Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Myristicin Suppresses Gastric Cancer Growth via Targeting the EGFR/ ERK Signaling Pathway

Author(s): Jin Song, Xiaolong Xu, Shasha He, Ning Wang, Yunjing Bai, Zhaoxia Chen, Bo Li* and Shengsheng Zhang*

Volume 16, Issue 7, 2023

Published on: 24 February, 2023

Article ID: e030123212339 Pages: 13

DOI: 10.2174/1874467216666230103104600

Price: $65

Abstract

Background: Myristicin is a type of natural compound showing anti-proliferative, anti-microbial, and anti-inflammatory effects. However, its role in gastric cancer treatment remains unknown.

Objective: In this study, the effect of myristicin on gastric cancer as well as its underlying mechanism was investigated.

Methods: Human gastric cancer cells were exposed to various concentrations of myristicin (0, 7.8125, 15.625, and 31.25 μM) for 48 h. Then CCK-8, fluorescence-activated cell sorting, and Hoechst staining were performed to evaluate the cell proliferation and apoptosis. The levels of proteins associated with cell cycle, apoptosis, endoplasmic reticulum (ER) stress, and EGFR/ERK signaling pathway were detected by western blot. JC-1 staining was conducted to determine the mitochondrial membrane potential. On the other hand, the effect of myristicin on gastric cancer growth and apoptosis was also determined in vivo.

Results: Myristicin retarded proliferation and induced ER stress and apoptosis in gastric cancer cells, with decreased expression of cyclins, increased Bax expression, activated caspases, and enhanced cytochrome C release and mitochondrial ROS. Furthermore, the EGFR/ERK signaling pathway was restrained by myristicin. In addition, EGFR over-expression abolished the inhibitory function of myristicin on proliferation, apoptosis, and ER stress. Also, myristicin inhibited the growth of gastric cancer cells as well as the EGFR/ERK signaling pathway in vivo.

Conclusion: Myristicin exerts an anti-cancer effect on gastric cancer cells by restraining the EGFR/ ERK signaling pathway. It may have the potential to be applied as a novel drug in gastric cancer treatment.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zong, L.; Abe, M.; Seto, Y.; Ji, J. The challenge of screening for early gastric cancer in China. Lancet, 2016, 388(10060), 2606.
[http://dx.doi.org/10.1016/S0140-6736(16)32226-7] [PMID: 27894662]
[3]
Lee, J.Y.; Park, W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules, 2011, 16(8), 7132-7142.
[http://dx.doi.org/10.3390/molecules16087132] [PMID: 21991618]
[4]
Stefano, V.; Pitonzo, R.; Schillaci, D. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn. Mag., 2011, 7(25), 31-34.
[http://dx.doi.org/10.4103/0973-1296.75893] [PMID: 21472076]
[5]
Zhao, Q.; Liu, C.; Shen, X.; Xiao, L.; Wang, H.; Liu, P.; Wang, L.; Xu, H. Cytoprotective effects of myristicin against hypoxia-induced apoptosis and endoplasmic reticulum stress in rat dorsal root ganglion neurons. Mol. Med. Rep., 2017, 15(4), 2280-2288.
[http://dx.doi.org/10.3892/mmr.2017.6258] [PMID: 28260107]
[6]
Martins, C.; Doran, C.; Laires, A.; Rueff, J.; Rodrigues, A.S. Genotoxic and apoptotic activities of the food flavourings myristicin and eugenol in AA8 and XRCC1 deficient EM9 cells. Food Chem. Toxicol., 2011, 49(2), 385-392.
[http://dx.doi.org/10.1016/j.fct.2010.11.013] [PMID: 21087650]
[7]
Zheng, G.; Kenney, P.M.; Zhang, J.; Lam, L.K.T. Inhibition of benzo[ a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis, 1992, 13(10), 1921-1923.
[http://dx.doi.org/10.1093/carcin/13.10.1921] [PMID: 1423855]
[8]
Martins, C.; Doran, C.; Silva, I.C.; Miranda, C.; Rueff, J.; Rodrigues, A.S. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem. Biol. Interact., 2014, 218, 1-9.
[http://dx.doi.org/10.1016/j.cbi.2014.04.014] [PMID: 24792648]
[9]
Bao, H.; Muge, Q. Anticancer effect of myristicin on hepatic carcinoma and related molecular mechanism. Pharm. Biol., 2021, 59(1), 1124-1130.
[http://dx.doi.org/10.1080/13880209.2021.1961825] [PMID: 34410900]
[10]
Hong, L.; Han, Y.; Yang, J.; Zhang, H.; Jin, Y.; Brain, L.; Li, M.; Zhao, Q. Prognostic value of epidermal growth factor receptor in patients with gastric cancer: A meta-analysis. Gene, 2013, 529(1), 69-72.
[http://dx.doi.org/10.1016/j.gene.2013.07.106] [PMID: 23954221]
[11]
Zhen, Y.; Guanghui, L.; Xiefu, Z. Knockdown of EGFR inhibits growth and invasion of gastric cancer cells. Cancer Gene Ther., 2014, 21(11), 491-497.
[http://dx.doi.org/10.1038/cgt.2014.55] [PMID: 25394504]
[12]
Torres-Jasso, J.H.; Marín, M.E.; Santiago-Luna, E.; Leoner, J.C.; Torres, J.; Magaña-Torres, M.T.; Perea, F.J.; Ibarra, B.; Sánchez-López, J.Y. EGFR gene polymorphisms -216G>T and -191C>A are risk markers for gastric cancer in Mexican population. Genet. Mol. Res., 2015, 14(1), 1802-1807.
[http://dx.doi.org/10.4238/2015.March.13.8] [PMID: 25867325]
[13]
Takehana, T.; Kunitomo, K.; Suzuki, S.; Kono, K.; Fujii, H.; Matsumoto, Y.; Ooi, A. Expression of epidermal growth factor receptor in gastric carcinomas. Clin. Gastroenterol. Hepatol., 2003, 1(6), 438-445.
[http://dx.doi.org/10.1016/S1542-3565(03)00219-2] [PMID: 15017643]
[14]
Wu, M.; Zhang, P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett., 2020, 469, 207-216.
[http://dx.doi.org/10.1016/j.canlet.2019.10.030] [PMID: 31639425]
[15]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[16]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[17]
Hong, L.; Han, Y.; Brain, L. The role of epidermal growth factor receptor in prognosis and treatment of gastric cancer. Expert Rev. Gastroenterol. Hepatol., 2014, 8(1), 111-117.
[http://dx.doi.org/10.1586/17474124.2014.844648] [PMID: 24410474]
[18]
Morita, T.; Jinno, K.; Kawagishi, H.; Arimoto, Y.; Suganuma, H.; Inakuma, T.; Sugiyama, K. Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine-induced liver injury. J. Agric. Food Chem., 2003, 51(6), 1560-1565.
[http://dx.doi.org/10.1021/jf020946n] [PMID: 12617584]
[19]
Ulivieri, C. Cell death: Insights into the ultrastructure of mitochondria. Tissue Cell, 2010, 42(6), 339-347.
[http://dx.doi.org/10.1016/j.tice.2010.10.004] [PMID: 21047663]
[20]
Parsons, M.J.; Green, D.R. Mitochondria in cell death. Essays Biochem., 2010, 47, 99-114.
[http://dx.doi.org/10.1042/bse0470099] [PMID: 20533903]
[21]
Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(1), 238-259.
[http://dx.doi.org/10.1016/j.bbamcr.2010.10.010] [PMID: 20969895]
[22]
Urra, H.; Dufey, E.; Avril, T.; Chevet, E.; Hetz, C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer, 2016, 2(5), 252-262.
[http://dx.doi.org/10.1016/j.trecan.2016.03.007] [PMID: 28741511]
[23]
Oakes, S.A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol., 2020, 190(5), 934-946.
[http://dx.doi.org/10.1016/j.ajpath.2020.01.010] [PMID: 32112719]
[24]
Urra, H.; Dufey, E.; Lisbona, F.; Rojas-Rivera, D.; Hetz, C. When ER stress reaches a dead end. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3507-3517.
[http://dx.doi.org/10.1016/j.bbamcr.2013.07.024] [PMID: 23988738]
[25]
Guo, B.; Zhang, T.; Su, J.; Wang, K.; Li, X. Oxymatrine targets EGFRp-Tyr845 and inhibits EGFR-related signaling pathways to suppress the proliferation and invasion of gastric cancer cells. Cancer Chemother. Pharmacol., 2015, 75(2), 353-363.
[http://dx.doi.org/10.1007/s00280-014-2651-1] [PMID: 25527205]
[26]
Nishimura, Y.; Bereczky, B.; Ono, M. The EGFR inhibitor gefitinib suppresses ligand-stimulated endocytosis of EGFR via the early/late endocytic pathway in non-small cell lung cancer cell lines. Histochem. Cell Biol., 2007, 127(5), 541-553.
[http://dx.doi.org/10.1007/s00418-007-0281-y] [PMID: 17361439]
[27]
Liao, G.; Wang, Z.; Zhang, N.; Dong, P. Dominant negative epidermal growth factor receptor inhibits growth of human gastric cancer cells by inducing cell cycle arrest and apoptosis. Cancer Biother. Radiopharm., 2013, 28(6), 450-458.
[http://dx.doi.org/10.1089/cbr.2012.1399] [PMID: 23506429]
[28]
Zhu, G.; Fan, Z.; Ding, M.; Zhang, H.; Mu, L.; Ding, Y.; Zhang, Y.; Jia, B.; Chen, L.; Chang, Z.; Wu, W. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene, 2015, 34(49), 5971-5982.
[http://dx.doi.org/10.1038/onc.2015.45] [PMID: 25746002]
[29]
Liu, W.; Ren, H.; Ren, J.; Yin, T.; Hu, B.; Xie, S.; Dai, Y.; Wu, W.; Xiao, Z.; Yang, X.; Xie, D. The role of EGFR/PI3K/Akt/cyclinD1 signaling pathway in acquired middle ear cholesteatoma. Mediators Inflamm., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/651207] [PMID: 24311896]
[30]
Horn, D.; Hess, J.; Freier, K.; Hoffmann, J.; Freudlsperger, C. Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma. Expert Opin. Ther. Targets, 2015, 19(6), 795-805.
[http://dx.doi.org/10.1517/14728222.2015.1012157] [PMID: 25652792]
[31]
Hour, T.C.; Chung, S.D.; Kang, W.Y.; Lin, Y.C.; Chuang, S.J.; Huang, A.M.; Wu, W.J.; Huang, S.P.; Huang, C.Y.; Pu, Y.S. EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch. Toxicol., 2015, 89(4), 591-605.
[http://dx.doi.org/10.1007/s00204-014-1275-x] [PMID: 24888374]
[32]
Fan, J.; Liu, W.; Yuan, K.; Zhu, X.; Xu, D.; Chen, J.; Cui, Z. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts. Biochem. Biophys. Res. Commun., 2014, 447(3), 425-430.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.002] [PMID: 24727451]
[33]
Surve, S.; Watkins, S.C.; Sorkin, A. EGFR-RAS-MAPK signaling is confined to the plasma membrane and associated endorecycling protrusions. J. Cell Biol., 2021, 220(11), e202107103.
[http://dx.doi.org/10.1083/jcb.202107103] [PMID: 34515735]
[34]
Jiang, H.; Grenley, M.O.; Bravo, M.J.; Blumhagen, R.Z.; Edgar, B.A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell, 2011, 8(1), 84-95.
[http://dx.doi.org/10.1016/j.stem.2010.11.026] [PMID: 21167805]
[35]
Akca, H.; Tani, M.; Hishida, T.; Matsumoto, S.; Yokota, J. Activation of the AKT and STAT3 pathways and prolonged survival by a mutant EGFR in human lung cancer cells. Lung Cancer, 2006, 54(1), 25-33.
[http://dx.doi.org/10.1016/j.lungcan.2006.06.007] [PMID: 16872715]
[36]
Jin, W.; Chen, B.; Li, J.; Zhu, H.; Huang, M.; Gu, S.; Wang, Q.; Chen, J.; Yu, S.; Wu, J.; Shao, Z. TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway. Mol. Cell. Biol., 2012, 32(1), 50-63.
[http://dx.doi.org/10.1128/MCB.06152-11] [PMID: 22025675]
[37]
Xiong, Y.; Yuan, L.; Chen, S.; Xu, H.; Peng, T.; Ju, L.; Wang, G.; Xiao, Y.; Wang, X. WFDC2 suppresses prostate cancer metastasis by modulating EGFR signaling inactivation. Cell Death Dis., 2020, 11(7), 537.
[http://dx.doi.org/10.1038/s41419-020-02752-y] [PMID: 32678075]
[38]
Chang, C-C.; Yang, M-H.; Lin, B-R.; Chen, S-T.; Pan, S-H.; Hsiao, M.; Lai, T-C.; Lin, S-K.; Jeng, Y-M.; Chu, C-Y.; Chen, R-H.; Yang, P-C.; Eugene Chin, Y.; Kuo, M-L. CCN2 inhibits lung cancer metastasis through promoting DAPK-dependent anoikis and inducing EGFR degradation. Cell Death Differ., 2013, 20(3), 443-455.
[http://dx.doi.org/10.1038/cdd.2012.136] [PMID: 23175185]
[39]
Keller, S.; Schmidt, M. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: Combination therapies for an effective treatment. Int. J. Mol. Sci., 2017, 18(6), 1295.
[http://dx.doi.org/10.3390/ijms18061295] [PMID: 28629170]
[40]
Li, Y.B.; Wang, Z.Q.; Yan, X.; Chen, M.W.; Bao, J.L.; Wu, G.S.; Ge, Z.M.; Zhou, D.M.; Wang, Y.T.; Li, R.T. IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities. Cancer Lett., 2013, 340(1), 88-96.
[http://dx.doi.org/10.1016/j.canlet.2013.07.005] [PMID: 23856030]
[41]
Jiang, L.; Lan, T.; Chen, Y.; Sang, J.; Li, Y.; Wu, M.; Tao, Y.; Wang, Y.; Qian, H.; Gu, L. PKG II inhibits EGF/EGFR-induced migration of gastric cancer cells. PLoS One, 2013, 8(4), e61674.
[http://dx.doi.org/10.1371/journal.pone.0061674] [PMID: 23613900]
[42]
Zhou, G.D.; Moorthy, B.; Bi, J.; Donnelly, K.C.; Randerath, K. DNA adducts from alkoxyallylbenzene herb and spice constituents in cultured human (HepG2) cells. Environ. Mol. Mutagen., 2007, 48(9), 715-721.
[http://dx.doi.org/10.1002/em.20348] [PMID: 17948277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy