Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Chrysin Effect Against Gastric Cancer: Focus on its Molecular Mechanisms

Author(s): Seyyed Mohammad Matin Alavi Dana, Tahereh Farkhondeh, Michael Aschner, Majid Darroudi, Helia Samini and Saeed Samarghandian*

Volume 16, Issue 7, 2023

Published on: 03 March, 2023

Article ID: e030123212340 Pages: 5

DOI: 10.2174/1874467216666230103105725

Price: $65

Abstract

Gastric cancer is one of the most prevalent cancers in the world. Various therapeutic modalities have been used for its treatment, but all exhibit severe side effects, establishing the need for novel approaches. Chrysin is a phytomedicine compound belonging to the flavonoid group. It is found in honey and many plants. Its antitumor effects have been documented against gastric cancer cell lines in vitro, establishing its effects are mediated via different pathways and the expression of miRNA. In this review, we summarize the available literature on chrysin and its effects on gastric cancer, focusing on the cellular mechanisms it targets.

[1]
Chmiela, M.; Karwowska, Z.; Gonciarz, W.; Allushi, B.; Stączek, P. Host pathogen interactions in Helicobacter pylori related gastric cancer. World J. Gastroenterol., 2017, 23(9), 1521-1540.
[http://dx.doi.org/10.3748/wjg.v23.i9.1521] [PMID: 28321154]
[2]
Eusebi, L.H.; Telese, A.; Marasco, G.; Bazzoli, F.; Zagari, R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol., 2020, 35(9), 1495-1502.
[http://dx.doi.org/10.1111/jgh.15037] [PMID: 32181516]
[3]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[4]
Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin., 2021, 71(3), 264-279.
[http://dx.doi.org/10.3322/caac.21657] [PMID: 33592120]
[5]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[6]
Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253.
[http://dx.doi.org/10.3389/fphar.2018.01253] [PMID: 30459615]
[7]
Hu, K.; Wang, W.; Cheng, H.; Pan, S.S.; Ren, J. Synthesis and cytotoxicity of novel chrysin derivatives. Med. Chem. Res., 2011, 20(7), 838-846.
[http://dx.doi.org/10.1007/s00044-010-9395-1]
[8]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[9]
Temel, Y.; Kucukler, S. Yıldırım, S.; Caglayan, C.; Kandemir, F.M. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 325-337.
[http://dx.doi.org/10.1007/s00210-019-01741-z] [PMID: 31620822]
[10]
El Khashab, I.H.; Abdelsalam, R.M.; Elbrairy, A.I.; Attia, A.S. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed. Pharmacother., 2019, 112, 108619.
[http://dx.doi.org/10.1016/j.biopha.2019.108619] [PMID: 30797156]
[11]
Romero, M.; Freire, J.; Pastene, E.; García, A.; Aranda, M.; González, C. Propolis polyphenolic compounds affect the viability and structure of Helicobacter pylori in vitro. Rev. Bras. Farmacogn., 2019, 29(3), 325-332.
[http://dx.doi.org/10.1016/j.bjp.2019.03.002]
[12]
Roy, S.; Sil, A.; Chakraborty, T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J. Cell. Physiol., 2019, 234(4), 4888-4909.
[http://dx.doi.org/10.1002/jcp.27287] [PMID: 30246261]
[13]
Wen, J.; Wang, Y.; Gao, C.; Zhang, G.; You, Q.; Zhang, W.; Zhang, Z.; Wang, S.; Peng, G.; Shen, L. Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS–HIF-1α–AQP3–ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene, 2018, 37(26), 3549-3561.
[http://dx.doi.org/10.1038/s41388-018-0208-1] [PMID: 29563612]
[14]
Ma, S.H.; Jung, W.; Weiderpass, E.; Jang, J.; Hwang, Y.; Ahn, C.; Ko, K.P.; Chang, S.H.; Shin, H.R.; Yoo, K.Y.; Park, S.K. Impact of alcohol drinking on gastric cancer development according to Helicobacter pylori infection status. Br. J. Cancer, 2015, 113(9), 1381-1388.
[http://dx.doi.org/10.1038/bjc.2015.333] [PMID: 26379079]
[15]
Chen, B.; Zhao, Q.; Guan, L.; Lv, H.; Bie, L.; Huang, J.; Chen, X.B. Long non-coding RNA NNT - AS 1 sponges miR-424/E2F1 to promote the tumorigenesis and cell cycle progression of gastric cancer. J. Cell. Mol. Med., 2018, 22(10), 4751-4759.
[http://dx.doi.org/10.1111/jcmm.13726] [PMID: 30006956]
[16]
Donà, S.; Borsetto, D.; Fussey, J.; Biscaro, V.; Vian, E.; Spinato, G.; Menegaldo, A.; Da Mosto, M.C.; Rigoli, R.; Polesel, J.; Boscolo-Rizzo, P. Association between hepatitis C and B viruses and head and neck squamous cell carcinoma. J. Clin. Virol., 2019, 121, 104209.
[http://dx.doi.org/10.1016/j.jcv.2019.104209] [PMID: 31711028]
[17]
Shin, S.K.; Li, M.S.; Fuerst, F.; Hotchkiss, E.; Meyer, R.; Kim, T.; Goel, A.; Boland, C.R. Oncogenic T-antigen of JC virus is present frequently in human gastric cancers. Cancer, 2006, 107(3), 481-488.
[http://dx.doi.org/10.1002/cncr.22028] [PMID: 16795066]
[18]
Jing, J.; Wang, Z.; Li, H.; Sun, L.; Yuan, Y. Key elements involved in Epstein–Barr virus-associated gastric cancer and their network regulation. Cancer Cell Int., 2018, 18(1), 146.
[http://dx.doi.org/10.1186/s12935-018-0637-5] [PMID: 30258285]
[19]
Kang, B.W.; Choi, Y.; Kwon, O.K.; Lee, S.S.; Chung, H.Y.; Yu, W.; Bae, H.I.; Seo, A.N.; Kang, H.; Lee, S.K.; Jeon, S.W.; Hur, K.; Kim, J.G. High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer. Oncotarget, 2017, 8(9), 14988-14994.
[http://dx.doi.org/10.18632/oncotarget.14744] [PMID: 28122341]
[20]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M. v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[21]
Lim, W.; Ryu, S.; Bazer, F.W.; Kim, S.M.; Song, G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J. Cell. Physiol., 2018, 233(4), 3129-3140.
[http://dx.doi.org/10.1002/jcp.26150] [PMID: 28816359]
[22]
Inamura, K. Major tumor suppressor and oncogenic non-coding RNAs: clinical relevance in lung cancer. Cells, 2017, 6(2), 12.
[http://dx.doi.org/10.3390/cells6020012] [PMID: 28486418]
[23]
Wei, G.H.; Wang, X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(17), 3850-3856.
[PMID: 28975980]
[24]
Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci., 2020, 21(11), 4012.
[http://dx.doi.org/10.3390/ijms21114012] [PMID: 32512697]
[25]
Zhou, K.; Liu, M.; Cao, Y. New insight into microRNA functions in cancer: oncogene–microRNA–tumor suppressor gene network. Front. Mol. Biosci., 2017, 4, 46.
[http://dx.doi.org/10.3389/fmolb.2017.00046] [PMID: 28736730]
[26]
Mohammadian, F.; Pilehvar-Soltanahmadi, Y.; Alipour, S.; Dadashpour, M.; Zarghami, N. Chrysin alters micrornas expression levels in gastric cancer cells: possible molecular mechanism. Drug Res., 2017, 67(9), 509-514.
[http://dx.doi.org/10.1055/s-0042-119647] [PMID: 28628924]
[27]
Mohammadian, F.; Abhari, A.; Dariushnejad, H.; Nikanfar, A.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Effects of Chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran. J. Cancer Prev., 2016, 9(4), e4190.
[http://dx.doi.org/10.17795/ijcp-4190] [PMID: 27761206]
[28]
Xia, Y.; Lian, S.; Khoi, P.N.; Yoon, H.J.; Joo, Y.E.; Chay, K.O.; Kim, K.K.; Do Jung, Y. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells. PLoS One, 2015, 10(4), e0124007.
[http://dx.doi.org/10.1371/journal.pone.0124007] [PMID: 25875631]
[29]
Lee, S.; Lee, S.K.; Jung, J. Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells. Oncol. Lett., 2021, 21(1), 24.
[PMID: 33240430]
[30]
Song, X.; Liu, Y.; Ma, J.; He, J.; Zheng, X.; Lei, X.; Jiang, G.; Zhang, L. Synthesis of novel amino acid derivatives containing chrysin as anti-tumor agents against human gastric carcinoma MGC-803 cells. Med. Chem. Res., 2015, 24(5), 1789-1798.
[http://dx.doi.org/10.1007/s00044-014-1267-7]
[31]
Zheng, X.; Meng, W.D.; Xu, Y.Y.; Cao, J.G.; Qing, F.L. Synthesis and anticancer effect of chrysin derivatives. Bioorg. Med. Chem. Lett., 2003, 13(5), 881-884.
[http://dx.doi.org/10.1016/S0960-894X(02)01081-8] [PMID: 12617913]
[32]
Liu, Y.; Song, X.; Ma, J.; He, J.; Zheng, X.; Lei, X.; Jiang, G.; Zhao, Z.; Pan, X. Synthesis of new 7-O-modified chrysin derivatives and their anti-proliferative and apoptotic effects on human gastric carcinoma MGC-803 cells. Chem. Res. Chin. Univ., 2014, 30(6), 925-930.
[http://dx.doi.org/10.1007/s40242-014-4269-6]
[33]
Liu, Y.; Song, X.; He, J.; Zheng, X.; Wu, H. Synthetic derivatives of chrysin and their biological activities. Med. Chem. Res., 2014, 23(2), 555-563.
[http://dx.doi.org/10.1007/s00044-013-0711-4]
[34]
Liu, D.; Zhang, Q.; Zhang, L.; Yu, W.; Long, H.; He, J.; Liu, Y. Novel photosensitizing properties of porphyrin–chrysin derivatives with antitumor activity in vitro. J. Chem. Res., 2020, 44(7-8), 494-504.
[http://dx.doi.org/10.1177/1747519820907248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy