Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Traditional Drugs Originating from Selected Medicinal Plants: An Intervention for Anaemia

Author(s): Rishabh Chalotra, Meenakshi Dhanawat, Chamasse Homary Maivagna and Sumeet Gupta*

Volume 9, Issue 6, 2023

Published on: 14 February, 2023

Article ID: e050123212400 Pages: 17

DOI: 10.2174/2215083809666230105161143

Price: $65

Abstract

Background: Anaemia is the most common disease that affects mostly females and children and is most prevalent in developing countries. Among various causes sickle cell anaemia is one of them, which is a cause of concern. Sickle Cell Disease (SCD) causes problems like blockage of blood flow, causing pain, and fatigue and also leads to death.

Objective: With the advancement in science, diseases that were once considered unable to cure can be stopped or prevented and, in some cases, also be cured. As current therapies for the treatment of sickle cell anaemia are limited, like blood transfusions, bone marrow transfusions, etc., a non-surgical method where plant extracts or compounds were found effective in stopping, preventing, and in some cases reversal of SCD. In this review, we tried to gather information about those plants and compounds.

Methods: Numerous surveys in the literature were performed to determine the plants which have shown their potential against SCD. Relevant peer-reviewed publications were searched through various databases such as ScienceDirect, PubMed, Google Scholar, Research Gate, etc.

Results: A total of more than 50 medicinal plants such as Acacia catechu, Alchornea cordifolia, Anchomanes difformis, Khayase negalensis, Terminalia catappa, etc., have been identified based on their potential against SCD, and 15 compounds such as Butylurea, Glyceraldehyde, Potassium cyanate, urea, etc., have also been identified which could work against SCD. These plants acting on sickle cell anemia on various pathways are also discussed.

Conclusion: In this review, an approach was made to study those plants which have an effect against SCD, with proper mechanisms and compounds that show potency against this disease. So that better treatment options could be available for future generations.

Graphical Abstract

[1]
Clinic C. Blood disorders 2022. Available from: https://my.clevelandclinic.org/health/diseases/21545-blood-disorders
[2]
Thachil J, Bates I. Approach to the diagnosis and classification of blood cell disorders. Dacie and Lewis Practical Haematology 2017; p. 497.
[http://dx.doi.org/10.1016/B978-0-7020-6696-2.00023-0]
[3]
[4]
Imaga NO, Gbenle GO, Okochi VI, et al. Antisickling property of Carica papaya leaf extract. Afr J Biochem Res 2009; 3(4): 102-6.
[5]
Unit N. World Health Organization. World Declaration and Plan of Action for Nutrition, Rome, December 1992. World Health Organization 1992.
[6]
World Health Organization. Guideline: intermittent iron and folic acid supplementation in menstruating women. 2011. Available from: https://www.who.int/publications-detail-redirect/9789241502023
[7]
Ezzati M, Lopez AD, Rodgers AA, Murray CJ. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization 2004.
[8]
Kalaivani K. Prevalence & consequences of anaemia in pregnancy. Indian J Med Res 2009; 130(5): 627-33.
[PMID: 20090119]
[9]
Kumar R. Iron deficiency anemia (IDA), their prevalence, and awareness among Girls of reproductive age of Distt Mandi Himachal Pradesh, India. Int Lett Nat Sci 2014; 29: 24-32.
[10]
Majumder PP. People of India: Biological diversity and affinities. Evolutionary anthropology: issues, News, and Reviews: Issues. News Rev (Melb) 1998; 6(3): 100-10.
[11]
Vaishnava S, Rangari VD. In vitro anti-sickling activity of selected medicinal plant to explore herbal remedies for sickle cell anemia. Int J Phar Res Health Sci 2019; 7(1): 2909-14.
[http://dx.doi.org/10.21276/ijprhs.2019.01.10]
[12]
Panigrahi HK, Kushawa H, Sharma SS. Treatment of sickle cell disorders by ayurvedic medicine. Anc Sci Life 1997; 17(1): 15-22.
[PMID: 22556815]
[13]
Parise LV, Berliner N. Sickle cell disease: challenges and progress. Blood 2016; 127(7): 789.
[http://dx.doi.org/10.1182/blood-2015-12-674606] [PMID: 26758920]
[14]
Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994; 330(23): 1639-44.
[http://dx.doi.org/10.1056/NEJM199406093302303] [PMID: 7993409]
[15]
Edelstein SJ, Telford JN, Crepeau RH. Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci USA 1973; 70(4): 1104-7.
[http://dx.doi.org/10.1073/pnas.70.4.1104] [PMID: 4123929]
[16]
Murayama M. Structure of sickle cell hemoglobin and molecular mechanism of the sickling phenomenon. Clin Chem 1967; 13(7): 578-88.
[http://dx.doi.org/10.1093/clinchem/13.7.578] [PMID: 4952917]
[17]
Odièvre MH, Verger E, Silva-Pinto AC, Elion J. Pathophysiological insights in sickle cell disease. Indian J Med Res 2011; 134(4): 532-7.
[PMID: 22089617]
[18]
Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 2007; 21(1): 37-47.
[http://dx.doi.org/10.1016/j.blre.2006.07.001] [PMID: 17084951]
[19]
Mpiana PT, Ngbolua KN, Mudogo V, et al. Antisickle erythrocytes haemolysis properties and inhibitory effect of anthocyanins extracts of Trema orientalis (ULMACEAE) on the aggregation of human deoxyhemoglobin S in vitro. J Med Sci (Faisalabad, Pak) 2011; 11(3): 129-37.
[http://dx.doi.org/10.3923/jms.2011.129.137]
[20]
Ohiagu FO, Chikezie PC, Chikezie CM. Sickle hemoglobin polymerization and antisickling medicinal plants. J Phytopharmacol 2021; 10(2): 126-33.
[http://dx.doi.org/10.31254/phyto.2021.10209]
[21]
Nurain IO, Bewaji CO, Johnson JS, Davenport RD, Zhang Y. Potential of three ethnomedicinal plants as antisickling agents. Mol Pharm 2017; 14(1): 172-82.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00767] [PMID: 28043127]
[22]
Nwaoguikpe R, Ujowundu C, Igwe C, Dike P. The effects of Moringa oleifera leaves extracts on Sickle Cell Hemoglobin. J Sci Res Rep 2015; 4(2): 123-32.
[http://dx.doi.org/10.9734/JSRR/2015/12905]
[23]
Sahu M, Singh V, Yadav S, Harris KK. Plant extracts with antisickling propensities: a feasible succor towards sickle cell disease management-a mini review. J Phytol 2012; 4(3): 24-9.
[24]
Dash B, Archana Y, Satapathy N, Naik S. Search for antisickling agents from plants. Pharmacogn Rev 2013; 7(1): 53-60.
[http://dx.doi.org/10.4103/0973-7847.112849] [PMID: 23922457]
[25]
Thompson EB, Klotz IM. Pharmacological actions of diaspirins, potential antisickling agents: analgesic and anti-inflammatory effects. Res Commun Chem Pathol Pharmacol 1985; 48(3): 381-8.
[PMID: 4023420]
[26]
Chang H, Ewert SM, Bookchin RM, Nagel RL. Comparative evaluation of fifteen anti-sickling agents. 1983; 693-704.
[27]
Orringer EP, Powell JR, Cross RE, et al. A Single-dose pharmacokinetic study of the antisickling agent cetiedil. Clin Pharmacol Ther 1986; 39(3): 276-81.
[http://dx.doi.org/10.1038/clpt.1986.39] [PMID: 3512147]
[28]
Hassan W, Beuzard Y, Rosa J. Inhibition of erythrocyte sickling by cystamine, a thiol reagent. Proc Natl Acad Sci USA 1976; 73(9): 3288-92.
[http://dx.doi.org/10.1073/pnas.73.9.3288] [PMID: 135260]
[29]
Ameh SJ, Tarfa FD, Ebeshi BU. Traditional herbal management of sickle cell anemia: lessons from Nigeria. Anemia 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/607436] [PMID: 23198140]
[30]
Li X, Wang H, Liu C, Chen R. Chemical constituents of Acacia catechu Zhongguo Zhongyao Zazhi 2010; 35(11): 1425-7.
[PMID: 20822013]
[31]
Thakur AV, Ambwani S, Ambwani TK. Preliminary phytochemical screening and GC-MS analysis of leaf extract of Acacia catechu (Lf) Willd. Int J Herb Med 2018; 6(2): 81-5.
[32]
Mpiana P, Misakabu FS, Tshibangu DS, Ngbolua KN, Mwanangombo DT. Antisickling activity and membrane stabilizing effect of anthocyanins extracts from Adansonia digitata L. barks on sickle blood cells. Int Blood Res Rev 2014; 2(5): 198-212.
[http://dx.doi.org/10.9734/IBRR/2014/10539]
[33]
Sundarambal M, Muthusamy P, Radha R. A review on Adansonia digitata Linn. J Pharmacogn Phytochem 2015; 4(4): 12.
[34]
Bongo G, Inkoto C, Masengo C, et al. Antisickling, antioxidant and antibacterial activities of Afromomum alboviolaceum (Ridley) K. Schum, Annona senegalensis Pers. and Mondia whitei (Hook. f.) Skeels. Afr J Lab Med 2017; 2(4): 52-9.
[35]
Ashande CM, Lukoki FL, Tshilanda DD, Tshibangu DS, Mpiana PT. A mini review on the phytochemistry and pharmacology of Aframomum alboviolaceum (Zingiberaceae). South Asian Res J Nat Proc 2021; 4(3): 24-35.
[36]
Kitadi JM, Inkoto CL, Lengbiye EM, et al. Mineral content and antisickling activity of Annona senegalensis, Alchornea cordifolia and Vigna unguiculata used in the management of sickle cell disease in the Kwilu province (CONGO, DR). Int Blood Res Rev 2020; 11(3): 18-27.
[http://dx.doi.org/10.9734/ibrr/2020/v11i330131]
[37]
Boniface PK, Ferreira SB, Kaiser CR. Recent trends in phytochemistry, ethnobotany and pharmacological significance of Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg. J Ethnopharmacol 2016; 191: 216-44.
[http://dx.doi.org/10.1016/j.jep.2016.06.021] [PMID: 27296085]
[38]
Takasu J, Uykimpang R, Sunga M, Amagase H, Niihara Y. Aged garlic extract therapy for sickle cell anemia patients. BMC Blood Disord 2002; 2(1): 3.
[PMID: 12086586]
[39]
Saber El-, Batiha G, Magdy Beshbishy A, G Wasef L, et al. Chemical constituents and pharmacological activities of garlic Allium sativum L A Review. Nutrients. 2020; 12(3): 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[40]
Kitadi JM, Inkoto CL, Lengbiye EM, et al. Antisickling activity and mineral content of Hura crepitans L., Alternanthera bettzichiana (regle) G. Nicholson and Dissotis brazzae cogn, plants used in the management of sickle cell disease in Kwilu province, Democratic Republic of the Congo. Eur J Pharm Med Res 2019; 6(12): 79-83.
[41]
Facts about calico plant. Available from: https://www.healthbenefitstimes.com/calico-plant/
[42]
Nwaoguikpe RN, Braide W, Ezejiofor TI. The effect of Aloe vera plant (Aloe barbadensis) extracts on sickle cell blood (hbss). African J Food Sci Technol 2010; 1(3): 058-63.
[43]
Kahramanoğlu İ, Chen C, Chen J, Wan C. Chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera gel. Agronomy 2019; 9(12): 831.
[http://dx.doi.org/10.3390/agronomy9120831]
[44]
Mpiana PT, Tshibangu DST, Shetonde OM, Ngbolua KN. In vitro antidrepanocytary actvity (anti-sickle cell anemia) of some congolese plants. Phytomedicine 2007; 14(2-3): 192-5.
[http://dx.doi.org/10.1016/j.phymed.2006.05.008] [PMID: 17113273]
[45]
Ahmed HA. Anchomanes difformis: a multipurpose phytomedicine. IOSR J Pharm Biol Sci 2018; 13(2): 62-5.
[46]
Mpiana PT, Dianzenza EN, Ngbolua KN, et al. Antisickling properties, thermal and photochemical degradations of anthocyanin extracts from Annona senegalensis (Annonaceae). Int J Biol Chem Sci 2012; 6(5): 2241-51.
[47]
Okhale SE, Akpan E, Fatokun OT, Esievo KB, Kunle OF. Annona senegalensis Persoon (Annonaceae): a review of its ethnomedicinal uses, biological activities and phytocompounds. J Pharmacogn Phytochem 2016; 5(2): 211.
[48]
Afolayan M, Srivedavyasasri R, Asekun OT, Familoni OB, Ross SA. Chemical and biological studies on Bridelia ferruginea grown in Nigeria. Nat Prod Res 2019; 33(2): 287-91.
[http://dx.doi.org/10.1080/14786419.2018.1440225] [PMID: 29457749]
[49]
Akinsulie AO, Temiye EO, Akanmu AS, Lesi FEA, Whyte CO. Clinical evaluation of extract of Cajanus cajan (Ciklavit) in sickle cell anaemia. J Trop Pediatr 2005; 51(4): 200-5.
[http://dx.doi.org/10.1093/tropej/fmh097] [PMID: 15917266]
[50]
Orni PR, Ahmed SZ, Monefa M, Khan T, Dash PR. Pharmacological and phytochemical properties of Cajanus cajan (L.) Huth. (Fabaceae): A review. Int J Pharm Sci Res 2018; 3: 27-37.
[51]
Mishra PK, Sharma S, Jain V, et al. Antisickling and antioxidant relevance of twelve ethnomedicinal plants. Medicinal Plants - Int J Phytomed. Relat Ind 2018; 10(3): 226-35.
[http://dx.doi.org/10.5958/0975-6892.2018.00036.9]
[52]
Anand J, Upadhyaya B, Rawat P, Rai N. Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech 2015; 5(3): 285-94.
[53]
Sharma A, Bachheti A, Sharma P, Bachheti RK, Husen A. Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Curr Res Biotechnol 2020; 2: 145-60.
[http://dx.doi.org/10.1016/j.crbiot.2020.11.001]
[54]
Adejumo OE, Kolapo IO, Ayoola MD. Phytochemical and antisickling activities of Entandrophragma utile, Chenopodium ambrosioides and Petiveria alliacea. J Med Plants Res 2011; 5(9): 1531-5.
[55]
Kasali FM, Tusiimire J, Kadima JN, Agaba AG. Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. Fut J Pharm Sci 2021; 7(1): 153.
[http://dx.doi.org/10.1186/s43094-021-00306-3]
[56]
Moody JO, Ojo OO, Omotade OO, Adeyemo AA, Olumese PE, Ogundipe OO. Anti-sickling potential of a Nigerian herbal formula (ajawaron HF) and the major plant component (Cissus populnea L. CPK). Phytother Res 2003; 17(10): 1173-6.
[http://dx.doi.org/10.1002/ptr.1323] [PMID: 14669251]
[57]
Iweala EE, Uhegbu FO, Ogu GN. Preliminary in vitro antisickilng properties of crude juice extracts of Persia Americana, Citrus sinensis, Carica papaya and Ciklavit®. Afr J Tradit Complement Altern Med 2009; 7(2): 113-7.
[PMID: 21304622]
[58]
Okla MK, Alamri SA, Salem MZM, et al. Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of Sour Orange (Citrus aurantium L.). Processes 2019; 7(6): 363.
[http://dx.doi.org/10.3390/pr7060363]
[59]
Shoaib RM, Ali SI, Metwally SA, Ibrahim MM, Aboud KA. Phytochemical and molecular analyses of some Coleus cultivars cultivated in Egypt. Bull Natl Res Cent 2020; 44(1): 105.
[http://dx.doi.org/10.1186/s42269-020-00358-0]
[60]
Monago C, Uwakwe A. Proximate composition and in vitro anti-sickling property of Nigeria Cyperus esculentus (tiger nut sedge). Trees Life J 2009; 4(2): 1-6.
[61]
Taheri Y, Herrera-Bravo J, Huala L, et al. Cyperus spp.: A review on phytochemical composition, biological activity, and health-promoting effects. Oxid Med Cell Longev 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/4014867] [PMID: 34539969]
[62]
Kitadi JM, Mazasa PP, Tshibangu DS, et al. Anti-sickling and antioxidant activities of anthocyanins extracts from Dissotis brazzae Cogn. 2018; 16.1: 24-35.
[63]
Adaku C, Skaar I, Gumisiriza H, Byamukama R, Jordheim M, Andersen JM. Anthocyanin profile and antioxidant activity of edible leaves of Dissotis brazzae Cogn. In: Melastomataceae. 2020.
[64]
Etame RME, Mouokeu RS, Poundeu FSM, et al. Effect of fractioning on antibacterial activity of n-butanol fraction from Enantia chlorantha stem bark methanol extract. BMC Complement Altern Med 2019; 19(1): 56.
[http://dx.doi.org/10.1186/s12906-019-2459-y] [PMID: 30866907]
[65]
Abike TO, Osuntokun OT, Modupe AO, Adenike AF, Atinuke AR. Antimicrobial efficacy, secondary metabolite constituents, ligand docking of Enantia chlorantha on selected multidrug resistance bacteria and fungi. J Adv Biol Biotechnol 2020; 23(6): 17-32.
[http://dx.doi.org/10.9734/jabb/2020/v23i630161]
[66]
Hu YL, Tian XM, Wang CC, et al. New triterpenoids, steroids and lignan from the stem barks of Entandrophragma utile. Fitoterapia 2020; 143: 104546.
[http://dx.doi.org/10.1016/j.fitote.2020.104546] [PMID: 32173423]
[67]
Ouattara B, Jansen O, Angenot L, et al. Antisickling properties of divanilloylquinic acids isolated from Fagara zanthoxyloides Lam. (Rutaceae). Phytomedicine 2009; 16(2-3): 125-9.
[http://dx.doi.org/10.1016/j.phymed.2008.10.013] [PMID: 19110407]
[68]
Misra LN, Wouatsa NAV, Kumar S, Venkatesh Kumar R, Tchoumbougnang F. Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. J Ethnopharmacol 2013; 148(1): 74-80.
[http://dx.doi.org/10.1016/j.jep.2013.03.069] [PMID: 23567034]
[69]
Adejumo E, Ayoola MD, Kolapo AL, Orimoyegun VO, Olatunji PO. Antisickling activities of extracts of leaf, seed and seed pod of Garcinia kola Heckel. Afr J Pharm Pharmacol 2009; 5(1): 48-52.
[http://dx.doi.org/10.5897/AJPP10.052]
[70]
Adesuyi AO, Elumm IK, Adaramola FB, Nwokocha AG. Nutritional and phytochemical screening of Garcinia kola. Adv J Food Sci Technol 2012; 4(1): 9-14.
[71]
Ibrahim H, Sani FS, Danladi BH, Ahmadu AA. Phytochemical and antisickling studies of the leaves of Hymenocardia acida Tul (Euphorbiaceae). Pak J Biol Sci 2007; 10(5): 788-91.
[http://dx.doi.org/10.3923/pjbs.2007.788.791] [PMID: 19069865]
[72]
Amom TT, Yahwe SR, Vershima AJ. Phytochemical and medicinal activities of Hymenocardia acida Tul (Euphorbiaceae): A Review. J Nat Prod Plant Resour 2013; 3: 11-6.
[73]
Wood JRI, Scotland RW. Notes on Ipomoea (Convolvulaceae) from the Amazonian periphery. Kew Bull 2017; 72(1): 10.
[http://dx.doi.org/10.1007/s12225-017-9682-9]
[74]
Mpiana PT, Ngbolua KN, Bokota MT, et al. In vitro effects of anthocyanin extracts from Justicia secunda Vahl on the solubility of haemoglobin S and membrane stability of sickle erythrocytes. Blood Transfus 2010; 8(4): 248-54.
[PMID: 20967165]
[75]
Oyedapo OA, Agbedahunsi JM, Cyril-Olutayo CM. Anti-sickling activities of the stem bark of three Khaya species found in Nigeria: K. senegalensis A. Juss., K. grandifoliola, (Welw) CDC., and K. ivorensis A. Chev. Niger J Nat Prod Med 2017; 20(0): 161-6.
[http://dx.doi.org/10.4314/njnpm.v20i0.24]
[76]
Uwakwe AA. In vitro antisickling effects of Xylopia aethiopica and Monodora myristica. J Med Plants Res 2013; 2(6): 119-24.
[77]
Joppa KM, Vovor A, Eklu-Gadegbeku K, Agbonon A, Aklikokou K, Gbeassor M. Effect of Morinda lucida Benth. (Rubiaceae) and Newbouldia leavis P. Beauv. (Bignoniaceae) on sickling of red blood cells. Med Trop 2008; 68(3): 251-6.
[PMID: 18689316]
[78]
Omer RH, Yousif NA, Fadlalla TA, Elradi WE, Elbasheir MM. In vitro antisickling activity of Moringa oleifera extracts on sickle cells. 2020.
[http://dx.doi.org/10.21203/rs.3.rs-32121/v1]
[79]
Aja PM, Nwachukwu N, Ibiam UA, Igwenyi IO, Offor CE, Orji UO. Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am J Phytomed Clin Ther 2014; 2(3): 310-21.
[80]
Cyril-Olutayo MC, Ajayi DO, Odunowo OO. Ethno medicinal survey and evaluation of two recipes used in managing sickle cell disease in ile-ife community of osun-state, nigeria. Afr J Tradit Complement Altern Med 2020; 17(2): 37-54.
[http://dx.doi.org/10.21010/ajtcam.v17i2.4]
[81]
Wang L, Zhang C, Layba M, Zhang M. Triterpenes and sterols from Nauclea latifolia. Zhongguo Zhongyao Zazhi 2011; 36(18): 2511-4.
[PMID: 22256756]
[82]
Dafaalla EA, Humeida AA. The effect of fixed oil extracts of Nigella sativa on sickle cells: An in-vitro study in Khartoum state -Sudan. World J Adv Res Rev 2021; 10(3): 317-21.
[http://dx.doi.org/10.30574/wjarr.2021.10.3.0280]
[83]
Ahmad MF, Ahmad FA, Ashraf SA, et al. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25: 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[84]
Imaga NO, Gbenle GO, Okochi VI, et al. Antisickling and toxicological profiles of leaf and stem of Parquetina nigrescens L. J Med Plants Res 2010; 4(8): 639-43.
[85]
John EL, Noah JO, Nkwangu D, Montero GD, Valladares MB, Martin OR. Antisickling effect of crude flavonoids in the methanolic leaf extract of Persea americana Mill. Revista Cubona de Plantas Med 2018; 23(2): 1-11.
[86]
Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phytother Res 2017; 31(6): 819-37.
[http://dx.doi.org/10.1002/ptr.5805] [PMID: 28393409]
[87]
Preedy VR, Watson RR, Eds. Nuts and seeds in health and disease prevention. Academic press 2020.
[88]
Adejumo OE, Kolapo AL, Roleola OP, Kasim LS. In vitro antisickling activities and phytochemical evaluation of Plumbago zeylanica and Uvaria chamae. Afr J Biotechnol 2010; 9(53): 9032-6.
[89]
Shukla B, Saxena S, Usmani S, Kushwaha P. Phytochemistry and pharmacological studies of Plumbago zeylanica L.: a medicinal plant review. Clinical Phytoscience 2021; 7(1): 34.
[http://dx.doi.org/10.1186/s40816-021-00271-7]
[90]
Yadav AR, Mohite SK. ADME analysis of phytochemical constituents of Psidium guajava. Asian J Res Chem 2020; 13(5): 373-5.
[http://dx.doi.org/10.5958/0974-4150.2020.00070.X]
[91]
License., C.C.A.-N.-S.U. Useful Tropical Plants 2021.
[92]
Abouelela M, Abdelhamid R, Orabi M. Phytochemical constituents of plant species of Pterocarpus (F: Leguminosae): a review. Inter J Pharmacog Phytochem Res 2019; 11: 264-81.
[93]
Ichiko CO, Terrumun ATA, John OI, John VA. In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides LHerit, ex Dc. Afr J Biotechnol 2016; 15(14): 531-8.
[http://dx.doi.org/10.5897/AJB2015.15091]
[94]
Afolabi IS, Osikoya IO, Fajimi OD, et al. Solenostemon monostachyus, Ipomoea involucrata and Carica papaya seed oil versus Glutathione, or Vernonia amygdalina: Methanolic extracts of novel plants for the management of sickle cell anemia disease. BMC Complement Altern Med 2012; 12(1): 262.
[http://dx.doi.org/10.1186/1472-6882-12-262] [PMID: 23259718]
[95]
Okokon JF, Davis K, Nwidu LL. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice. Avicenna J Phytomed 2016; 6(3): 284-94.
[PMID: 27462551]
[96]
Obianagha NF, Okafor CJ, Chukwuani U, et al. Evaluation of the Phytochemical Constituents of Extracts of Kigelia africana Fruit and Sorghum bicolor, Stalk in Lagos Nigeria. J Pharm Res Int 2021; 33: 49-58.
[http://dx.doi.org/10.9734/jpri/2021/v33i1031233]
[97]
Shode FO, Koorbanally N, Mpiana PT, Tshibangu DS, Oyedeji OO, Habila JD. In vitro anti-sickling activity of betulinic acid, oleanolic acid and their derivatives. United States Patent US 8,685,469, 2014.
[98]
Hamad A, Mahardika MG, Yuliani I, Hartanti D. Chemical constituents and antimicrobial activities of essential oils of Syzygium polyanthum and Syzygium aromaticum. Rasayan J Chem 2017; 10(2): 564-9.
[99]
Mgbemene CN, Ohiri FC. Anti-sickling potential of Terminalia catappa leaf extract. Pharm Biol 1999; 37(2): 152-4.
[http://dx.doi.org/10.1076/phbi.37.2.152.6090]
[100]
Anand A, Divya N, Kotti P. An updated review of Terminalia catappa. Pharmacogn Rev 2015; 9(18): 93-8.
[http://dx.doi.org/10.4103/0973-7847.162103] [PMID: 26392705]
[101]
Emordi JE, Agbaje EO, Oreagba IA, Iribhogbe OI. Antidiabetic effects of the ethanolic root extract of Uvaria chamae P. Beauv (Annonaceae) in alloxan-induced diabetic rats: a potential alternative treatment for diabetes mellitus. Adv Pharmacol Sci 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/1314941] [PMID: 30532775]
[102]
Egba IS, Ogugua NV, Ndohnui NN, Tufon EN. Antisickling potential of the ethanol seed extracts of Vigna unguiculata and Vigna subterranean. Int J Biochem Biotechnol 2012; 1(9): 226-9.
[103]
Zaheer M, Ahmed S, Hassan MM. Vigna unguiculata (L.) Walp.(Papilionaceae): A review of medicinal uses, Phytochemistry and pharmacology. J Pharmacogn Phytochem 2020; 9(1): 1349-52.
[104]
Fasuan TO, Chukwu CT, Uchegbu NN, Olagunju TM, Asadu KC, Nwachukwu MC. Effects of pre-harvest synthetic chemicals on post-harvest bioactive profile and phytoconstituents of white cultivar of Vigna unguiculata grains. J Food Process Preserv 2022; 46(1): e16187.
[http://dx.doi.org/10.1111/jfpp.16187]
[105]
Erhirhie EO, Moke GE. Xylopia aethiopica: A review of its ethnomedicinal, chemical and pharmacological properties. Am J Pharmtech Res 2014; 4(6): 22-37.
[106]
Walder JA, Zaugg RH, Iwaoka RS, Watkin WG, Klotz IM. Alternative aspirins as antisickling agents: acetyl-3,5-dibromosalicylic acid. Proc Natl Acad Sci 1977; 74(12): 5499-503.
[http://dx.doi.org/10.1073/pnas.74.12.5499] [PMID: 271972]
[107]
Lubin BH, Pena V, Mentzer WC, Bymun E, Bradley TB, Packer L. Dimethyl adipimidate: a new antisickling agent. Proc NaH Acad Sci USA 1975; 72(1): 43-6.
[108]
Kraus LM, Jernigan HM Jr, Schrank GD, Kraus AP. Antisickling agents: Effects of carbamyl phosphate or cyanate on survival, erythrocytes, and leucocytes in the mouse. Am J Hematol 1979; 6(4): 343-51.
[http://dx.doi.org/10.1002/ajh.2830060406] [PMID: 532803]
[109]
Benjamin LJ, Manning JM. Enhanced survival of sickle erythrocytes upon treatment with glyceraldehyde. Blood 1986; 544-6.
[110]
Ekeke G, Shode F. Phenylalanine is the predominant antisickling agent in Cajanus cajan seed extract. Planta Med 1990; 56(1): 41-3.
[http://dx.doi.org/10.1055/s-2006-960880] [PMID: 2356242]
[111]
Chao TL, Berenfeld MR, Gelbart T, Gabuzda TG. The effects of oxygen affinity and gelation of hemoglobin S crosslinked by reaction with methyl acetimidate. Hemoglobin 1981; 5(1): 47-72.
[http://dx.doi.org/10.3109/03630268108996910] [PMID: 7204094]
[112]
Roth EF Jr, Wenz B, Lee HB, et al. Survival rates and properties of sickle cell anemia red cells treated with nitrogen mustard. Prog Clin Biol Res 1987; 240: 245-61.
[PMID: 3615491]
[113]
Cerami A, Manning JM. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci 1971; 68(6): 1180-3.
[http://dx.doi.org/10.1073/pnas.68.6.1180] [PMID: 5288366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy