Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Flaxseed can Prevent Adverse Effects of Toluene on Human Ovarian Cell Functions

Author(s): Zuzana Fabová*, Adam Tarko, Miloš Mlynček, Jan Kotwica and Alexander Vladimirovič Sirotkin

Volume 19, Issue 7, 2023

Published on: 20 March, 2023

Article ID: e020123212322 Pages: 10

DOI: 10.2174/1573407219666230102121435

Price: $65

conference banner
Abstract

Background: The aim of our study was to investigate the mechanisms of oil-related product toluene and functional food flaxseed Linum usitatissimum L. on ovaries in humans and the potential protective effect of flaxseed against adverse toluene action. We examined 1) the action of toluene (at doses 0, 10, and 100 ng/ml), 2) flaxseed extract (10 μg/ml), and their combination on cultured human ovarian granulosa cells.

Methods: Viability, markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax), the release of steroid hormones, IGF-I, oxytocin, and prostaglandin F were analyzed by Trypan blue exclusion test, quantitative immunocytochemistry, and EIA/ELISA.

Results: Toluene suppressed all analyzed ovarian parameters. Flaxseed stimulated proliferation, progesterone and IGF-I and reduced prostaglandin F output. The presence of flaxseed supported toluene action on cell viability and apoptosis and inverted its effect on proliferation, progesterone, testosterone, and IGF-I release.

Conclusion: These observations a) confirm direct inhibitory/toxic action of toluene on ovarian cells, b) demonstrate the ability of flaxseed to affect ovarian cell functions, c) show the ability of flaxseed to prevent some toxic effect of toluene, and d) indicate the that flaxseed could be a biostimulator of human reproduction and protector against the adverse influence of toluene on female reproduction.

Graphical Abstract

[1]
Cruz, S.L.; Rivera-García, M.T.; Woodward, J.J. Review of toluene action: Clinical evidence, animal studies and molecular targets. J. Drug Alcohol. Res., 2014, 3, 1-8.
[http://dx.doi.org/10.4303/jdar/235840] [PMID: 25360325]
[2]
Roberts, L.G.; Bevans, A.C.; Schreiner, C.A. Developmental and reproductive toxicity evaluation of toluene vapor in the rat. Reprod. Toxicol., 2003, 17(6), 649-658.
[http://dx.doi.org/10.1016/S0890-6238(03)00106-0] [PMID: 14613816]
[3]
Roberts, L.; Nicolich, M.; Schreiner, C. Developmental and reproductive toxicity evaluation of toluene vapor in the rat II. Developmental toxicity. Reprod. Toxicol., 2007, 23(4), 521-531.
[http://dx.doi.org/10.1016/j.reprotox.2007.01.009] [PMID: 17360154]
[4]
Donald, J.M.; Hooper, K.; Hopenhayn-Rich, C. Reproductive and developmental toxicity of toluene: A review. Environ. Health Perspect., 1991, 94, 237-244.
[http://dx.doi.org/10.1289/ehp.94-1567945] [PMID: 1954933]
[5]
Waldner, C.L. The association between exposure to the oil and gas industry and beef calf mortality in Western Canada. Arch. Environ. Occup. Health, 2008, 63(4), 220-240.
[http://dx.doi.org/10.3200/AEOH.63.4.220-240] [PMID: 19106065]
[6]
Kareem, L.A.; Banna, H.B.; Naoom, K.M. Effects of toluene and formaldehyde on oogenesis in adult female mice. Diyala J. Med, 2014, 6, 33-40.
[7]
Sirotkin, A.; Záhoranska, Z.; Tarko, A.; Fabova, Z.; Alwasel, S.; Halim Harrath, A. Plant polyphenols can directly affect ovarian cell functions and modify toluene effects. J. Anim. Physiol. Anim. Nutr., 2021, 105(1), 80-89.
[http://dx.doi.org/10.1111/jpn.13461] [PMID: 33058312]
[8]
Sirotkin, A.V.; Kadasi, A.; Baláži, A.; Kotwica, J.; Alrezaki, A.; Harrath, A.H. Mechanisms of the direct effects of oil-related contaminants on ovarian cells. Environ. Sci. Pollut. Res. Int., 2020, 27(5), 5314-5322.
[http://dx.doi.org/10.1007/s11356-019-07295-0] [PMID: 31845279]
[9]
Tarko, A.; Fabová, Z.; Kotwica, J.; Valocký, I.; Alrezaki, A.; Alwasel, S.; Harrath, A.H.; Sirotkin, A.V. The inhibitory influence of toluene on mare ovarian granulosa cells can be prevented by fennel. Gen. Comp. Endocrinol., 2020, 295113491
[http://dx.doi.org/10.1016/j.ygcen.2020.113491]
[10]
Sirotkin, A.V.; Makarevich, A.V.; Kubovicova, E.; Medvedova, M.; Kolesarova, A.; Harrath, A.H. Relationship between body conditions and environmental contaminants in bovine ovarian cells. Theriogenology, 2020, 147(147), 77-84.
[http://dx.doi.org/10.1016/j.theriogenology.2020.02.022] [PMID: 32120185]
[11]
Tap, O.; Solmaz, S.; Polat, S.; Mete, U.O.; Ozbilgïn, M.K.; Kaya, M. The effect of toluene on the rat ovary: An ultrastructural study. J. Submicrosc. Cytol. Pathol., 1996, 28(4), 553-558.
[PMID: 8933738]
[12]
Sallmén, M.; Neto, M.; Mayan, O.N. Reduced fertility among shoe manufacturing workers. Occup. Environ. Med., 2007, 65(8), 518-524.
[http://dx.doi.org/10.1136/oem.2007.032839] [PMID: 17989205]
[13]
Chen, H.; Wang, X.; Xu, L. Effects of exposure to low-level benzene and its analogues on reproductive hormone secretion in female workers. Zhonghua Yu Fang Yi Xue Za Zhi., 2001, 35(2), 83-86.
[14]
Reutman, S.R.; LeMasters, G.K.; Knecht, E.A.; Shukla, R.; Lockey, J.E.; Burroughs, G.E.; Kesner, J.S. Evidence of reproductive endocrine effects in women with occupational fuel and solvent exposures. Environ. Health Perspect., 2002, 110(8), 805-811.
[http://dx.doi.org/10.1289/ehp.02110805] [PMID: 12153763]
[15]
Ng, T.P.; Foo, S.C.; Yoong, T. Risk of spontaneous abortion in workers exposed to toluene. Occup. Environ. Med., 1992, 49(11), 804-808.
[http://dx.doi.org/10.1136/oem.49.11.804] [PMID: 1463682]
[16]
Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol., 2014, 51(9), 1633-1653.
[http://dx.doi.org/10.1007/s13197-013-1247-9] [PMID: 25190822]
[17]
Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed-A potential functional food source. J. Food Sci. Technol., 2015, 52(4), 1857-1871.
[http://dx.doi.org/10.1007/s13197-014-1293-y] [PMID: 25829567]
[18]
Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary flaxseed as a strategy for improving human health. Nutrients, 2019, 11(5), 1171.
[http://dx.doi.org/10.3390/nu11051171]
[19]
Truan, J.S.; Chen, J.M.; Thompson, L.U. Flaxseed oil reduces the growth of human breast tumors (MCF-7) at high levels of circulating estrogen. Mol. Nutr. Food Res., 2010, 54(10), 1414-1421.
[http://dx.doi.org/10.1002/mnfr.200900521] [PMID: 20425756]
[20]
Dikshit, A.; Gao, C.; Small, C.; Hales, K.; Hales, D.B. Flaxseed and its components differentially affect estrogen targets in pre-neoplastic hen ovaries. J. Steroid Biochem. Mol. Biol., 2016, 159, 73-85.
[http://dx.doi.org/10.1016/j.jsbmb.2016.02.028] [PMID: 26925929]
[21]
Pourjafari, F.; Haghpanah, T.; Sharififar, F.; Nematollahi-Mahani, S.N.; Afgar, A.; Ezzatabadipour, M. Evaluation of expression and serum concentration of anti-mullerian hormone as a follicle growth marker following consumption of fennel and flaxseed extract in first-generation mice pups. BMC Complement Med Ther., 2021, 21(1), 90.
[http://dx.doi.org/10.1186/s12906-021-03267-5]
[22]
Pourjafari, F.; Haghpanah, T.; Sharififar, F.; Nematollahi-Mahani, S.N.; Afgar, A.; Asadi Karam, G.; Ezzatabadipour, M. Protective effects of hydro-alcoholic extract of Foeniculum vulgare and Linum usitatissimum on ovarian follicle reserve in the first-generation mouse pups. Heliyon, 2019, 5(10)e02540
[http://dx.doi.org/10.1016/j.heliyon.2019.e02540]
[23]
Moallem, U.; Shafran, A.; Zachut, M.; Dekel, I.; Portnick, Y.; Arieli, A. Dietary α-linolenic acid from flaxseed oil improved folliculogenesis and IVF performance in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish oil. Reproduction, 2013, 146(6), 603-14.
[http://dx.doi.org/10.1530/REP-13-0244]
[24]
Ulfina, G.G.; Kimothi, S.P.; Oberoi, P.S.; Baithalu, R.K.; Kumaresan, A.; Mohanty, T.K.; Imtiwati, P.; Dang, A.K. Modulation of post-partum reproductive performance in dairy cows through supplementation of long- or short-chain fatty acids during transition period. J. Anim. Physiol. Anim. Nutr., 2015, 99(6), 1056-1064.
[http://dx.doi.org/10.1111/jpn.12304] [PMID: 25879374]
[25]
Kádasi, A.; Stochmalová, A.; Maruniaková, N.; Kolesárová, A.; Grossman, R.; Sirotkin, A.V. Effect of natural plant extracts on porcine ovarian functions. J. Microbiol. Biotechnol. Food Sci., 2015, 4(1), 5-48.
[http://dx.doi.org/10.15414/jmbfs.2015.4.special2.45-48]
[26]
Štochmal’ová, A.; Harrath, A.H.; Alwasel, S.; Sirotkin, A.V. Direct inhibitory effect of flaxseed on porcine ovarian granulosa cell functions. Appl. Physiol. Nutr. Metab., 2019, 44(5), 507-511.
[http://dx.doi.org/10.1139/apnm-2018-0547] [PMID: 30286297]
[27]
Vlčková, R.; Andrejčáková, Z.; Sopková, D.; Hertelyová, Z.; Kozioł, K.; Koziorowski, M.; Gancarčíková, S. Supplemental flaxseed modulates ovarian functions of weanling gilts via the action of selected fatty acids. Anim. Reprod. Sci., 2018, 193, 171-181.
[http://dx.doi.org/10.1016/j.anireprosci.2018.04.066] [PMID: 29685707]
[28]
Jelodar, G.; Masoomi, S.; Rahmanifar, F. Hydroalcoholic extract of flaxseed improves polycystic ovary syndrome in a rat model. Iran. J. Basic Med. Sci., 2018, 21(6), 645-650.
[http://dx.doi.org/10.22038/IJBMS.2018.25778.6349] [PMID: 29942457]
[29]
Komal, F.; Khan, M.K.; Imran, M.; Ahmad, M.H.; Anwar, H.; Ashfaq, U.A.; Ahmad, N.; Masroor, A.; Ahmad, R.S.; Nadeem, M.; Nisa, M.U. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. J. Transl. Med., 2020, 18(1), 349.
[http://dx.doi.org/10.1186/s12967-020-02519-1] [PMID: 32928224]
[30]
Mehraban, M.; Jelodar, G.; Rahmanifar, F. A combination of spearmint and flaxseed extract improved endocrine and histomorphology of ovary in experimental PCOS. J. Ovarian Res., 2020, 13(1), 32.
[http://dx.doi.org/10.1186/s13048-020-00633-8]
[31]
Tou, J.C.; Chen, J.; Thompson, L.U. Dose, timing, and duration of flaxseed exposure affect reproductive indices and sex hormone levels in rats. J. Toxicol. Environ. Health A, 1999, 56(8), 555-570.
[http://dx.doi.org/10.1080/00984109909350177]
[32]
Jahani-Moghadam, M.; Mahjoubi, E.; Dirandeh, E. Effect of linseed feeding on blood metabolites, incidence of cystic follicles, and productive and reproductive performance in fresh Holstein dairy cows. J. Dairy Sci., 2015, 98(3), 1828-1835.
[http://dx.doi.org/10.3168/jds.2014-8789] [PMID: 25547310]
[33]
Hutchinson, I.A.; Hennessy, A.A.; Waters, S.M.; Dewhurst, R.J.; Evans, A.C.; Lonergan, P.; Butler, S.T. Effect of supplementation with different fat sources on the mechanisms involved in reproductive performance in lactating dairy cattle. Theriogenology, 2012, 78(1), 12-27.
[http://dx.doi.org/10.1016/j.theriogenology.2011.12.031]
[34]
Eilati, E.; Bahr, J.M.; Hales, D.B. Long term consumption of flaxseed enriched diet decreased ovarian cancer incidence and prostaglandin E2 in hens. Gynecol. Oncol., 2013, 130(3), 620-628.
[http://dx.doi.org/10.1016/j.ygyno.2013.05.018] [PMID: 23707669]
[35]
Chang, V.C.; Cotterchio, M.; Boucher, B.A.; Jenkins, D.J.A.; Mirea, L.; McCann, S.E.; Thompson, L.U. Effect of dietary flaxseed intake on circulating sex hormone levels among postmenopausal women: A randomized controlled intervention trial. Nutr. Cancer, 2019, 71(3), 385-398.
[http://dx.doi.org/10.1080/01635581.2018.1516789] [PMID: 30375890]
[36]
Phipps, W.R.; Martini, M.C.; Lampe, J.W.; Slavin, J.L.; Kurzer, M.S. Effect of flax seed ingestion on the menstrual cycle. J. Clin. Endocrinol. Metab., 1993, 77(5), 1215-1219.
[http://dx.doi.org/10.1210/jcem.77.5.8077314] [PMID: 8077314]
[37]
Nowak, D.A.; Snyder, D.C.; Brown, A.J.; Demark-Wahnefried, W. The effect of flaxseed supplementation on hormonal levels associated with polycystic ovarian syndrome: A case study. Curr. Top. Nutraceutical Res., 2007, 5(4), 177-181.
[PMID: 19789727]
[38]
Ebrahimi, F.A.; Samimi, M.; Foroozanfard, F.; Jamilian, M.; Akbari, H.; Rahmani, E.; Ahmadi, S.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. The effects of omega-3 fatty acids and vitamin E co-supplementation on indices of insulin resistance and hormonal parameters in patients with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Exp. Clin. Endocrinol. Diabetes, 2017, 125(6), 353-359.
[http://dx.doi.org/10.1055/s-0042-117773] [PMID: 28407657]
[39]
Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol., 2014, 741(741), 230-236.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.057] [PMID: 25160742]
[40]
El Makawy, A.; Eissa, F. EL-Bamby, M.; Elhamalawy, O. Flaxseed oil as a protective agent against bisphenol-A deleterious effects in male mice. Bull. Natl. Res. Cent., 2018, 42(1), 5.
[http://dx.doi.org/10.1186/s42269-018-0007-4]
[41]
Andrejčáková, Z.; Vlčková, R.; Sopková, D.; Kozioł, K.; Koziorowski, M.; Fabián, D.; Šefčíková, Z.; Holovská, K.; Almášiová, V.; Sirotkin, A.V. Dietary flaxseed’s protective effects on body tissues of mice after oral exposure to xylene. Saudi J. Biol. Sci., 2021, 28(7), 3789-3798.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.055] [PMID: 34220233]
[42]
Abdel Moneim, A.E.; Dkhil, M.A.; Al-Quraishy, S. The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. J. Hazard. Mater., 2011, 194, 250-255.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.097] [PMID: 21872391]
[43]
Bolden, A.L.; Kwiatkowski, C.F. Colborn, T New look at BTEX: Are ambient levels a problem? Environ. Sci. Technol., 2015, 49(9), 5261-5276.
[http://dx.doi.org/10.1021/es505316f]
[44]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 2015.
[http://dx.doi.org/10.1002/0471142735.ima03bs111]
[45]
Gaumer, S.; Guénal, I.; Brun, S.; Théodore, L.; Mignotte, B. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ., 2000, 7(9), 804-814.
[http://dx.doi.org/10.1038/sj.cdd.4400714] [PMID: 11042675]
[46]
Osborn, M.; Brandfass, S. Immunocytochemistry of frozen and of paraffin tissue sections. Cell Biol., 2006, 1, 563-569.
[http://dx.doi.org/10.1016/B978-012164730-8/50069-1]
[47]
Homanics, G.E.; Silvia, W.J. Effects of progesterone and estradiol-17 beta on uterine secretion of prostaglandin F2 alpha in response to oxytocin in ovariectomized ewes. Biol. Reprod., 1988, 38(4), 804-811.
[http://dx.doi.org/10.1095/biolreprod38.4.804] [PMID: 3165288]
[48]
Kotwica, J.; Skarzynski, D. Influence of oxytocin removal from the corpus luteum on secretory function and duration of the oestrous cycle in cattle. Reproduction, 1993, 97(2), 411-417.
[http://dx.doi.org/10.1530/jrf.0.0970411] [PMID: 8501712]
[49]
Kotwica, J.; Skarzynski, D.J.; Jaroszewski, J.J.; Bogacki, M. Noradrenaline affects secretory function of corpus luteum independently on prostaglandins in conscious cattle. Prostaglandins, 1994, 48(1), 1-10.
[http://dx.doi.org/10.1016/0090-6980(94)90091-4] [PMID: 7972875]
[50]
Sirotkin, A.V. Regulators of ovarian functions; New York Nova Biomedical, 2014.
[51]
Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J., 2018, 285(3), 416-431.
[http://dx.doi.org/10.1111/febs.14186] [PMID: 28755482]
[52]
Soffritti, M.; Belpoggi, F.; Esposti, D.D.; Lambertini, L.; Tibaldi, E.; Rigano, A. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ. Health Perspect., 2006, 114(3), 379-385.
[http://dx.doi.org/10.1289/ehp.8711] [PMID: 16507461]
[53]
Shiomi, Y.; Nishitani, H. Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes, 2017, 8(2), 52.
[http://dx.doi.org/10.3390/genes8020052]
[54]
Robker, R.L.; Richards, J.S. Hormone-induced proliferation and differentiation of granulosa cells: A coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol. Endocrinol., 1998, 12(7), 924-940.
[http://dx.doi.org/10.1210/mend.12.7.0138] [PMID: 9658398]
[55]
Voronina, E.; Lovasco, L.A.; Gyuris, A.; Baumgartner, R.A.; Parlow, A.F.; Freiman, R.N. Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Dev. Biol., 2007, 303(2), 715-726.
[http://dx.doi.org/10.1016/j.ydbio.2006.12.011] [PMID: 17207475]
[56]
Das, N.; Kumar, T.R. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J. Mol. Endocrinol., 2018, 60(3), R131-R155.
[http://dx.doi.org/10.1530/JME-17-0308] [PMID: 29437880]
[57]
Johnson, I.T.; Gee, J.M.; Price, K.; Curl, C.; Fenwick, G.R. Influence of saponins on gut permeability and active nutrient transport in vitro. J. Nutr., 1986, 116(11), 2270-2277.
[http://dx.doi.org/10.1093/jn/116.11.2270] [PMID: 3794833]
[58]
Kitazumi, I.; Tsukahara, M. Regulation of DNA fragmentation: The role of caspases and phosphorylation. FEBS J., 2011, 278(3), 427-441.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07975.x] [PMID: 21182594]
[59]
Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3448-3459.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.001] [PMID: 23770045]
[60]
McNatty, K.P.; Henderson, K.M.; Sawers, R.S. Effects of prostaglandin F2alpha and E2 on the production of progesterone by human granulosa cells in tissue culture. J. Endocrinol., 1975, 67(2), 231-240.
[http://dx.doi.org/10.1677/joe.0.0670231] [PMID: 1206276]
[61]
Ashraf, S.S.; Rao, M.V.; Kaneez, F.S.; Qadri, S.; Al-Marzouqi, A.H.; Chandranath, I.S.; Adem, A. Nigella sativa extract as a potent antioxidant for petrochemical-induced oxidative stress. J. Chromatogr. Sci., 2011, 49(4), 321-326.
[http://dx.doi.org/10.1093/chrsci/49.4.321] [PMID: 21439125]
[62]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), 453-462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034]
[63]
Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1/2), 37-56.
[http://dx.doi.org/10.1023/B:MCBI.0000049134.69131.89] [PMID: 15646026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy