., 2016, 70(3), 584-591.
[http://dx.doi.org/10.1007/s11418-016-0980-6] [PMID: 26968537]
[28]
Yang, Z.F.; Bai, L.P.; Huang, W.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[29]
Prasad, S.; Tyagi, A.K. Curcumin and its analogues: A potential natural compound against HIV infection and AIDS. Food Funct., 2015, 6(11), 3412-3419.
[http://dx.doi.org/10.1039/C5FO00485C] [PMID: 26404185]
[30]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[31]
Horne, J.R.; Vohl, M.C. Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E830-E833.
[http://dx.doi.org/10.1152/ajpendo.00150.2020] [PMID: 32310688]
[32]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[33]
Houston, D.M.J.; Bugert, J.J.; Denyer, S.P.; Heard, C.M. Potentiated virucidal activity of pomegranate rind extract (PRE) and punicalagin against Herpes simplex virus (HSV) when co-administered with zinc (II) ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV. PLoS One, 2017, 12(6), e0179291.
[http://dx.doi.org/10.1371/journal.pone.0179291] [PMID: 28665969]
[34]
Merino-Ramos, T.; Jiménez de Oya, N.; Saiz, J.C.; Martín-Acebes, M.A. Antiviral activity of nordihydroguaiaretic acid and its derivative tetra-O-methyl nordihydroguaiaretic acid against West Nile virus and Zika virus. Antimicrob. Agents Chemother., 2017, 61(8), e00376-e17.
[http://dx.doi.org/10.1128/AAC.00376-17] [PMID: 28507114]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy