Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs)

Author(s): Sukhwinder Singh, Shivani Chib, Md. Jawaid Akhtar, Bhupinder Kumar*, Pooja A. Chawla* and Rohit Bhatia*

Volume 22, Issue 6, 2024

Published on: 06 January, 2023

Page: [992 - 1015] Pages: 24

DOI: 10.2174/1570159X21666230105110834

Price: $65

Abstract

Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.

Graphical Abstract

[1]
Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[2]
Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[3]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[4]
Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085.
[http://dx.doi.org/10.1016/j.drudis.2019.06.014] [PMID: 31238113]
[5]
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[6]
Rijo, P.; Mori, M. Natural products as an important source in drug discovery. Curr. Pharm. Des., 2020, 26(24), 2805-2806.
[http://dx.doi.org/10.2174/138161282624200625104355] [PMID: 32586237]
[7]
Medline Plus. Degenerative nerve diseases. Health Topics, 2021, 2022
[8]
Butterfield, D.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479.
[http://dx.doi.org/10.3233/JAD-179912] [PMID: 29504538]
[9]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[10]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206.
[http://dx.doi.org/10.3389/fnagi.2014.00206] [PMID: 25221506]
[11]
Facts and figures. Alzheimer's and Dementia, , 2021, 2022(17(3)), 327-406.
[12]
Kumar, R.; Kumar, V.; Kumar, B.; Thakur, A.; Dwivedi, A.R. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2022, 29(10), 1757-1803.
[http://dx.doi.org/10.2174/0929867328666210512005508] [PMID: 33982650]
[13]
Foundation, P.s. Understanding Parkinson's. Parkinson's foundation, 2022, 2022
[14]
Yohrling, G.; Raimundo, K.; Crowell, V.; Lovecky, D.; Vetter, L.; Seeberger, L. Prevalence of huntington’s disease in the US (954); AAN Enterprises, 2020.
[15]
Furby, H.; Siadimas, A.; Rutten-Jacobs, L.; Rodrigues, F.B.; Wild, E.J. Natural history and burden of Huntington’s disease in the UK: A population‐based cohort study. Eur. J. Neurol., 2022, 29(8), 2249-2257.
[http://dx.doi.org/10.1111/ene.15385] [PMID: 35514071]
[16]
Riccò, M.; Vezzosi, L.; Balzarini, F.; Gualerzi, G.; Ranzieri, S. Prevalence of huntington disease in Italy: A systematic review and meta-analysis. Acta Biomed., 2020, 91(Suppl. 3), 119-127.
[PMID: 32275276]
[17]
Wedding, I.M.; Kroken, M.; Henriksen, S.P.; Selmer, K.K.; Fiskerstrand, T.; Knappskog, P.M.; Berge, T.; Tallaksen, C.M.E. Friedreich ataxia in Norway - an epidemiological, molecular and clinical study. Orphanet J. Rare Dis., 2015, 10(1), 108.
[http://dx.doi.org/10.1186/s13023-015-0328-4] [PMID: 26338206]
[18]
Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776.
[http://dx.doi.org/10.1097/WCO.0000000000000730] [PMID: 31361627]
[19]
Ribeiro, A.; Abreu, R.M.V.; Dias, M.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Lett., 2018, 415, 86-105.
[http://dx.doi.org/10.1016/j.canlet.2017.12.006] [PMID: 29222042]
[20]
Ballard, C.; Aarsland, D.; Cummings, J.; O’Brien, J.; Mills, R.; Molinuevo, J.L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A.; Sultana, J. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol., 2020, 16(12), 661-673.
[http://dx.doi.org/10.1038/s41582-020-0397-4] [PMID: 32939050]
[21]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[22]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[23]
Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[24]
Singh, K.; Kumar, P.; Bhatia, R.; Mehta, V.; Kumar, B.; Akhtar, M.J. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur. J. Med. Chem., 2022, 234, 114269.
[http://dx.doi.org/10.1016/j.ejmech.2022.114269] [PMID: 35306287]
[25]
Sharma, H.; Chawla, P.A.; Bhatia, R. 1, 3, 5-Pyrazoline derivatives in cns disorders: synthesis, biological evaluation and structural insights through molecular docking. CNS & Neurological Disorders- Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2020, 19(6), 448-465.
[26]
Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702.
[http://dx.doi.org/10.1002/ptr.7099] [PMID: 33847440]
[27]
Meier, B.P.; Lappas, C.M. The influence of safety, efficacy, and medical condition severity on natural versus synthetic drug preference. Med. Decis. Making, 2016, 36(8), 1011-1019.
[http://dx.doi.org/10.1177/0272989X15621877] [PMID: 26683247]
[28]
Meier, B.P.; Dillard, A.J.; Osorio, E.; Lappas, C.M. A behavioral confirmation and reduction of the natural versus synthetic drug bias. Med. Decis. Making, 2019, 39(4), 360-370.
[http://dx.doi.org/10.1177/0272989X19838527] [PMID: 30896330]
[29]
Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[30]
Motor Neuron Disease. Disorders, 2019, 2022
[31]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[32]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[33]
Bhatia, R.; Chakrabarti, S.S.; Kaur, U.; Parashar, G.; Banerjee, A.; Rawal, R.K. Multi-Target Directed Ligands (MTDLs): Promising coumarin hybrids for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 18(10), 802-830.
[http://dx.doi.org/10.2174/1567205018666211208140551] [PMID: 34879800]
[34]
Shi, Y.; Zhang, W.; Yang, Y.; Murzin, A.G.; Falcon, B.; Kotecha, A.; van Beers, M.; Tarutani, A.; Kametani, F.; Garringer, H.J.; Vidal, R.; Hallinan, G.I.; Lashley, T.; Saito, Y.; Murayama, S.; Yoshida, M.; Tanaka, H.; Kakita, A.; Ikeuchi, T.; Robinson, A.C.; Mann, D.M.A.; Kovacs, G.G.; Revesz, T.; Ghetti, B.; Hasegawa, M.; Goedert, M.; Scheres, S.H.W. Structure-based classification of tauopathies. Nature, 2021, 598(7880), 359-363.
[http://dx.doi.org/10.1038/s41586-021-03911-7] [PMID: 34588692]
[35]
Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem., 2016, 138(Suppl. 1), 95-111.
[http://dx.doi.org/10.1111/jnc.13625] [PMID: 27015757]
[36]
Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen., 2021, 24(10), 1573-1582.
[http://dx.doi.org/10.2174/1386207323999201110192942] [PMID: 33176638]
[37]
Farzaei, M.H.; Shahpiri, Z.; Mehri, M.R.; Bahramsoltani, R.; Rezaei, M.; Raeesdana, A.; Rahimi, R. Medicinal plants in neurodegenerative diseases: perspective of traditional persian medicine. Curr. Drug Metab., 2018, 19(5), 429-442.
[http://dx.doi.org/10.2174/1389200219666180305150256] [PMID: 29512453]
[38]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules, 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]
[39]
Singh, K.; Bhatia, R.; Kumar, B.; Singh, G.; Monga, V. Design strategies, chemistry and therapeutic insights of multi-target directed ligands as antidepressant agents. Curr. Neuropharmacol., 2022, 20(7), 1329-1358.
[PMID: 34727859]
[40]
Dey, A.; Gorai, P.; Mukherjee, A.; Dhan, R.; Modak, B.K. Ethnobiological treatments of neurological conditions in the Chota Nagpur Plateau, India. J. Ethnopharmacol., 2017, 198, 33-44.
[http://dx.doi.org/10.1016/j.jep.2016.12.040] [PMID: 28017696]
[41]
Amoateng, P.; Quansah, E.; Karikari, T.K.; Asase, A.; Osei-Safo, D.; Kukuia, K.K.E.; Amponsah, I.K.; Nyarko, A.K. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/8590381] [PMID: 30671131]
[42]
Kumar, R.R.; Singh, L.; Thakur, A.; Singh, S.; Kumar, B. Role of vitamins in neurodegenerative diseases: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 667-773.
[http://dx.doi.org/10.2174/1871527320666211119122150] [PMID: 34802410]
[43]
Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol., 2021, 69, 200-211.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.023] [PMID: 31374244]
[44]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: targeting multiple pathogenic factors. J. Neural Transm. (Vienna), 2021.
[PMID: 34654977]
[45]
Mohi-ud-din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[46]
Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s disease: Efficacy and safety of current and new formulations. CNS Drugs, 2019, 33(9), 905-918.
[http://dx.doi.org/10.1007/s40263-019-00661-z] [PMID: 31473980]
[47]
Jenner, P.; Katzenschlager, R. Apomorphine - pharmacological properties and clinical trials in Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 33(Suppl. 1), S13-S21.
[http://dx.doi.org/10.1016/j.parkreldis.2016.12.003] [PMID: 27979722]
[48]
Müller, T. An evaluation of subcutaneous apomorphine for the treatment of Parkinson’s disease. Expert Opin. Pharmacother., 2020, 21(14), 1659-1665.
[http://dx.doi.org/10.1080/14656566.2020.1787379] [PMID: 32640853]
[49]
Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670] [PMID: 31810131]
[50]
Fan, D.; Liu, L.; Wu, Z.; Cao, M. Combating neurodegenerative diseases with the plant alkaloid berberine: Molecular mechanisms and therapeutic potential. Curr. Neuropharmacol., 2019, 17(6), 563-579.
[http://dx.doi.org/10.2174/1570159X16666180419141613] [PMID: 29676231]
[51]
Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol., 2017, 91, 25-33.
[http://dx.doi.org/10.1016/j.exger.2017.02.004] [PMID: 28223223]
[52]
Wu, Y.; Chen, Q.; Wen, B.; Wu, N.; He, B.; Chen, J. Berberine reduces Aβ42 deposition and tau hyperphosphorylation via ameliorating endoplasmic reticulum stress. Front. Pharmacol., 2021, 12, 640758.
[http://dx.doi.org/10.3389/fphar.2021.640758] [PMID: 34349640]
[53]
Kumar, B.; Sheetal, S.; Mantha, A.K.; Kumar, V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6(48), 42660-42683.
[http://dx.doi.org/10.1039/C6RA00302H]
[54]
Kumar, B.; Gupta, V.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr. Drug Targets, 2016, 18(1), 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[55]
Ribaudo, G.; Zanforlin, E.; Canton, M.; Bova, S.; Zagotto, G. Preliminary studies of berberine and its semi-synthetic derivatives as a promising class of multi-target anti-parkinson agents. Nat. Prod. Res., 2018, 32(12), 1395-1401.
[http://dx.doi.org/10.1080/14786419.2017.1350669] [PMID: 28691859]
[56]
Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[57]
Croce, K.R.; Yamamoto, A. A role for autophagy in Huntington’s disease. Neurobiol. Dis., 2019, 122, 16-22.
[http://dx.doi.org/10.1016/j.nbd.2018.08.010] [PMID: 30149183]
[58]
Sahu, K.; Singh, S.; Devi, B.; Singh, C.; Singh, A. A review on the neuroprotective effect of berberine against chemotherapy- induced cognitive impairment. Curr. Drug Targets, 2022, 23(9), 913-923.
[http://dx.doi.org/10.2174/1389450123666220303094752] [PMID: 35240956]
[59]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One, 2015, 10(7), e0134142.
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[60]
Dey, A.; Mukherjee, A. Plant-Derived Alkaloids: A promising window for neuroprotective drug discovery. Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2018, pp. 237-320.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00006-9]
[61]
Badshah, H.; Ikram, M.; Ali, W.; Ahmad, S.; Hahm, J.R.; Kim, M.O. Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules, 2019, 9(11), 719.
[http://dx.doi.org/10.3390/biom9110719] [PMID: 31717470]
[62]
Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[63]
Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290.
[http://dx.doi.org/10.1111/cns.12684] [PMID: 28317317]
[64]
Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[65]
Jiang, B.; Meng, L.; Zou, N.; Wang, H.; Li, S.; Huang, L.; Cheng, X.; Wang, Z.; Chen, W.; Wang, C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine, 2019, 62, 152967.
[http://dx.doi.org/10.1016/j.phymed.2019.152967] [PMID: 31154274]
[66]
Li, S.P.; Wang, Y.W.; Qi, S.L.; Zhang, Y.P.; Deng, G.; Ding, W.Z.; Ma, C.; Lin, Q.Y.; Guan, H.D.; Liu, W.; Cheng, X.M.; Wang, C.H. Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front. Pharmacol., 2018, 9, 346.
[http://dx.doi.org/10.3389/fphar.2018.00346] [PMID: 29755345]
[67]
Nurmaganbetov, Z.S.; Arystan, L.I.; Muldaeva, G.M.; Haydargalieva, L.S.; Adekenov, S.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol. Rep., 2019, 71(6), 1050-1058.
[http://dx.doi.org/10.1016/j.pharep.2019.06.002] [PMID: 31605892]
[68]
Cai, C.Z.; Zhou, H.F.; Yuan, N.N.; Wu, M.Y.; Lee, S.M.Y.; Ren, J.Y.; Su, H.X.; Lu, J.J.; Chen, X.P.; Li, M.; Tan, J.Q.; Lu, J.H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842.
[http://dx.doi.org/10.1016/j.phymed.2019.152842] [PMID: 31048127]
[69]
Tsai, S.J. Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc., 2019, 82(10), 750-751.
[http://dx.doi.org/10.1097/JCMA.0000000000000151] [PMID: 31305343]
[70]
Friedli, M.J.; Inestrosa, N.C. Huperzine a and its neuroprotective molecular signaling in Alzheimer’s disease. Molecules, 2021, 26(21), 6531.
[http://dx.doi.org/10.3390/molecules26216531] [PMID: 34770940]
[71]
Callizot, N.; Campanari, M.L.; Rouvière, L.; Jacquemot, G.; Henriques, A.; Garayev, E.; Poindron, P. Huperzia serrata extract ‘NSP01’ with neuroprotective effects-potential synergies of huperzine a and polyphenols. Front. Pharmacol., 2021, 12, 681532-681532.
[http://dx.doi.org/10.3389/fphar.2021.681532] [PMID: 34526893]
[72]
Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Kou, D.; Li, T.; Yang, Z.; Guo, H.; Le, W.; Li, S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J. Nutr. Biochem., 2019, 70, 147-155.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.009] [PMID: 31207354]
[73]
Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 16.
[http://dx.doi.org/10.1186/s43088-022-00196-1] [PMID: 35127957]
[74]
Li, R.; Lu, Y.; Zhang, Q.; Liu, W.; Yang, R.; Jiao, J.; Liu, J.; Gao, G.; Yang, H. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy, 2022, 18(3), 559-575.
[PMID: 34092198]
[75]
Sharma, S.; Raj, K.; Singh, S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement–induced Parkinson’s disease in experimental rats. Neurotox. Res., 2020, 37(1), 198-209.
[http://dx.doi.org/10.1007/s12640-019-00120-z] [PMID: 31654381]
[76]
Salman, M.; Tabassum, H.; Parvez, S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr. Neurosci., 2022, 25(1), 100-109.
[http://dx.doi.org/10.1080/1028415X.2020.1721645] [PMID: 32093571]
[77]
Tyagi, S.; Shekhar, N.; Thakur, A.K. Protective role of capsaicin in neurological disorders: An overview. Neurochem. Res., 2022, 47(6), 1513-1531.
[http://dx.doi.org/10.1007/s11064-022-03549-5] [PMID: 35150419]
[78]
Wang, J.; Sun, B.L.; Xiang, Y.; Tian, D.Y.; Zhu, C.; Li, W.W.; Liu, Y.H.; Bu, X.L.; Shen, L.L.; Jin, W.S.; Wang, Z.; Zeng, G.H.; Xu, W.; Chen, L.Y.; Chen, X.W.; Hu, Z.; Zhu, Z.M.; Song, W.; Zhou, H.D.; Yu, J.T.; Wang, Y.J. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Transl. Psychiatry, 2020, 10(1), 230.
[http://dx.doi.org/10.1038/s41398-020-00918-y] [PMID: 32661266]
[79]
Shalaby, M.A.; Nounou, H.A.; Deif, M.M. The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease. Egypt. J. Neurol. Psychiat. Neurosurg., 2019, 55(1), 48.
[http://dx.doi.org/10.1186/s41983-019-0094-7]
[80]
Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6), BSR20191796.
[http://dx.doi.org/10.1042/BSR20191796] [PMID: 32537633]
[81]
Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease. Acta Biol. Hung., 2018, 69(2), 115-124.
[http://dx.doi.org/10.1556/018.69.2018.2.1] [PMID: 29888671]
[82]
Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential therapeutic agents by their antioxidant capacity. Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing, 2019, pp. 265-288.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00014-1]
[83]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[84]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[85]
Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(14), 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[86]
Ludovici, V.; Barthelmes, J.; Nägele, M.P.; Enseleit, F.; Ferri, C.; Flammer, A.J.; Ruschitzka, F.; Sudano, I. Cocoa, blood pressure, and vascular function. Front. Nutr., 2017, 4, 36.
[http://dx.doi.org/10.3389/fnut.2017.00036] [PMID: 28824916]
[87]
Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid. Naringenin. Life Sci., 2018, 208, 111-122.
[http://dx.doi.org/10.1016/j.lfs.2018.07.017] [PMID: 30021118]
[88]
Singh, S.; Sharma, A.; Monga, V.; Bhatia, R. Compendium of naringenin: Potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit. Rev. Food Sci. Nutr., 2023, 63(27), 8868-8899.
[http://dx.doi.org/10.1080/10408398.2022.2056726] [PMID: 35357240]
[89]
Md, S.; Gan, S.Y.; Haw, Y.H.; Ho, C.L.; Wong, S.; Choudhury, H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol., 2018, 118(Pt A), 1211-1219.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.190] [PMID: 30001606]
[90]
Lawal, M.; Olotu, F.A.; Soliman, M.E.S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput. Biol. Med., 2018, 98, 168-177.
[http://dx.doi.org/10.1016/j.compbiomed.2018.05.012] [PMID: 29860210]
[91]
Wu, J.; Kou, X.; Ju, H.; Zhang, H.; Yang, A.; Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2021, 49, 128316.
[http://dx.doi.org/10.1016/j.bmcl.2021.128316] [PMID: 34391893]
[92]
Mi, J.; He, Y.; Yang, J.; Zhou, Y.; Zhu, G.; Wu, A.; Liu, W.; Sang, Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2022, 60, 128574.
[http://dx.doi.org/10.1016/j.bmcl.2022.128574] [PMID: 35065231]
[93]
Ahmad, M.H.; Fatima, M.; Ali, M.; Rizvi, M.A.; Mondal, A.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology, 2021, 201, 108831.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108831] [PMID: 34655599]
[94]
Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[95]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J.; Vitamin, E.; Vitamin, E. Loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int., 2019, 2019, 1-20.
[http://dx.doi.org/10.1155/2019/2382563] [PMID: 31111044]
[96]
Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936.
[http://dx.doi.org/10.3389/fimmu.2019.00936] [PMID: 31118933]
[97]
Govindasamy, H.; Magudeeswaran, S.; Kandasamy, S.; Poomani, K. Binding mechanism of naringenin with monoamine oxidase – B enzyme: QM/MM and molecular dynamics perspective. Heliyon, 2021, 7(4), e06684.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06684] [PMID: 33898820]
[98]
Salman, M.; Sharma, P.; Alam, M.I.; Tabassum, H.; Parvez, S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington’s disease like symptoms in rats. Nutr. Neurosci., 2022, 25(9), 1898-1908.
[PMID: 33856270]
[99]
Dourado, N.S.; Souza, C.S.; de Almeida, M.M.A.; Bispo da Silva, A.; dos Santos, B.L.; Silva, V.D.A.; De Assis, A.M.; da Silva, J.S.; Souza, D.O.; Costa, M.F.D.; Butt, A.M.; Costa, S.L. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimer’s Disease. Front. Aging Neurosci., 2020, 12, 119.
[http://dx.doi.org/10.3389/fnagi.2020.00119] [PMID: 32499693]
[100]
Alsadat, A.M.; Nikbakht, F.; Hossein Nia, H.; Golab, F.; Khadem, Y.; Barati, M.; Vazifekhah, S. GSK-3β; as a target for apigenin-induced neuroprotection against Aβ 25–35 in a rat model of Alzheimer’s disease. Neuropeptides, 2021, 90, 102200.
[http://dx.doi.org/10.1016/j.npep.2021.102200] [PMID: 34597878]
[101]
Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 75, 105697.
[http://dx.doi.org/10.1016/j.intimp.2019.105697] [PMID: 31352326]
[102]
Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79.
[http://dx.doi.org/10.1016/j.cbi.2017.03.016] [PMID: 28389404]
[103]
Kim, Y.J.; Cho, E.J.; Lee, A.Y.; Seo, W.T. Apigenin ameliorates oxidative stress-induced neuronal apoptosis in SH-SY5Y Cells. Han’guk Misaengmul, Saengmyong Konghakhoe Chi., 2021, 49(2), 138-147.
[http://dx.doi.org/10.48022/mbl.2009.09006]
[104]
Ginwala, R.; Bhavsar, R.; Moore, P.; Bernui, M.; Singh, N.; Bearoff, F.; Nagarkatti, M.; Khan, Z.K.; Jain, P. Apigenin modulates dendritic cell activities and curbs inflammation via RelB inhibition in the context of neuroinflammatory diseases. J. Neuroimmune Pharmacol., 2021, 16(2), 403-424.
[http://dx.doi.org/10.1007/s11481-020-09933-8] [PMID: 32607691]
[105]
Tana; Nakagawa, T. Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2022, 588, 168-174.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.074] [PMID: 34959189]
[106]
Kou, J.J.; Shi, J.Z.; He, Y.Y.; Hao, J.J.; Zhang, H.Y.; Luo, D.M.; Song, J.K.; Yan, Y.; Xie, X.M.; Du, G.H.; Pang, X.B. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol. Sin., 2022, 43(4), 840-849.
[PMID: 34267346]
[107]
Ali, F. Rahul; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci. Lett., 2019, 692, 90-99.
[http://dx.doi.org/10.1016/j.neulet.2018.10.053] [PMID: 30420334]
[108]
Elmazoglu, Z.; Yar Saglam, A.S.; Sonmez, C.; Karasu, C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug Chem. Toxicol., 2020, 43(1), 96-103.
[http://dx.doi.org/10.1080/01480545.2018.1504961] [PMID: 30207190]
[109]
Qin, L.; Chen, Z.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Zhang, W.; Xu, Q.; Huang, F.; Wu, X. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology, 2019, 426, 152256.
[http://dx.doi.org/10.1016/j.tox.2019.152256] [PMID: 31381935]
[110]
Brotini, S. Palmitoylethanolamide/luteolin as adjuvant therapy to improve an unusual case of camptocormia in a patient with Parkinson’s disease: A case report. Innov. Clin. Neurosci., 2021, 18(10-12), 12-14.
[PMID: 35096476]
[111]
Hasan, S.Y. Rahul; Varshney, H.; Mantasha, I.; Shahid, M. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. Comput. Toxicol., 2021, 17, 100148.
[http://dx.doi.org/10.1016/j.comtox.2020.100148]
[112]
Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[113]
Zu, G.; Sun, K.; Li, L.; Zu, X.; Han, T.; Huang, H. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci. Rep., 2021, 11(1), 22959.
[http://dx.doi.org/10.1038/s41598-021-02248-5] [PMID: 34824300]
[114]
Zhang, X.W.; Chen, J.Y.; Ouyang, D.; Lu, J.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci., 2020, 21(2), 493.
[http://dx.doi.org/10.3390/ijms21020493] [PMID: 31941000]
[115]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[116]
Lema Abdullahi, A.; Lema, A.; Jibrin, K.; Nuraddeen, W.; Alexander, E. Ameliorative role of nutraceutical quercetin and its derivatives against cognitive impairment process induced by lead exposure in Drosophila melanogaster (Fruit Fly). Iraqi J. Pharm Sci., 2021, 30(2), 135-142.
[117]
Xu, M.; Huang, H.; Mo, X.; Zhu, Y.; Chen, X.; Li, X.; Peng, X.; Xu, Z.; Chen, L.; Rong, S.; Yang, W.; Liu, S.; Liu, L. Quercetin‐3‐ O ‐Glucuronide Alleviates Cognitive Deficit and Toxicity in Aβ 1‐42 ‐Induced AD‐Like Mice and SH‐SY5Y Cells. Mol. Nutr. Food Res., 2021, 65(6), 2000660.
[http://dx.doi.org/10.1002/mnfr.202000660] [PMID: 33141510]
[118]
Elfiky, A.M.; Mahmoud, A.A.; Elreedy, H.A.; Ibrahim, K.S.; Ghazy, M.A. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer’s disease rat model. Life Sci., 2021, 285, 119964.
[http://dx.doi.org/10.1016/j.lfs.2021.119964] [PMID: 34537230]
[119]
Madiha, S.; Batool, Z.; Tabassum, S.; Liaquat, L.; Sadir, S.; Shahzad, S.; Naqvi, F.; Saleem, S.; Yousuf, S.; Nawaz, A.; Ahmad, S.; Sajid, I.; Afzal, A.; Haider, S. Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS One, 2021, 16(11), e0258928.
[http://dx.doi.org/10.1371/journal.pone.0258928] [PMID: 34767546]
[120]
Pantoja, L.V.P.S.; Trindade, S.S.A.; Carneiro, A.S.; Silva, J.P.B.; Paixão, T.P.; Romeiro, C.F.R.; Moraes, C.S.P.; Pinto, A.C.G.; Raposo, N.R.B.; Andrade, M.A. Computational study of the main flavonoids from Chrysobalanus icaco L. against NADPH-oxidase and in vitro antioxidant activity. Res. Soc Devel., 2022, 11(6), e5011628542-e5011628542.
[http://dx.doi.org/10.33448/rsd-v11i6.28542]
[121]
Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging (Albany NY), 2021, 13(8), 11738-11751.
[http://dx.doi.org/10.18632/aging.202868] [PMID: 33878030]
[122]
Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol., 2022, 13, 943321.
[http://dx.doi.org/10.3389/fimmu.2022.943321] [PMID: 35935939]
[123]
Xiao, S.; Lu, Y.; Wu, Q.; Yang, J.; Chen, J.; Zhong, S.; Eliezer, D.; Tan, Q.; Wu, C. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int. J. Biol. Macromol., 2021, 178, 381-393.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.210] [PMID: 33662414]
[124]
Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin Improved Rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71.
[http://dx.doi.org/10.1080/19390211.2019.1710646] [PMID: 31992104]
[125]
Watanabe, R.; Kurose, T.; Morishige, Y.; Fujimori, K. Protective effects of fisetin against 6-OHDA-induced apoptosis by activation of PI3K-Akt signaling in human neuroblastoma SH-SY5Y cells. Neurochem. Res., 2018, 43(2), 488-499.
[http://dx.doi.org/10.1007/s11064-017-2445-z] [PMID: 29204750]
[126]
Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct., 2017, 8(9), 3033-3042.
[http://dx.doi.org/10.1039/C7FO00809K] [PMID: 28714503]
[127]
Rane, A.R.; Paithankar, H.; Hosur, R.V.; Choudhary, S. Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions. Int. J. Biol. Macromol., 2021, 182, 1278-1291.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.071] [PMID: 33991558]
[128]
Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience, 2018, 379, 152-166.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.008] [PMID: 29559385]
[129]
Abou Baker, D.H.; Ibrahim, B.M.M.; Hassan, N.S.; Yousuf, A.F.; Gengaihi, S.E. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol. Rep., 2020, 7, 723-729.
[http://dx.doi.org/10.1016/j.toxrep.2020.06.001] [PMID: 32551234]
[130]
Justin-Thenmozhi, A.; Dhivya Bharathi, M.; Kiruthika, R.; Manivasagam, T.; Borah, A.; Essa, M.M. Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in wistar rats. Neurotox. Res., 2018, 34(3), 463-476.
[http://dx.doi.org/10.1007/s12640-018-9904-4] [PMID: 29687202]
[131]
Mandour, D.A.; Bendary, M.A.; Alsemeh, A.E. Histological and imunohistochemical alterations of hippocampus and prefrontal cortex in a rat model of Alzheimer like-disease with a preferential role of the flavonoid “hesperidin”. J. Mol. Histol., 2021, 52(5), 1043-1065.
[http://dx.doi.org/10.1007/s10735-021-09998-6] [PMID: 34170456]
[132]
Elyasi, L.; Jahanshahi, M.; Jameie, S.B.; Hamid Abadi, H.G.; Nikmahzar, E.; Khalili, M.; Jameie, M.; Jameie, M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J. Basic Clin. Physiol. Pharmacol., 2021, 32(2), 11-17.
[http://dx.doi.org/10.1515/jbcpp-2019-0270] [PMID: 32918805]
[133]
Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci. Lett., 2021, 740, 135426.
[http://dx.doi.org/10.1016/j.neulet.2020.135426] [PMID: 33075420]
[134]
Poetini, M.R.; Araujo, S.M.; Trindade de Paula, M.; Bortolotto, V.C.; Meichtry, L.B.; Polet de Almeida, F.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact., 2018, 279, 177-186.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[135]
Subedi, L.; Gaire, B.P. Neuroprotective effects of curcumin in cerebral ischemia: cellular and molecular mechanisms. ACS Chem. Neurosci., 2021, 12(14), 2562-2572.
[http://dx.doi.org/10.1021/acschemneuro.1c00153] [PMID: 34251185]
[136]
Xu, H.; Nie, B.; Liu, L.; Zhang, C.; Zhang, Z.; Xu, M.; Mei, Y. Curcumin prevents brain damage and cognitive dysfunction during ischemic-reperfusion through the regulation of miR-7-5p. Curr. Neurovasc. Res., 2020, 16(5), 441-454.
[http://dx.doi.org/10.2174/1567202616666191029113633] [PMID: 31660818]
[137]
Çakmak, G.; Kaplan, D.S. Yıldırım, C.; Ulusal, H.; Tarakçıoğlu, M.; Öztürk, Z.A. Improvement of cognitive deficit of curcumin on scopolamine-induced Alzheimer’s disease models. Caspian J. Intern. Med., 2022, 13(1), 16-22.
[PMID: 35178203]
[138]
Pluta, R. Furmaga-Jabłońska, W.; Januszewski, S.; Czuczwar, S.J. Post-Ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: Possible therapeutic role of curcumin. Nutrients, 2022, 14(2), 248.
[http://dx.doi.org/10.3390/nu14020248] [PMID: 35057429]
[139]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[140]
ELBini-Dhouib, I.; Doghri, R.; Ellefi, A.; Degrach, I.; Srairi-Abid, N.; Gati, A. Curcumin attenuated neurotoxicity in sporadic animal model of Alzheimer’s disease. Molecules, 2021, 26(10), 3011.
[http://dx.doi.org/10.3390/molecules26103011] [PMID: 34070220]
[141]
Noor, N.A.; Hosny, E.N.; Khadrawy, Y.A.; Mourad, I.M.; Othman, A.I.; Aboul Ezz, H.S.; Mohammed, H.S. Effect of curcumin nanoparticles on streptozotocin-induced male Wistar rat model of Alzheimer’s disease. Metab. Brain Dis., 2022, 37(2), 343-357.
[http://dx.doi.org/10.1007/s11011-021-00897-z] [PMID: 35048324]
[142]
da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira, R.I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421.
[http://dx.doi.org/10.2174/0929867325666180117112610] [PMID: 29338678]
[143]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[144]
Nebrisi, E.E. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature. Int. J. Mol. Sci., 2021, 22(20), 11248.
[http://dx.doi.org/10.3390/ijms222011248] [PMID: 34681908]
[145]
Abrahams, S.; Miller, H.C.; Lombard, C.; van der Westhuizen, F.H.; Bardien, S. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinson’s disease and healthy control fibroblasts. Biochem. Biophys. Rep., 2021, 27, 101035.
[http://dx.doi.org/10.1016/j.bbrep.2021.101035] [PMID: 34189277]
[146]
Fikry, H.; Saleh, L.A.; Abdel Gawad, S. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s Disease Model. CNS Neurosci. Ther., 2022, 28(5), 732-748.
[http://dx.doi.org/10.1111/cns.13805] [PMID: 35068069]
[147]
He, H.J.; Xiong, X.; Zhou, S.; Zhang, X.R.; Zhao, X.; Chen, L.; Xie, C.L. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem. Int., 2022, 155, 105297.
[http://dx.doi.org/10.1016/j.neuint.2022.105297] [PMID: 35122926]
[148]
Ramires Júnior, O.V.; Alves, B.S.; Barros, P.A.B.; Rodrigues, J.L.; Ferreira, S.P.; Monteiro, L.K.S.; Araújo, G.M.S.; Fernandes, S.S.; Vaz, G.R.; Dora, C.L.; Hort, M.A. Nanoemulsion improves the neuroprotective effects of curcumin in an experimental model of Parkinson’s disease. Neurotox. Res., 2021, 39(3), 787-799.
[http://dx.doi.org/10.1007/s12640-021-00362-w] [PMID: 33860897]
[149]
Chetty, D.; Abrahams, S.; Coller, R.; Carr, J.; Kenyon, C.; Bardien, S. Movement of prion-like α‐synuclein along the gut–brain axis in Parkinson’s disease: A potential target of curcumin treatment. Eur. J. Neurosci., 2021, 54(2), 4695-4711.
[http://dx.doi.org/10.1111/ejn.15324] [PMID: 34043864]
[150]
Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum. Mol. Genet., 2019, 28(23), ddz247.
[http://dx.doi.org/10.1093/hmg/ddz247] [PMID: 31630202]
[151]
Aditi, K.; Singh, A.; Shakarad, M.N.; Agrawal, N. Management of altered metabolic activity in Drosophila model of Huntington’s disease by curcumin. Exp. Biol. Med. (Maywood), 2022, 247(2), 152-164.
[http://dx.doi.org/10.1177/15353702211046927] [PMID: 34743577]
[152]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[153]
Patel, K.; Patel, D.K. The Beneficial Role of Rutin, A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed; Academic Press, 2019; pp. 457-479.
[154]
Sun, X.; Li, L.; Dong, Q.X.; Zhu, J.; Huang, Y.; Hou, S.; Yu, X.; Liu, R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 131.
[http://dx.doi.org/10.1186/s12974-021-02182-3] [PMID: 34116706]
[155]
Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic THerapy of Alzheimer’s disease. Small, 2022, 18(14), 2107534.
[http://dx.doi.org/10.1002/smll.202107534] [PMID: 35182016]
[156]
Cordeiro, L.M.; Soares, M.V.; da Silva, A.F.; Machado, M.L.; Bicca, O.B.F.; da Silveira, T.L.; Arantes, L.P.; Soares, F.A.A. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington’s disease. Nutr. Neurosci., 2021, 1-14.
[http://dx.doi.org/10.1080/1028415X.2021.1956254] [PMID: 34311678]
[157]
Cordeiro, L.M.; Machado, M.L.; da Silva, A.F.; Obetine, B.F.B.; da Silveira, T.L.; Soares, F.A.A.; Arantes, L.P. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem. Toxicol., 2020, 141, 111323.
[http://dx.doi.org/10.1016/j.fct.2020.111323] [PMID: 32278002]
[158]
Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab. Brain Dis., 2017, 32(2), 471-481.
[http://dx.doi.org/10.1007/s11011-016-9929-4] [PMID: 27928694]
[159]
Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E.; Kassab, R.B. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92.
[http://dx.doi.org/10.1007/s12640-019-00086-y] [PMID: 31332714]
[160]
Neta, F.; Da Costa, I.; Lima, F.; Fernandes, L.; Cavalcanti, J.; Freire, M.; Lucena, E.D.S.; Do Rêgo, A.M.; De Azevedo, E.; Guzen, F. Effects of Mucuna pruriens (L.) supplementation on experimental models of Parkinson’s disease: A systematic review. Pharmacogn. Rev., 2018, 12(23), 78-84.
[161]
Nayak, V.S.; Kumar, N.; D’Souza, A.S.; Nayak, S.S.; Cheruku, S.P.; Pai, K.S.R. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. Neuroreport, 2017, 28(18), 1195-1201.
[http://dx.doi.org/10.1097/WNR.0000000000000888] [PMID: 28953092]
[162]
Duttaroy, A.K. Health effects of terpenoids.Evidence-Based Nutrition and Clinical Evidence of Bioactive Foods in Human Health and Disease; Duttaroy, A.K., Ed.; Academic Press, 2021, pp. 413-424.
[http://dx.doi.org/10.1016/B978-0-12-822405-2.00017-7]
[163]
Song, Y.; Wang, Y.; Zheng, Y.; Liu, T.; Zhang, C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia, 2021, 153, 104969.
[http://dx.doi.org/10.1016/j.fitote.2021.104969] [PMID: 34147548]
[164]
Taheri, R.; Hadipour, E.; Tayarani-Najaran, Z. Crocin protects against beta-amyloid peptide-induced apoptosis in PC12 cells via the PI3 K pathway. Curr. Mol. Pharmacol., 2021, 14(4), 627-634.
[http://dx.doi.org/10.2174/1874467213666201012160401] [PMID: 33045973]
[165]
Yousefsani, B.S.; Mehri, S.; Pourahmad, J.; Hosseinzadeh, H. Protective effect of crocin against mitochondrial damage and memory deficit induced by beta-amyloid in the hippocampus of rats. Iran. J. Pharm. Res., 2021, 20(2), 79-94.
[PMID: 34567148]
[166]
Hadipour, M.; Bahari, Z.; Afarinesh, M.R.; Jangravi, Z.; Shirvani, H.; Meftahi, G.H. Administering crocin ameliorates anxiety-like behaviours and reduces the inflammatory response in amyloid-beta induced neurotoxicity in rat. Clin. Exp. Pharmacol. Physiol., 2021, 48(6), 877-889.
[http://dx.doi.org/10.1111/1440-1681.13494] [PMID: 33686675]
[167]
Saeedi, M.; Rashidy-Pour, A. Association between chronic stress and Alzheimer’s disease: Therapeutic effects of Saffron. Biomed. Pharmacother., 2021, 133, 110995.
[http://dx.doi.org/10.1016/j.biopha.2020.110995] [PMID: 33232931]
[168]
Mohammadzadeh, L.; Hosseinzadeh, H.; Abnous, K.; Razavi, B.M. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(5), 4904-4914.
[http://dx.doi.org/10.1007/s11356-017-0842-0] [PMID: 29204935]
[169]
Chongtham, A.; Yoo, J.H.; Chin, T.M.; Akingbesote, N.D.; Huda, A.; Khoshnan, A. Gut bacteria regulate the pathogenesis of Huntington’s disease in Drosophila. bioRxiv, 2021, 16.
[http://dx.doi.org/10.1101/2021.08.12.456124]
[170]
Siahaan, E.A.; Pangestuti, R.; Pratama, I.S.; Putra, Y.; Kim, S-K. Beneficial effects of astaxanthin in cosmeceuticals with focus on emerging market trends. In: Global Perspectives on Astaxanthin; Ravishankar, G.A.; Ranga, R.A., Eds.; Academic Press, 2021; pp. 557-568.
[171]
Alghazwi, M.; Smid, S.; Musgrave, I.; Zhang, W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation. Neurochem. Int., 2019, 124, 215-224.
[http://dx.doi.org/10.1016/j.neuint.2019.01.010] [PMID: 30639263]
[172]
Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother., 2019, 110, 47-58.
[http://dx.doi.org/10.1016/j.biopha.2018.11.043] [PMID: 30463045]
[173]
Sakayanathan, P.; Loganathan, C.; Kandasamy, S.; Ramanna, R.V.; Poomani, K.; Thayumanavan, P. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int. J. Biol. Macromol., 2019, 140, 1147-1157.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.168] [PMID: 31442505]
[174]
Chen, C-C.; Lee, H-C.; Chang, J-H.; Chen, S-S.; Li, T-C.; Tsai, C-H.; Cho, D-Y.; Hsieh, C-L. Chinese herb Astragalus membranaceus enhances recovery of hemorrhagic stroke: double-blind, placebo-controlled, randomized study. Evid-Based Compl Alter Med, 2012, 2012, 708452.
[175]
Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665.
[http://dx.doi.org/10.2174/1570159X16666180911123341] [PMID: 30207235]
[176]
Shen, D.F.; Qi, H.P.; Ma, C.; Chang, M.X.; Zhang, W.N.; Song, R.R. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci. Res., 2021, 165, 51-60.
[http://dx.doi.org/10.1016/j.neures.2020.04.003] [PMID: 32333925]
[177]
Akinade, T.C.; Babatunde, O.O.; Adedara, A.O.; Adeyemi, O.E.; Otenaike, T.A.; Ashaolu, O.P.; Johnson, T.O.; Terriente-Felix, A.; Whitworth, A.J.; Abolaji, A.O. Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci. Rep., 2022, 12(1), 4594.
[http://dx.doi.org/10.1038/s41598-022-08409-4] [PMID: 35301354]
[178]
Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IV–tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72.
[http://dx.doi.org/10.1016/j.jep.2011.12.023] [PMID: 22207211]
[179]
Sánchez-Illana, Á.; Piñeiro-Ramos, J.D.; Ramos-Garcia, V.; Ten-Doménech, I.; Vento, M.; Kuligowski, J. Chapter Three - Oxidative stress biomarkers in the preterm infant. Adv. Clin. Chem; Makowski, G.S., Ed.; Elsevier, 2021, Vol. 102, pp. 127-189.
[180]
Singhrang, N.; Tocharus, C.; Thummayot, S.; Sutheerawattananonda, M.; Tocharus, J. Protective effects of silk lutein extract from Bombyx mori cocoons on β-Amyloid peptide-induced apoptosis in PC12 cells. Biomed. Pharmacother., 2018, 103, 582-587.
[http://dx.doi.org/10.1016/j.biopha.2018.04.045] [PMID: 29677545]
[181]
Ademowo, O.S.; Dias, I.H.K.; Diaz-Sanchez, L.; Sanchez-Aranguren, L.; Stahl, W.; Griffiths, H.R. Partial mitigation of oxidized phospholipid-mediated mitochondrial dysfunction in neuronal cells by oxocarotenoids. J. Alzheimers Dis., 2020, 74(1), 113-126.
[http://dx.doi.org/10.3233/JAD-190923] [PMID: 31985464]
[182]
Fernandes, E.J.; Poetini, M.R.; Barrientos, M.S.; Bortolotto, V.C.; Araujo, S.M.; Santos Musachio, E.A.; De Carvalho, A.S.; Leimann, F.V.; Gonçalves, O.H.; Ramborger, B.P.; Roehrs, R.; Prigol, M.; Guerra, G.P. Exposure to lutein-loaded nanoparticles attenuates Parkinson’s model-induced damage in Drosophila melanogaster: restoration of dopaminergic and cholinergic system and oxidative stress indicators. Chem. Biol. Interact., 2021, 340, 109431.
[http://dx.doi.org/10.1016/j.cbi.2021.109431] [PMID: 33716020]
[183]
Binawade, Y.; Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-induced Huntington’s disease-like symptoms: possible behavioral, biochemical, and cellular alterations. J. Med. Food, 2013, 16(10), 934-943.
[http://dx.doi.org/10.1089/jmf.2012.2698] [PMID: 24138168]
[184]
Wani, A.; Al Rihani, S.B.; Sharma, A.; Weadick, B.; Govindarajan, R.; Khan, S.U.; Sharma, P.R.; Dogra, A.; Nandi, U.; Reddy, C.N.; Bharate, S.S.; Singh, G.; Bharate, S.B.; Vishwakarma, R.A.; Kaddoumi, A.; Kumar, A. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy, 2021, 17(11), 3813-3832.
[http://dx.doi.org/10.1080/15548627.2021.1872187] [PMID: 33404280]
[185]
Zhang, J.; Wang, Y.; Dong, X.; Liu, J. Crocetin attenuates inflammation and amyloid-β; accumulation in APPsw transgenic mice. Immun. Ageing, 2018, 15(1), 24.
[http://dx.doi.org/10.1186/s12979-018-0132-9] [PMID: 30450117]
[186]
Dong, N.; Dong, Z.; Chen, Y.; Gu, X. Crocetin alleviates inflammation in MPTP-induced Parkinson’s disease models through improving mitochondrial functions. Parkinsons Dis., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9864370] [PMID: 33101635]
[187]
Montgomery Hays, B.; Hudson, T. 166 - Endometriosis. Textbook of Natural Medicine; 5th ed; Pizzorno, J.E.; Murray, M.T., Eds.; Churchill Livingstone: St. Louis, MO,, 2020, pp. 1287-1295. e1283
[http://dx.doi.org/10.1016/B978-0-323-43044-9.00166-7]
[188]
Hira, S. Saleem, U.; Anwar, F.; Sohail, M.F.; Raza, Z.; Ahmad, B. β-Carotene: A natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer’s disease. Biomolecules, 2019, 9(9), 441.
[http://dx.doi.org/10.3390/biom9090441] [PMID: 31480727]
[189]
Kim, J.H.; Hwang, J.; Shim, E.; Chung, E.J.; Jang, S.H.; Koh, S.B. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson’s Disease. Nutr. Res. Pract., 2017, 11(2), 114-120.
[http://dx.doi.org/10.4162/nrp.2017.11.2.114] [PMID: 28386384]
[190]
Przybylska, S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int. J. Food Sci. Technol., 2020, 55(1), 11-32.
[http://dx.doi.org/10.1111/ijfs.14260]
[191]
Huang, C.; Wen, C.; Yang, M.; Gan, D.; Fan, C.; Li, A.; Li, Q.; Zhao, J.; Zhu, L.; Lu, D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol. Biol. Rep., 2019, 46(3), 3387-3397.
[http://dx.doi.org/10.1007/s11033-019-04801-y] [PMID: 31006097]
[192]
Putteeraj, M.; Lim, W.L.; Teoh, S.L.; Yahaya, M.F. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets, 2018, 19(14), 1710-1720.
[http://dx.doi.org/10.2174/1389450119666180326125252] [PMID: 29577854]
[193]
Tripathi, R.; Shalini, R.; Singh, R.K. 7 - Prophyletic origin of algae as potential repository of anticancer compounds. Evolutionary Diversity as a Source for Anticancer Molecules; Srivastava, A.K.; Kannaujiya, V.K.; Singh, R.K; Singh, D., Ed.; Academic Press, 2021, pp. 155-189.
[http://dx.doi.org/10.1016/B978-0-12-821710-8.00007-2]
[194]
Nazih, H.; Bard, J-M. Microalgae in human health: Interest as a functional food. Microalgae in Health and Disease Prevention; Levine, I.A; Fleurence, J., Ed.; Academic Press, 2018, pp. 211-226.
[http://dx.doi.org/10.1016/B978-0-12-811405-6.00010-4]
[195]
Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102.
[http://dx.doi.org/10.1021/acs.jafc.7b00805] [PMID: 28478680]
[196]
Lee, A.H.; Shin, H.Y.; Park, J.H.; Koo, S.Y.; Kim, S.M.; Yang, S.H. Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NFκB and NLRP3 inflammasome activation. Sci. Rep., 2021, 11(1), 543.
[http://dx.doi.org/10.1038/s41598-020-80748-6] [PMID: 33436909]
[197]
Wu, W.; Han, H.; Liu, J.; Tang, M.; Wu, X.; Cao, X.; Zhao, T.; Lu, Y.; Niu, T.; Chen, J. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting Keap1. Oxid. Med. Cell. Long.,, 2021, 2021
[198]
Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[199]
Singh, A.; Mahajan, S.D.; Kutscher, H.L.; Kim, S.; Prasad, P.N. Curcumin-pluronic nanoparticles: A theranostic nanoformulation for Alzheimer’s disease. Crit. Rev. Biomed. Eng., 2020, 48(3), 153-168.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2020034302] [PMID: 33389893]
[200]
Mursaleen, L.; Somavarapu, S.; Zariwala, M.G. Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J. Parkinsons Dis., 2020, 10(1), 99-111.
[http://dx.doi.org/10.3233/JPD-191754] [PMID: 31868679]
[201]
Pan, Q.; Ban, Y.; Xu, L. Silibinin-albumin nanoparticles: Characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease. J. Biomed. Nanotechnol., 2021, 17(6), 1123-1130.
[http://dx.doi.org/10.1166/jbn.2021.3038] [PMID: 34167626]
[202]
Mandal, S.; Debnath, K.; Jana, N.R.; Jana, N.R. Trehalose-conjugated, catechin-loaded polylactide nanoparticles for improved neuroprotection against intracellular polyglutamine aggregates. Biomacromolecules, 2020, 21(4), 1578-1586.
[http://dx.doi.org/10.1021/acs.biomac.0c00143] [PMID: 32105465]
[203]
Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305.
[http://dx.doi.org/10.1021/acsabm.9b00518] [PMID: 35021530]
[204]
Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Folch, J.; Kühne, B.A.; Barenys, M.; Sánchez-López, E.; Souto, E.B.; García, M.L.; Turowski, P.; Camins, A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond.), 2021, 16(1), 19-35.
[http://dx.doi.org/10.2217/nnm-2020-0239] [PMID: 33410329]
[205]
Lima, B.S.; Campos, C.A.; da Silva Santos, A.C.R.; Santos, V.C.N.; Trindade, G.G.G.; Shanmugam, S.; Pereira, E.W.M.; Marreto, R.N.; Duarte, M.C.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans, L.J., Jr; Araújo, A.A.S. Development of morin/hydroxypropyl-β-cyclodextrin inclusion complex: Enhancement of bioavailability, antihyperalgesic and anti-inflammatory effects. Food Chem. Toxicol., 2019, 126, 15-24.
[http://dx.doi.org/10.1016/j.fct.2019.01.038] [PMID: 30738132]
[206]
Manta, K.; Papakyriakopoulou, P.; Chountoulesi, M.; Diamantis, D.A.; Spaneas, D.; Vakali, V.; Naziris, N.; Chatziathanasiadou, M.V.; Andreadelis, I.; Moschovou, K.; Athanasiadou, I.; Dallas, P.; Rekkas, D.M.; Demetzos, C.; Colombo, G.; Banella, S.; Javornik, U.; Plavec, J.; Mavromoustakos, T.; Tzakos, A.G.; Valsami, G. Preparation and biophysical characterization of quercetin inclusion complexes with β-cyclodextrin derivatives to be formulated as possible nose-to-brain quercetin delivery systems. Mol. Pharm., 2020, 17(11), 4241-4255.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00672] [PMID: 32986435]
[207]
Wong, K.H.; Xie, Y.; Huang, X.; Kadota, K.; Yao, X.S.; Yu, Y.; Chen, X.; Lu, A.; Yang, Z. Delivering crocetin across the blood brain barrier by using γ-cyclodextrin to treat Alzheimer’s disease. Sci. Rep., 2020, 10(1), 3654.
[http://dx.doi.org/10.1038/s41598-020-60293-y] [PMID: 32107408]
[208]
Zhang, L.; Yang, S.; Wong, L.R.; Xie, H.; Ho, P.C.L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated Poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol. Pharm., 2020, 17(11), 4256-4269.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00675] [PMID: 33084343]
[209]
Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Kapoor, B.; Vyas, M.; Khursheed, R.; Awasthi, A.; Kaur, J.; Corrie, L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson’s disease rat model. Food Chem. Toxicol., 2020, 144, 111590.
[http://dx.doi.org/10.1016/j.fct.2020.111590] [PMID: 32710995]
[210]
Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Vyas, M.; Dua, K.; Khursheed, R.; Awasthi, A.; Vishwas, S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson’s model. Environ. Sci. Pollut. Res. Int., 2022, 29(33), 50488-50499.
[http://dx.doi.org/10.1007/s11356-022-19428-z] [PMID: 35230633]
[211]
Sangsen, Y.; Sooksawate, T.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. A self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med., 2018, 84(11), 820-828.
[http://dx.doi.org/10.1055/s-0043-125337] [PMID: 29301146]
[212]
Huo, X.; Zhang, Y.; Jin, X.; Li, Y.; Zhang, L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B, 2019, 190, 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[213]
Mazibuko, Z.; Indermun, S.; Govender, M.; Kumar, P.; Du Toit, L.C.; Choonara, Y.E.; Modi, G.; Naidoo, D.; Pillay, V. Targeted delivery of amantadine-loaded methacrylate nanosphere-ligands for the potential treatment of amyotrophic lateral sclerosis. J. Pharm. Pharm. Sci., 2018, 21(1), 94-109.
[http://dx.doi.org/10.18433/jpps29595] [PMID: 29510799]
[214]
Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 162, 246-261.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.058] [PMID: 32531361]
[215]
Chibhabha, F.; Yang, Y.; Ying, K.; Jia, F.; Zhang, Q.; Ullah, S.; Liang, Z.; Xie, M.; Li, F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(33), 7438-7452.
[http://dx.doi.org/10.1039/D0TB01101K] [PMID: 32662804]
[216]
Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, N. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. J. Microencapsul., 2018, 35(2), 137-148.
[http://dx.doi.org/10.1080/02652048.2018.1441916] [PMID: 29448848]
[217]
Mursaleen, L.; Noble, B.; Somavarapu, S.; Zariwala, M.G. Micellar nanocarriers of hydroxytyrosol are protective against Parkinson’s related oxidative stress in an in vitro hCMEC/D3-SH-SY5Y co-culture system. Antioxidants, 2021, 10(6), 887.
[http://dx.doi.org/10.3390/antiox10060887] [PMID: 34073115]
[218]
D’Ambrosio, D.; Panina-Bordignon, P.; Sinigaglia, F. Chemokine receptors in inflammation: an overview. J. Immunol. Methods, 2003, 273(1-2), 3-13.
[http://dx.doi.org/10.1016/S0022-1759(02)00414-3] [PMID: 12535793]
[219]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[220]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[221]
Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov., 2003, 2(3), 179-191.
[http://dx.doi.org/10.1038/nrd1034] [PMID: 12612644]
[222]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[223]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[224]
Chertov, O.; Yang, D.; Howard, O.M.Z.; Oppenheim, J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev., 2000, 177(1), 68-78.
[http://dx.doi.org/10.1034/j.1600-065X.2000.17702.x] [PMID: 11138786]
[225]
Stichtenoth, D.O.; Frölich, J.C. The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs, 2003, 63(1), 33-45.
[http://dx.doi.org/10.2165/00003495-200363010-00003] [PMID: 12487621]
[226]
Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2(1), d12-d26.
[PMID: 9159205]
[227]
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[228]
Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910.
[http://dx.doi.org/10.1159/000452591] [PMID: 27871079]
[229]
Fritz, J.H.; Girardin, S.E. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J. Endotoxin Res., 2005, 11(6), 390-394.
[http://dx.doi.org/10.1177/09680519050110060301] [PMID: 16303096]
[230]
Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018, 11, 23-32.
[http://dx.doi.org/10.1016/j.jare.2018.03.005] [PMID: 30034873]
[231]
Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 2015, 15(8), 511-523.
[http://dx.doi.org/10.1038/nri3859] [PMID: 26139350]
[232]
Gaddi, A.; Cicero, A.F.G.; Pedro, E.J. Clinical perspectives of anti-inflammatory therapy in the elderly: the lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch. Gerontol. Geriatr., 2004, 38(3), 201-212.
[http://dx.doi.org/10.1016/j.archger.2003.10.001] [PMID: 15066307]
[233]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 331-339.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.012] [PMID: 25152163]
[234]
Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768.
[http://dx.doi.org/10.1016/j.otc.2010.04.003] [PMID: 20599080]
[235]
Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ, 2013, 346, f3195.
[PMID: 23757736]
[236]
Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2014, 16(5), 821-847.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[237]
Rao, P.P.N.; Kabir, S.N.; Mohamed, T. Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development. Pharmaceuticals (Basel), 2010, 3(5), 1530-1549.
[http://dx.doi.org/10.3390/ph3051530] [PMID: 27713316]
[238]
Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA, 2001, 286(8), 954-959.
[http://dx.doi.org/10.1001/jama.286.8.954] [PMID: 11509060]
[239]
Arora, M.; Choudhary, S.; Singh, P.K.; Sapra, B.; Silakari, O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review. Life Sci., 2020, 251, 117631.
[http://dx.doi.org/10.1016/j.lfs.2020.117631] [PMID: 32251635]
[240]
Meyer-Kirchrath, J.; Schrör, K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr. Med. Chem., 2000, 7(11), 1121-1129.
[http://dx.doi.org/10.2174/0929867003374219] [PMID: 11032962]
[241]
Jose, M-G.; Lina, B. Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr. Pharm. Des., 2007, 13(22), 2215-2227.
[http://dx.doi.org/10.2174/138161207781368774] [PMID: 17691994]
[242]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[243]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[244]
Addington, O.C.; Newman, R.A. Method of treating neurological conditions with oleandrin. US Patent US 9,877,979, 2018.
[245]
Mazed, M.A.; Mazed, S. Nutritional supplement for the prevention of cardiovascular disease, alzheimer's disease, diabetes, and regulation and reduction of blood sugar and insulin resistance. US Patent US 8017147 B2, 2011.
[246]
Gennari, G.; Panfilo, S. Pharmaceutical compositions containing phosphatidylserine and curcumin. US Patent US 9381204 B2, 2016.
[247]
Tan, J.; Luo, D.; Shytle, R.D. Luteolin and diosmin/diosmetin as novel STAT3 inhibitors for treating autism. US Patent US 8778894 B2, 2014.
[248]
Crowley, K.L. Buccal and sublingual cannabinoid formulations and method of making the same. EP Patent EP 3160451 B1 2021.
[249]
Rupasinghe, H.P.; Robertson, G.S. Phenolic compositions derived from apple skin and uses thereof. US Patent US 9511107 B2 2016.
[250]
Soman, G.S.; Phadke, S.G. Herbal composition for reducing ADD/ ADHD and method thereof. US Patent US 8394429 B2, 2013.
[251]
Baraona, R.M.; Sepúlveda, L.Q.; Saavedra, I.S.; Salas, R.S.; Salas, V.S. Nutraceutical composition that comprises extract of andean shilajit, for preventing and/or treating neurodegenerative diseases and/or the cognitive deterioration associated with cerebral aging. US Patent US 8784804 B2, 2014.
[252]
Guy, G.; Platt, B. Cannabinoid-containing plant extracts as neuroprotective agents. US Patent US 8673368 B2 2014.
[253]
Choi, P.; Castillo, G.; Nguyen, B.; Snow, A.; Cummings, J. Catechins for the treatment of fibrillogenesis in alzheimer's disease, parkinson's disease, systemic aa amyloidosis, and other amyloid disorders. CA Patent CA 2440293 C, 2012.
[254]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[255]
Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Analyt. Chem., 2019, 118, 248-263.
[http://dx.doi.org/10.1016/j.trac.2019.05.037]
[256]
Shinde, P.; Banerjee, P.; Mandhare, A. Marine natural products as source of new drugs: a patent review (2015–2018). Expert Opin. Ther. Pat., 2019, 29(4), 283-309.
[http://dx.doi.org/10.1080/13543776.2019.1598972] [PMID: 30902039]
[257]
McGonigle, I.V. Patenting nature or protecting culture? Ethnopharmacology and indigenous intellectual property rights. J. Law Biosci., 2016, 3(1), 217-226.
[http://dx.doi.org/10.1093/jlb/lsw003] [PMID: 27774245]
[258]
Heffernan, O. Why a landmark treaty to stop ocean biopiracy could stymie research. Nature, 2020, 580(7801), 20-22.
[http://dx.doi.org/10.1038/d41586-020-00912-w] [PMID: 32221504]
[259]
Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327.
[http://dx.doi.org/10.3390/molecules26175327] [PMID: 34500759]
[260]
Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170.
[http://dx.doi.org/10.3390/ijms20205170] [PMID: 31635296]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy