Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Reconfigurations of Dynamic Functional Network Connectivity in Large-scale Brain Network after Prolonged Abstinence in Heroin Users

Author(s): Shan Zhang, Wenhan Yang, Minpeng Li, Xinwen Wen, Ziqiang Shao, Jun Li, Jixin Liu, Jun Zhang, Dahua Yu, Jun Liu* and Kai Yuan*

Volume 22, Issue 6, 2024

Published on: 13 January, 2023

Page: [1144 - 1153] Pages: 10

DOI: 10.2174/1570159X21666221129105408

Price: $65

conference banner
Abstract

Background: Brain recovery phenomenon after long-term abstinence had been reported in substance use disorders. Yet, few longitudinal studies have been conducted to observe the abnormal dynamic functional connectivity (dFNC) of large-scale brain networks and recovery after prolonged abstinence in heroin users.

Objective: The current study will explore the brain network dynamic connection reconfigurations after prolonged abstinence in heroin users (HUs).

Methods: The 10-month longitudinal design was carried out for 40 HUs. The 40 healthy controls (HCs) were also enrolled. Group independent component analysis (GICA) and dFNC analysis were employed to detect the different dFNC patterns of addiction-related ICNs between HUs and HCs. The temporal properties and the graph-theoretical properties were calculated. Whether the abnormalities would be reconfigured in HUs after prolonged abstinence was then investigated.

Results: Based on eight functional networks extracted from GICA, four states were identified by the dFNC analysis. Lower mean dwell time and fraction rate in state4 were found for HUs, which were increased toward HCs after prolonged abstinence. In this state, HUs at baseline showed higher dFNC of RECN-aSN, aSN- aSN and dDMN-pSN, which decreased after protracted abstinence. A similar recovery phenomenon was found for the global efficiency and path length in abstinence HUs. Mean while, the abnormal dFNC strength was correlated with craving both at baseline and after abstinence.

Conclusion: Our longitudinal study observed the large-scale brain network reconfiguration from the dynamic perspective in HUs after prolonged abstinence and improved the understanding of the neurobiology of prolonged abstinence in HUs.

[1]
Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; Petersen, S.E. Functional network organization of the human brain. Neuron, 2011, 72(4), 665-678.
[http://dx.doi.org/10.1016/j.neuron.2011.09.006] [PMID: 22099467]
[2]
Heilig, M.; MacKillop, J.; Martinez, D.; Rehm, J.; Leggio, L.; Vanderschuren, L.J.M.J. Addiction as a brain disease revised: Why it still matters, and the need for consilience. Neuropsychopharmacology, 2021, 46(10), 1715-1723.
[http://dx.doi.org/10.1038/s41386-020-00950-y] [PMID: 33619327]
[3]
Leshner, A.I. Addiction is a brain disease, and it matters. Science, 1997, 278(5335), 45-47.
[http://dx.doi.org/10.1126/science.278.5335.45] [PMID: 9311924]
[4]
Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci., 2011, 108(37), 15037-15042.
[http://dx.doi.org/10.1073/pnas.1010654108] [PMID: 21402948]
[5]
Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci., 2011, 15(10), 483-506.
[http://dx.doi.org/10.1016/j.tics.2011.08.003] [PMID: 21908230]
[6]
Yuan, K.; Qin, W.; Dong, M.; Liu, J.; Liu, P.; Zhang, Y.; Sun, J.; Wang, W.; Wang, Y.; Li, Q.; Yang, W.; Tian, J. Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals. Neurosci. Lett., 2010, 475(1), 20-24.
[http://dx.doi.org/10.1016/j.neulet.2010.03.033] [PMID: 20302912]
[7]
Liu, S.; Wang, S.; Zhang, M.; Xu, Y.; Shao, Z.; Chen, L.; Yang, W.; Liu, J.; Yuan, K. Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study. Neuroimage, 2021, 237, 118169.
[http://dx.doi.org/10.1016/j.neuroimage.2021.118169] [PMID: 34000396]
[8]
Chen, J.; Wang, F.; Zhu, J.; Li, Y.; Liu, W.; Xue, J.; Shi, H.; Li, W.; Li, Q.; Wang, W. Assessing effect of long-term abstinence on coupling of three core brain networks in male heroin addicts: A resting-state functional magnetic resonance imaging study. Addict. Biol., 2021, 26(4), e12982.
[http://dx.doi.org/10.1111/adb.12982] [PMID: 33142364]
[9]
Yang, W.; Zhang, M.; Tang, F.; Du, Y.; Fan, L.; Luo, J.; Yan, C.; Wang, S.; Zhang, J.; Yuan, K.; Liu, J. Recovery of superior frontal gyrus cortical thickness and resting-state functional connectivity in abstinent heroin users after 8 months of follow-up. Hum. Brain Mapp., 2022, 43(10), 3164-3175.
[http://dx.doi.org/10.1002/hbm.25841] [PMID: 35324057]
[10]
Lerman, C.; Gu, H.; Loughead, J.; Ruparel, K.; Yang, Y.; Stein, E.A. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry, 2014, 71(5), 523-530.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.4091] [PMID: 24622915]
[11]
Sutherland, M.T.; McHugh, M.J.; Pariyadath, V.; Stein, E.A. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage, 2012, 62(4), 2281-2295.
[http://dx.doi.org/10.1016/j.neuroimage.2012.01.117] [PMID: 22326834]
[12]
Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct., 2010, 214(5-6), 655-667.
[http://dx.doi.org/10.1007/s00429-010-0262-0] [PMID: 20512370]
[13]
Xu, Y.; Wang, S.; Chen, L.; Shao, Z.; Zhang, M.; Liu, S.; Wen, X.; Li, Y.; Yang, W.; Tang, F.; Luo, J.; Fan, L.; Yan, C.; Liu, J.; Yuan, K. Reduced midbrain functional connectivity and recovery in abstinent heroin users. J. Psychiatr. Res., 2021, 144, 168-176.
[http://dx.doi.org/10.1016/j.jpsychires.2021.10.011] [PMID: 34662755]
[14]
Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex, 2014, 24(3), 663-676.
[http://dx.doi.org/10.1093/cercor/bhs352] [PMID: 23146964]
[15]
Matsui, T.; Murakami, T.; Ohki, K. Neuronal origin of the temporal dynamics of spontaneous BOLD activity correlation. Cereb. Cortex, 2019, 29(4), 1496-1508.
[http://dx.doi.org/10.1093/cercor/bhy045] [PMID: 29522092]
[16]
Ma, Z.; Zhang, N. Temporal transitions of spontaneous brain activity. eLife, 2018, 7, e33562.
[http://dx.doi.org/10.7554/eLife.33562] [PMID: 29517975]
[17]
Tu, Y.; Fu, Z.; Mao, C.; Falahpour, M.; Gollub, R.L.; Park, J.; Wilson, G.; Napadow, V.; Gerber, J.; Chan, S.T.; Edwards, R.R.; Kaptchuk, T.J.; Liu, T.; Calhoun, V.; Rosen, B.; Kong, J. Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat. Commun., 2020, 11(1), 3948.
[http://dx.doi.org/10.1038/s41467-020-17788-z] [PMID: 31911652]
[18]
Liu, F.; Wang, Y.; Li, M.; Wang, W.; Li, R.; Zhang, Z.; Lu, G.; Chen, H. Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Hum. Brain Mapp., 2017, 38(2), 957-973.
[http://dx.doi.org/10.1002/hbm.23430] [PMID: 27726245]
[19]
Xue, K.; Liang, S.; Yang, B.; Zhu, D.; Xie, Y.; Qin, W.; Liu, F.; Zhang, Y.; Yu, C. Local dynamic spontaneous brain activity changes in first-episode, treatment-naïve patients with major depressive disorder and their associated gene expression profiles. Psychol. Med., 2020, 52(11), 1-10.
[PMID: 33121546]
[20]
Li, Q.; Wang, Y.; Zhang, Y.; Li, W.; Yang, W.; Zhu, J.; Wu, N.; Chang, H.; Zheng, Y.; Qin, W.; Zhao, L.; Yuan, K.; Liu, J.; Wang, W.; Tian, J. Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: An event-related fMRI study. Brain Res., 2012, 1469, 63-72.
[http://dx.doi.org/10.1016/j.brainres.2012.06.024] [PMID: 22759909]
[21]
Varjacic, A.; Mantini, D.; Demeyere, N.; Gillebert, C.R. Neural signatures of trail making test performance: Evidence from lesion-mapping and neuroimaging studies. Neuropsychologia, 2018, 115, 78-87.
[http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.031] [PMID: 29596856]
[22]
Chao-Gan, Y.; Yu-Feng, Z. DPARSF: A MATLAB toolbox for” pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci., 2010, 4, 13.
[PMID: 20577591]
[23]
Calhoun, V.D.; Adali, T.; Pearlson, G.D.; Pekar, J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp., 2001, 14(3), 140-151.
[http://dx.doi.org/10.1002/hbm.1048] [PMID: 11559959]
[24]
Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 1995, 7(6), 1129-1159.
[http://dx.doi.org/10.1162/neco.1995.7.6.1129] [PMID: 7584893]
[25]
Himberg, J.; Hyvärinen, A.; Esposito, F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 2004, 22(3), 1214-1222.
[http://dx.doi.org/10.1016/j.neuroimage.2004.03.027] [PMID: 15219593]
[26]
Shirer, W.R.; Ryali, S.; Rykhlevskaia, E.; Menon, V.; Greicius, M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex, 2012, 22(1), 158-165.
[http://dx.doi.org/10.1093/cercor/bhr099] [PMID: 21616982]
[27]
Cordes, D.; Haughton, V.M.; Arfanakis, K.; Wendt, G.J.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol., 2000, 21(9), 1636-1644.
[PMID: 11039342]
[28]
Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2008, 9(3), 432-441.
[http://dx.doi.org/10.1093/biostatistics/kxm045] [PMID: 18079126]
[29]
Varoquaux, G.; Gramfort, A.; Poline, J-B.; Thirion, B. Brain covariance selection: better individual functional connectivity models using population prior. Adv. Neural Inf. Process. Syst., 2010, 23.
[30]
Allen, E.A.; Erhardt, E.B.; Damaraju, E.; Gruner, W.; Segall, J.M.; Silva, R.F.; Havlicek, M.; Rachakonda, S.; Fries, J.; Kalyanam, R.; Michael, A.M.; Caprihan, A.; Turner, J.A.; Eichele, T.; Adelsheim, S.; Bryan, A.D.; Bustillo, J.; Clark, V.P.; Feldstein Ewing, S.W.; Filbey, F.; Ford, C.C.; Hutchison, K.; Jung, R.E.; Kiehl, K.A.; Kodituwakku, P.; Komesu, Y.M.; Mayer, A.R.; Pearlson, G.D.; Phillips, J.P.; Sadek, J.R.; Stevens, M.; Teuscher, U.; Thoma, R.J.; Calhoun, V.D. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci., 2011, 5, 2.
[http://dx.doi.org/10.3389/fnsys.2011.00002] [PMID: 21442040]
[31]
Tu, Y.; Fu, Z.; Zeng, F.; Maleki, N.; Lan, L.; Li, Z.; Park, J.; Wilson, G.; Gao, Y.; Liu, M.; Calhoun, V.; Liang, F.; Kong, J. Abnormal thalamocortical network dynamics in migraine. Neurology, 2019, 92(23), e2706-e2716.
[http://dx.doi.org/10.1212/WNL.0000000000007607] [PMID: 31076535]
[32]
Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin., 2014, 5, 298-308.
[http://dx.doi.org/10.1016/j.nicl.2014.07.003] [PMID: 25161896]
[33]
Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput., 2004, 36(4), 717-731.
[http://dx.doi.org/10.3758/BF03206553] [PMID: 15641418]
[34]
Li, Y.; Yuan, K.; Guan, Y.; Cheng, J.; Bi, Y.; Shi, S.; Xue, T.; Lu, X.; Qin, W.; Yu, D.; Tian, J. The implication of salience network abnormalities in young male adult smokers. Brain Imaging Behav., 2017, 11(4), 943-953.
[http://dx.doi.org/10.1007/s11682-016-9568-8] [PMID: 27437925]
[35]
McHugh, M.J.; Gu, H.; Yang, Y.; Adinoff, B.; Stein, E.A. Executive control network connectivity strength protects against relapse to cocaine use. Addict. Biol., 2017, 22(6), 1790-1801.
[http://dx.doi.org/10.1111/adb.12448] [PMID: 27600492]
[36]
Lu, L.; Yang, W.; Zhang, X.; Tang, F.; Du, Y.; Fan, L.; Luo, J.; Yan, C.; Zhang, J.; Li, J.; Liu, J.; von Deneen, K.M.; Yu, D.; Liu, J.; Yuan, K. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J. Psychiatr. Res., 2022, 152, 326-334.
[http://dx.doi.org/10.1016/j.jpsychires.2022.06.036] [PMID: 35785575]
[37]
Zhang, S.; Li, M.; Wang, S.; Zhang, J.; Liu, J.; Yuan, K. Partial recovery of the left DLPFC-right insula circuit with reduced carving in abstinent heroin users: A longitudinal study; Preprint, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1788658/v1]
[38]
Manoliu, A.; Meng, C.; Brandl, F.; Doll, A.; Tahmasian, M.; Scherr, M.; Schwerthöffer, D.; Zimmer, C.; Förstl, H.; Bäuml, J.; Riedl, V.; Wohlschläger, A.M.; Sorg, C. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci., 2014, 7, 930.
[http://dx.doi.org/10.3389/fnhum.2013.00930] [PMID: 24478665]
[39]
Zhang, Y.; Gong, J.; Xie, C.; Ye, E.M.; Jin, X.; Song, H.; Yang, Z.; Shao, Y. Alterations in brain connectivity in three sub-regions of the anterior cingulate cortex in heroin-dependent individuals: Evidence from resting state fMRI. Neuroscience, 2015, 284, 998-1010.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.007] [PMID: 25446365]
[40]
Ma, N.; Liu, Y.; Fu, X.M.; Li, N.; Wang, C.X.; Zhang, H.; Qian, R.B.; Xu, H.S.; Hu, X.; Zhang, D.R. Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One, 2011, 6(1), e16560.
[http://dx.doi.org/10.1371/journal.pone.0016560] [PMID: 21298074]
[41]
Li, Q.; Yang, W.C.; Wang, Y.R.; Huang, Y.F.; Li, W.; Zhu, J.; Zhang, Y.; Zhao, L.Y.; Qin, W.; Yuan, K.; von Deneen, K.M.; Wang, W.; Tian, J. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task. Chin. Med. J., 2013, 126(4), 734-739.
[PMID: 23422198]
[42]
Wang, W.; Wang, Y.R.; Qin, W.; Yuan, K.; Tian, J.; Li, Q.; Yang, L.Y.; Lu, L.; Guo, Y.M. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers. Chin. Med. J., 2010, 123(12), 1582-1588.
[PMID: 20819516]
[43]
Haber, S. Parallel and integrative processing through the Basal Ganglia reward circuit: lessons from addiction. Biol. Psychiatry, 2008, 64(3), 173-174.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.033] [PMID: 18617023]
[44]
Gremel, C.M.; Lovinger, D.M. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav., 2017, 16(1), 71-85.
[http://dx.doi.org/10.1111/gbb.12309] [PMID: 27457495]
[45]
Zhang, R.; Jiang, G.; Tian, J.; Qiu, Y.; Wen, X.; Zalesky, A.; Li, M.; Ma, X.; Wang, J.; Li, S.; Wang, T.; Li, C.; Huang, R. Abnormal white matter structural networks characterize heroin-dependent individuals: A network analysis. Addict. Biol., 2016, 21(3), 667-678.
[http://dx.doi.org/10.1111/adb.12234] [PMID: 25740690]
[46]
Yuan, K.; Qin, W.; Liu, J.; Guo, Q.; Dong, M.; Sun, J.; Zhang, Y.; Liu, P.; Wang, W.; Wang, Y.; Li, Q.; Yang, W.; von Deneen, K.M.; Gold, M.S.; Liu, Y.; Tian, J. Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals. Neurosci. Lett., 2010, 477(1), 37-42.
[http://dx.doi.org/10.1016/j.neulet.2010.04.032] [PMID: 20417253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy