Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Copper-Bisbenzimidazole Complexes as Biomimetic Catalysts in Organic Transformations

Author(s): Manisha Jain, Shilpa Yadav, Mansi, Neeti Misra, Pankaj Khanna and Leena Khanna*

Volume 21, Issue 2, 2024

Published on: 16 February, 2023

Page: [216 - 228] Pages: 13

DOI: 10.2174/1570193X20666230102105854

Price: $65

Abstract

Copper complexes have biological applications as well as catalytic importance in performing organic reactions. Besides finding utilities in metalloproteins, enzymes, or molecular magnetism, they have been used extensively as catalysts in the formation ofcarbon–carbon or carbon– heteroatom bonds, in addition to many other reactions. This has been achieved by the rational selection of the organic ligands with suitable coordination sites for attaining ideal geometries. The binding of one such organic ligand, bisbenzimidazole, with copper results in complexes with varied shapes, structures, and activities, enhancing their catalytic potential and hence useful applications. This review describes the catalytic applications of bisbenzimidazole based copper (II)/(I) complexes in various useful organic transformations. It also provides an in-depth knowledge of the mechanistic pathways of the transformations involving copper complexes and their multipurpose utility as catalysts, which may help in the development of improved copper catalysts for the future.

Graphical Abstract

[1]
Goksu, H.; Sert, H.; Kilbas, B.; Sen, F. Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem., 2017, 21(9), 794-820.
[http://dx.doi.org/10.2174/1385272820666160525123907]
[2]
Şen, B.; Aygün, A.; Şavk, A.; Akocak, S.; Şen, F. Bimetallic palladium– iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy, 2018, 43(44), 20183-20191.
[http://dx.doi.org/10.1016/j.ijhydene.2018.07.081]
[3]
Göksu, H.; Çelik, B. Yıldız, Y.; Şen, F.; Kılbaş B. Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect, 2016, 1(10), 2366-2372.
[http://dx.doi.org/10.1002/slct.201600509]
[4]
Sen, B. Şavk, A.; Sen, F. Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci., 2018, 520, 112-118.
[http://dx.doi.org/10.1016/j.jcis.2018.03.004] [PMID: 29529458]
[5]
Yildiz, Y.; Okyay, T.O.; Sen, B.; Gezer, B.; Kuzu, S.; Savk, A.; Demir, E.; Dasdelen, Z.; Sert, H.; Sen, F. Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2017, 2(2), 697-701.
[http://dx.doi.org/10.1002/slct.201601608]
[6]
Sen, B. Kuyuldar, E.; Demirkan, B.; Onal Okyay, T.; Şavk, A.; Sen, F. Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci., 2018, 526, 480-486.
[http://dx.doi.org/10.1016/j.jcis.2018.05.021] [PMID: 29772415]
[7]
Ertan, S. Şen, F.; Şen, S.; Gökağaç, G. Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM. J. Nanopart. Res., 2012, 14(6), 922.
[http://dx.doi.org/10.1007/s11051-012-0922-5]
[8]
Abrahamson, J.T. Sempere, B.; Walsh, M.P.; Forman, J.M.; Şen, F.; Şen, S.; Mahajan, S.G.; Paulus, G.L.C.; Wang, Q.H.; Choi, W.; Strano, M.S. Excess thermopower and the theory of thermopower waves. ACS Nano, 2013, 7(8), 6533-6544.
[http://dx.doi.org/10.1021/nn402411k] [PMID: 23889080]
[9]
Disselkamp, R.S. Energy storage using aqueous hydrogen peroxide. Energy Fuels, 2008, 22(4), 2771-2774.
[http://dx.doi.org/10.1021/ef800050t]
[10]
Aygün, A. Gülbağça, F.; Nas, M.S.; Alma, M.H.; Çalımlı M.H.; Ustaoglu, B.; Altunoglu, Y.C.; Baloğlu, M.C.; Cellat, K.; Şen, F. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. J. Pharm. Biomed. Anal., 2020, 179113012
[http://dx.doi.org/10.1016/j.jpba.2019.113012] [PMID: 31791838]
[11]
Tainer, J.A.; Getzoff, E.D.; Richardson, J.S.; Richardson, D.C. Structure and mechanism of copper, zinc superoxide dismutase. Nature, 1983, 306(5940), 284-287.
[http://dx.doi.org/10.1038/306284a0] [PMID: 6316150]
[12]
Vakal, S.; Jalkanen, S.; Dahlström, K.M.; Salminen, T.A. Human copper-containing amine oxidases in drug design and development. Molecules, 2020, 25(6), 1293.
[http://dx.doi.org/10.3390/molecules25061293] [PMID: 32178384]
[13]
Klinman, J.P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: Resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem., 2006, 281(6), 3013-3016.
[http://dx.doi.org/10.1074/jbc.R500011200] [PMID: 16301310]
[14]
Baron, A.J.; Stevens, C.; Wilmot, C.; Seneviratne, K.D.; Blakeley, V.; Dooley, D.M.; Phillips, S.E.; Knowles, P.F.; McPherson, M.J. Structure and mechanism of galactose oxidase. The free radical site. J. Biol. Chem., 1994, 269(40), 25095-25105.
[http://dx.doi.org/10.1016/S0021-9258(17)31504-1] [PMID: 7929198]
[15]
Kanteev, M.; Goldfeder, M.; Fishman, A. Structure-function correlations in tyrosinases. Protein Sci., 2015, 24(9), 1360-1369.
[http://dx.doi.org/10.1002/pro.2734] [PMID: 26104241]
[16]
Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Acc. Chem. Res., 2002, 35(3), 183-191.
[http://dx.doi.org/10.1021/ar990019a] [PMID: 11900522]
[17]
Xue, Y.; Ökvist, M.; Hansson, O.; Young, S. Crystal structure of spinach plastocyanin at 1.7 A resolution. Protein Sci., 1998, 7(10), 2099-2105.
[http://dx.doi.org/10.1002/pro.5560071006] [PMID: 9792096]
[18]
Murphy, L.M.; Strange, R.W.; Karlsson, B.G.; Lundberg, L.G.; Pascher, T.; Reinhammar, B.; Hasnain, S.S. Structural characterization of azurin from Pseudomonas aeruginosa and some of its methionine-121 mutants. Biochemistry, 1993, 32(8), 1965-1975.
[http://dx.doi.org/10.1021/bi00059a013] [PMID: 8383530]
[19]
Murphy, M.E.P.; Turley, S.; Adman, E.T. Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. Mechanistic implications. J. Biol. Chem., 1997, 272(45), 28455-28460.
[http://dx.doi.org/10.1074/jbc.272.45.28455] [PMID: 9353305]
[20]
Kato, S.; Matsui, T.; Gatsogiannis, C.; Tanaka, Y. Molluscan hemocyanin: Structure, evolution, and physiology. Biophys. Rev., 2018, 10(2), 191-202.
[http://dx.doi.org/10.1007/s12551-017-0349-4] [PMID: 29235083]
[21]
Presti, E.L.; Monzani, E.; Santagostini, L.; Casella, L. Building biomimetic model compounds of dinuclear and trinuclear copper clusters for stereoselective oxidations. Inorg. Chim. Acta, 2018, 481, 47-55.
[http://dx.doi.org/10.1016/j.ica.2017.09.045]
[22]
Chemler, S.R. Copper catalysis in organic synthesis. Beilstein J. Org. Chem., 2015, 11, 2252-2253.
[http://dx.doi.org/10.3762/bjoc.11.244] [PMID: 26664648]
[23]
Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Bosch. Copper-promoted functionalization of organic molecules: From biologically relevant Cu/O2 model systems to organometallic transformations. Chem. Rev., 2019, 119(4), 2954-3031.
[http://dx.doi.org/10.1021/acs.chemrev.8b00368] [PMID: 30698952]
[24]
Lumb, J-P.; Esguerra, K. Cu(iii)-mediated aerobic oxidations. Synthesis, 2019, 51(2), 334-358.
[http://dx.doi.org/10.1055/s-0037-1609635]
[25]
Que, L., Jr; Tolman, W.B. Bis(μ-oxo)dimetal “diamond” cores in copper and iron complexes relevant to biocatalysis. Angew. Chem. Int. Ed., 2002, 41(7), 1114-1137.
[http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1114:AID-ANIE1114>3.0.CO;2-6] [PMID: 12491240]
[26]
Gupta, M.; Upadhyay, S.K.; Sridhar, M.A.; Mathur, P. Oxidative dealkylation of a hindered phenol catalyzed by copper (II) bis benzimidazole diamide complex. Inorg. Chim. Acta, 2006, 359(13), 4360-4366.
[http://dx.doi.org/10.1016/j.ica.2006.05.033]
[27]
Singla, M.; Mathur, P.; Gupta, M.; Hundal, M.S. Oxidation of electron deficient olefins using a copper(II) complex based on a bis-benzimidazole diamide ligand. Trans. Met. Chem. (Weinh.), 2008, 33(2), 175-182.
[http://dx.doi.org/10.1007/s11243-007-9029-8]
[28]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon, 2019, 5(10)e02596
[http://dx.doi.org/10.1016/j.heliyon.2019.e02596] [PMID: 31667415]
[29]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct-DNA and SARS-CoV-2 Mpro. Luminescence, 2021, 36(6), 1531-1543.
[http://dx.doi.org/10.1002/bio.4098] [PMID: 34087041]
[30]
Khanna, L.; Panda, S.; Khanna, P. Synthetic routes to symmetric bisbenzimidazoles: A review. Mini Rev. Org. Chem., 2012, 9(4), 381-396.
[http://dx.doi.org/10.2174/157019312804699474]
[31]
Renuka, M.K.; Gayathri, V. A polymer supported Cu(II) catalyst for oxidative amidation of benzyl alcohol and substituted amines in TBHP/H2O. Catal. Commun., 2018, 104(10), 71-77.
[http://dx.doi.org/10.1016/j.catcom.2017.10.023]
[32]
Arslan, H. Avcı Ç.; Tutkun, B.; Şengül, A. 2,6-Bis-benzimidazolylpyridines as new catalyst in copper-based ATRP. Polym. Bull., 2017, 74(4), 931-948.
[http://dx.doi.org/10.1007/s00289-016-1754-8]
[33]
Baugh, L.S.; Sissano, J.A.; Kacker, S.; Berluche, E.; Stibrany, R.T.; Schulz, D.N.; Rucker, S.P. Fluorinated and ring-substituted bisbenzimidazole copper complexes for ethylene/acrylate copolymerization. J. Polym. Sci. A Polym. Chem., 2006, 44(6), 1817-1840.
[http://dx.doi.org/10.1002/pola.21269]
[34]
Günnaz, S. Evaluation of Cu(II) bzimpy complexes by 1 H-NMR and catalytic activities. J. Coord. Chem., 2020, 73(20-22), 3014-3027.
[http://dx.doi.org/10.1080/00958972.2020.1840561]
[35]
Chang, H.N.; Hou, S.X.; Cui, G.H.; Wang, S.C. Supramolecular architectures in three metal(ii) coordination polymers with 2,5-dichloroterephthalate and flexible bis(benzimidazole) ligands. J. Inorg. Organomet. Polym. Mater., 2017, 27(2), 518-527.
[http://dx.doi.org/10.1007/s10904-016-0494-4]
[36]
Wang, X.; Li, J.; Lin, H.; Liu, G.; Tian, A.; Hu, H.; Liu, X.; Kang, Z. Assembly of a new Keggin polyoxometalate-templated complex using flexible bis(benzimidazole) ligand. J. Mol. Struct., 2010, 983(1-3), 99-103.
[http://dx.doi.org/10.1016/j.molstruc.2010.08.038]
[37]
Zhang, E.; Hou, H.; Han, H.; Fan, Y. Syntheses, crystal structures of a series of copper(II) complexes and their catalytic activities in the green oxidative coupling of 2,6-dimethylphenol. J. Organomet. Chem., 2008, 693(10), 1927-1937.
[http://dx.doi.org/10.1016/j.jorganchem.2008.02.023]
[38]
Xiao, B.; Hou, H.; Fan, Y. Catalytic applications of CuII-containing MOFs based on N-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol. J. Organomet. Chem., 2007, 692(10), 2014-2020.
[http://dx.doi.org/10.1016/j.jorganchem.2007.01.010]
[39]
Liu, Y.; Li, J.; Hou, H.; Fan, Y. Subtle role of counteranions in molecular construction: Structures and properties of novel Cu(II) coordination complexes with bis-(1-benzoimidazolymethylene)-(2,5-thiadiazoly)-disulfide. J. Organomet. Chem., 2009, 694(18), 2875-2882.
[http://dx.doi.org/10.1016/j.jorganchem.2009.03.045]
[40]
Xiao, B.; Hou, H.; Fan, Y. Syntheses and structural characteristics of copper(II)-organic polymers based on N-heterocyclic ligands: A study on the importance of steric factors in the design of potent catalysts. J. Mol. Catal. Chem., 2008, 288(1-2), 42-51.
[http://dx.doi.org/10.1016/j.molcata.2008.02.025]
[41]
Castillo, I.; Pérez, V.; Monsalvo, I.; Demare, P.; Regla, I. Copper(II) complexes of piperazine-derived tetradentate ligands and their chiral diazabicyclic analogues for catalytic phenol oxidative C–C coupling. Inorg. Chem. Commun., 2013, 38, 1-4.
[http://dx.doi.org/10.1016/j.inoche.2013.10.002]
[42]
Pérez, V.; Monsalvo, I.; Demare, P.; Gómez-Vidales, V.; Regla, I.; Castillo, I. Dicopper(II) complexes of chiral C2-symmetric diamino-bis(2-methylpyridyl) and diamino-bis(2-methylbenzimi-dazolyl) ligands. Inorg. Chem. Commun., 2011, 14(2), 389-391.
[http://dx.doi.org/10.1016/j.inoche.2010.12.008]
[43]
Kaye, P.T.; Nyokong, T.; Watkins, G.M.; Wellington, K.W. Designer ligands. Part 9.1 Catalytic activity of biomimetic cobalt(II) and copper(II) complexes of multidentate ligands. ARKIVOC, 2002, 2002(9), 9-18.
[http://dx.doi.org/10.3998/ark.5550190.0003.902]
[44]
Stibrany, R.T.; Patil, A.O.; Zushma, S. Copper-based olefin polymerization catalysts. ACS Symposium Series, 2003, pp. 194-209.
[http://dx.doi.org/10.1021/bk-2003-0857.ch014]
[45]
Deng, Y.Y.; Liu, F.Q.; Jin, Y.L. Synthesis, crystal structure, and electrocatalytic properties of a copper(II) complex of 1,2-bis(2-benzimidazolyl)benzene. Trans. Met. Chem. (Weinh.), 2012, 37(4), 309-314.
[http://dx.doi.org/10.1007/s11243-012-9577-4]
[46]
Chirinos, J.; Ibarra, D.; Morillo, Á.; Llovera, L.; González, T.; Zárraga, J.; Larreal, O.; Guerra, M. Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand. Polyhedron, 2021, 203115232
[http://dx.doi.org/10.1016/j.poly.2021.115232]
[47]
Loukopoulos, E.; Abdul-Sada, A.; Csire, G.; Kállay, C.; Brookfield, A.; Tizzard, G.J.; Coles, S.J.; Lykakis, I.N.; Kostakis, G.E. Copper(II)-benzotriazole coordination compounds in click chemistry: A diagnostic reactivity study. Dalton Trans., 2018, 47(31), 10491-10508.
[http://dx.doi.org/10.1039/C8DT01256C] [PMID: 29796447]
[48]
Yang, R.; Li, H.H.; Van Hecke, K.; Cui, G.H. Cobalt(II) and Copper(II) complexes constructed from bis(benzimidazole) and 2,6-pyridinedicarboxylate co-ligands: Synthesis, crystal structures, and catalytic properties. Z. Anorg. Allg. Chem., 2015, 641(3-4), 642-649.
[http://dx.doi.org/10.1002/zaac.201400464]
[49]
Gupta, M.; Mathur, P.; Butcher, R.J. Synthesis, crystal structure, spectral studies, and catechol oxidase activity of trigonal bipyramidal Cu(II) complexes derived from a tetradentate diamide bisbenzimidazole ligand. Inorg. Chem., 2001, 40(5), 878-885.
[http://dx.doi.org/10.1021/ic000313v] [PMID: 11258993]
[50]
Yadav, A.; Mathur, P. Aerobic oxidation of 2,4,6-tri-tert-butylphenol to quinones catalyzed by copper(II) complexes of an N-octylated bis-benzimidazolyl ligand. Inorg. Chim. Acta, 2015, 435, 206-214.
[http://dx.doi.org/10.1016/j.ica.2015.06.026]
[51]
Gupta, M.; Das, S.K.; Mathur, P.; Cordes, A.W. Synthesis, crystal structure and spectral studies of Cu(II)/Cu(I) complexes derived from diamide bisbenzimidazole ligand. Inorg. Chim. Acta, 2003, 353, 197-205.
[http://dx.doi.org/10.1016/S0020-1693(03)00308-6]
[52]
Mathur, P. Activation of peroxyl and molecular oxygen usingbis-benzimidazole diamide copper (II) compounds. J. Chem. Sci., 2006, 118(6), 553-568.
[http://dx.doi.org/10.1007/BF02703953]
[53]
Bakshi, R.; Rossi, M.; Caruso, F.; Mathur, P. Copper(II) complexes of a new N-picolylated bis benzimidazolyl diamide ligand: Synthesis, crystal structure and catechol oxidase studies. Inorg. Chim. Acta, 2011, 376(1), 175-188.
[http://dx.doi.org/10.1016/j.ica.2011.06.013]
[54]
Mahiya, K.; Kumar, R.; Lloret, F.; Mathur, P. Oxidation of substituted phenols using copper(II) metallatriangles formed through ligand sharing. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 133, 663-668.
[http://dx.doi.org/10.1016/j.saa.2014.06.026] [PMID: 24996207]
[55]
Mahiya, K.; Mathur, P. Morphology dependant oxidation of aromatic alcohols by new symmetrical copper(II) metallatriangles formed by self-assembly of a shared bis-benzimidazolyl diamide ligand. Inorg. Chim. Acta, 2013, 399, 36-44.
[http://dx.doi.org/10.1016/j.ica.2012.12.037]
[56]
Ahuja, G.; Mathur, P. Bis-benzimidazolyl diamide copper (II) complexes: Synthesis, crystal structure and oxidation of substituted amino phenols. Inorg. Chem. Commun., 2012, 17(3), 42-48.
[http://dx.doi.org/10.1016/j.inoche.2011.12.011]
[57]
Tyagi, N.; Kumar, R.; Mahiya, K.; Mathur, P. Copper(II) complexes of a new tetradentate bis -benzimidazolyl diamide ligand with disulfanediyl linker: Synthesis, characterization, and oxidation of some pyridyl, napthyl, and benzyl alcohols. J. Coord. Chem., 2013, 66(19), 3335-3348.
[http://dx.doi.org/10.1080/00958972.2013.835403]
[58]
Mohapatra, S.C.; Tehlan, S.; Hundal, M.S.; Mathur, P. Crystal structure and catalytic activity of a copper(II) complex based on a tetradentate bis-benzimidazole diamide ligand. Inorg. Chim. Acta, 2008, 361(7), 1897-1907.
[http://dx.doi.org/10.1016/j.ica.2007.10.002]
[59]
Tehlan, S.; Hundal, M.S.; Mathur, P. Copper(II) complexes of N-octylated bis(benzimidazole) diamide ligands and their peroxide-dependent oxidation of aryl alcohols. Inorg. Chem., 2004, 43(21), 6589-6595.
[http://dx.doi.org/10.1021/ic0302884] [PMID: 15476355]
[60]
Upadhyay, S.K.; Tehlan, S.; Mathur, P. Synthesis, spectral and oxidase studies of a new diamide copper(II) complex with pendant benzimidazolyl groups. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 66(2), 347-352.
[http://dx.doi.org/10.1016/j.saa.2006.03.002] [PMID: 16843045]
[61]
Afreen, F.; Mathur, P.; Rheingold, A. Oxidase studies of some benzimidazole diamide copper(II) complexes. Inorg. Chim. Acta, 2005, 358(4), 1125-1134.
[http://dx.doi.org/10.1016/j.ica.2004.09.062]
[62]
Yadav, A.; Mathur, P. Oxidation of hindered aniline to iminocyclohexa-2,4-dienone by copper(II) complex of an N-substituted bis-benzimidazolyl ligand. Inorg. Chim. Acta, 2015, 427, 62-71.
[http://dx.doi.org/10.1016/j.ica.2014.11.025]
[63]
Khattar, R.; Yadav, A.; Mathur, P. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 375-381.
[http://dx.doi.org/10.1016/j.saa.2015.01.115] [PMID: 25721653]
[64]
Li, F.; Hor, T.S.A. Facile synthesis of nitrogen tetradentate ligands and their applications in Cu(I)-catalyzed N-arylation and azide-alkyne cycloaddition. Chemistry, 2009, 15(40), 10585-10592.
[http://dx.doi.org/10.1002/chem.200901014] [PMID: 19739212]
[65]
Mimmi, M.C.; Gullotti, M.; Santagostini, L.; Battaini, G.; Monzani, E.; Pagliarin, R.; Zoppellaro, G.; Casella, L. Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic oxidation of catechols by the copper(II) complexes of a chiral ligand derived from (S)-(-)-1,1′-binaphthyl-2,2′-diamine. Dalton Trans., 2004, 14(14), 2192-2201.
[http://dx.doi.org/10.1039/B402539C] [PMID: 15249957]
[66]
Gullotti, M.; Santagostini, L.; Pagliarin, R.; Granata, A.; Casella, L. Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper(II) complexes as catalysts for stereoselective oxidation of catechols. J. Mol. Catal. Chem., 2005, 235(1-2), 271-284.
[http://dx.doi.org/10.1016/j.molcata.2005.03.031]
[67]
Mutti, F.G.; Zoppellaro, G.; Gullotti, M.; Santagostini, L.; Pagliarin, R.; Andersson, K.K.; Casella, L. Biomimetic modelling of copper enzymes: Synthesis, characterization, EPR analysis and enantioselective catalytic oxidations by a new chiral trinuclear copper(II) complex. Eur. J. Inorg. Chem., 2009, 2009(4), 554-566.
[http://dx.doi.org/10.1002/ejic.200800899]
[68]
Granata, A.; Monzani, E.; Casella, L. Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex. J. Biol. Inorg. Chem., 2004, 9(7), 903-913.
[http://dx.doi.org/10.1007/s00775-004-0595-3] [PMID: 15449133]
[69]
Mimmi, M.; Gullotti, M.; Santagostini, L.; Saladino, A.; Casella, L.; Monzani, E.; Pagliarin, R. Stereoselective catalytic oxidations of biomimetic copper complexes with a chiral trinucleating ligand derived from 1,1-binaphthalene. J. Mol. Catal. Chem., 2003, 204-205, 381-389.
[http://dx.doi.org/10.1016/S1381-1169(03)00320-0]
[70]
Battaini, G.; Monzani, E.; Perotti, A.; Para, C.; Casella, L.; Santagostini, L.; Gullotti, M.; Dillinger, R.; Näther, C.; Tuczek, F. A double arene hydroxylation mediated by dicopper(II)-hydroperoxide species. J. Am. Chem. Soc., 2003, 125(14), 4185-4198.
[http://dx.doi.org/10.1021/ja0280776] [PMID: 12670241]
[71]
Khalili, D.; Evazi, R.; Neshat, A.; Aboonajmi, J. Copper(I) complex of dihydro bis(2-mercapto benzimidazolyl) borate as an efficient homogeneous catalyst for the synthesis of 2H-indazoles and 5-substituted 1H-tetrazoles. ChemistrySelect, 2021, 6(4), 746-753.
[http://dx.doi.org/10.1002/slct.202004387]
[72]
Pirota, V.; Gennarini, F.; Dondi, D.; Monzani, E.; Casella, L.; Dell’Acqua, S. Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions. New J. Chem., 2014, 38(2), 518-528.
[http://dx.doi.org/10.1039/C3NJ01279D]
[73]
Hay, R.W.; Clifford, T.; Lightfoot, P. Copper(II) and zinc(II) complexes of N,N-bis(benzimidazole-2-ylmethyl)-amine. Synthesis, formation constants and the crystal structure of [ZnLCl]2 MeOH. Catalytic activity of the complexes in the hydrolysis of the phosphotriester 2,4-dinitrophenyl diethyl phosphate. Polyhedron, 1998, 17(20), 3575-3581.
[http://dx.doi.org/10.1016/S0277-5387(98)00152-1]
[74]
Huang, X.; Wang, H.; Xu, Q.; Ma, F.; Liu, C.; Meng, X. Synthesis, characterization and SOD activity of bisbenzimidazole-based copper(II) complexes. J. Mol. Struct., 2022, 1254132334
[http://dx.doi.org/10.1016/j.molstruc.2022.132334]
[75]
Li, Q.X.; Luo, Q.H.; Li, Y.Z.; Shen, M.C. A study on the mimics of Cu-Zn superoxide dismutase with high activity and stability: Two copper(II) complexes of 1,4,7-triazacyclononane with benzimidazole groups. Dalton Trans., 2004, 4(15), 2329-2335.
[http://dx.doi.org/10.1039/B404510F] [PMID: 15278126]
[76]
Mannarsamy, M.; Prabusankar, G. Highly active copper(I)-chalcogenone catalyzed knoevenagel condensation reaction using various aldehydes and active methylene compounds. Catal. Lett., 2022, 152(8), 2327-2332.
[http://dx.doi.org/10.1007/s10562-021-03810-6]
[77]
Castillo, I.; Torres-Flores, A.P.; Abad-Aguilar, D.F.; Berlanga-Vázquez, A.; Orio, M.; Martínez-Otero, D. Cellulose depolymerization with LPMO-inspired Cu complexes. ChemCatChem, 2021, 13(22), 4700-4704.
[http://dx.doi.org/10.1002/cctc.202101169]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy