Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry of Medicinally Important Dihydropyrimidinone-based Heterocycle Scaffolds

Author(s): Versha, Ravi Kumar Rana and Anjaneyulu Bendi*

Volume 21, Issue 2, 2024

Published on: 16 February, 2023

Page: [172 - 215] Pages: 44

DOI: 10.2174/1570193X20666221201113822

Price: $65

conference banner
Abstract

In medicinal chemistry, Dihydropyrimidinone-based heterocycle scaffolds have attained a prominent place due to their enormous pharmacological and biological activities. The discovery and development of innovative drugs to combat a wide range of diseases exemplify the utility of these compounds. The present study summarizes the variety of methods available to synthesize various dihydropyrimidinone- based heterocycle scaffolds and their beneficial medicinal properties with the available literature until 2022.

Graphical Abstract

[1]
Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Chemical review and letters propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem. Rev. Lett., 2018, 1, 56-67.
[2]
a) Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz. Chim. Ital., 1893, 23, 360-416.;
b) Panda, S.S. Biginelli Reaction  A green perspective Biginelli reaction  A green perspective. Curr. Org. Chem., 2012, 16, 507-520.;
c) Heravi, M.M.; Ghavidel, M.; Heidari, B. Microwave-assisted biginelli reaction: An old reaction, a new perspective. Curr. Org. Synth., 2016, 13, 569-600.
[3]
a) Martín, V.; Vale, C.; Bondu, S.; Thomas, O.P.; Vieytes, M.R.; Botana, L.M. Differential effects of crambescins and crambescidin 816 in voltage-gated sodium, potassium and calcium channels in neurons. Chem. Res. Toxicol., 2013, 26(1), 169-178.
[http://dx.doi.org/10.1021/tx3004483] [PMID: 23270282];
b) Jamison, M.T.; Molinski, T.F. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. J. Nat. Prod., 2015, 78(3), 557-561.
[http://dx.doi.org/10.1021/np501052a] [PMID: 25738226];
c) El-Demerdash, A.; Moriou, C.; Martin, M.T.; Rodrigues-Stien, A.S.; Petek, S.; Demoy-Schneider, M.; Hall, K.; Hooper, J.N.A.; Debitus, C.; Al-Mourabit, A. Cytotoxic guanidine alkaloids from a french polynesian monanchora n. sp. sponge. J. Nat. Prod., 2016, 79(8), 1929-1937.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00168] [PMID: 27419263];
d) Nakazaki, A.; Nakane, Y.; Ishikawa, Y.; Yotsu-Yamashita, M.; Nishikawa, T. Asymmetric synthesis of crambescin A–C carboxylic acids and their inhibitory activity on voltage-gated sodium channels. Org. Biomol. Chem., 2016, 14(23), 5304-5309.
[http://dx.doi.org/10.1039/C6OB00914J] [PMID: 27215973]
[4]
Barrow, J.C.; Nantermet, P.G.; Selnick, H.G.; Glass, K.L.; Rittle, K.E.; Gilbert, K.F.; Steele, T.G.; Homnick, C.F.; Freidinger, R.M.; Ransom, R.W.; Kling, P.; Reiss, D.; Broten, T.P.; Schorn, T.W.; Chang, R.S.L.; O’Malley, S.S.; Olah, T.V.; Ellis, J.D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective alpha(1A) receptor antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem., 2000, 43(14), 2703-2718.
[http://dx.doi.org/10.1021/jm990612y] [PMID: 10893308]
[5]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[6]
a) Duron, S.G.; Gin, D.Y. Synthesis and determination of absolute configuration of the bicyclic guanidine core of batzelladine A. Org. Lett., 2001, 3(10), 1551-1554.
[http://dx.doi.org/10.1021/ol015848m] [PMID: 11388864];
b) Elliott, M.C.; Long, M.S. Studies towards the total synthesis of batzelladine A: synthesis of a model pyrrolo[1,2-c]pyrimidine. Tetrahedron Lett., 2002, 43(50), 9191-9194.
[http://dx.doi.org/10.1016/S0040-4039(02)02261-X];
c) Shimokawa, J.; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Enantioselective total synthesis of batzelladine A. Angew. Chem. Int. Ed., 2004, 43(12), 1559-1562.
[http://dx.doi.org/10.1002/anie.200353200];
d) Arnold, M.A.; Day, K.A.; Durón, S.G.; Gin, D.Y. Total synthesis of (+)-batzelladine A and (-)-batzelladine D via [4 + 2]-annulation of vinyl carbodiimides with N-alkyl imines. J. Am. Chem. Soc., 2006, 128(40), 13255-13260.
[http://dx.doi.org/10.1021/ja063860+] [PMID: 17017806];
e) Davies, C.D.; Elliott, M.C.; Hill-Cousins, J.; Khan, M.A.; Maqbool, T. A concise diastereoselective approach to the left-hand side of batzelladine A. Synlett, 2008, 13, 2028-2033.
[7]
a) Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155];
b) Haggarty, S.J.; Mayer, T.U.; Miyamoto, D.T.; Fathi, R.; King, R.W.; Mitchison, T.J.; Schreiber, S.L. Dissecting cellular processes using small molecules: Identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol., 2000, 7(4), 275-286.
[http://dx.doi.org/10.1016/S1074-5521(00)00101-0] [PMID: 10780927]
[8]
a) Borowsky, B.; Durkin, M.M.; Ogozalek, K.; Marzabadi, M.R.; DeLeon, J.; Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska, I.; Blackburn, T.P.; Branchek, T.A.; Gerald, C.; Vaysse, P.J.; Forray, C.; Forray, C. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat. Med., 2002, 8(8), 825-830.
[http://dx.doi.org/10.1038/nm741] [PMID: 12118247];
b) Basso, A.M.; Bratcher, N.A.; Gallagher, K.B.; Cowart, M.D.; Zhao, C.; Sun, M.; Esbenshade, T.A.; Brune, M.E.; Fox, G.B.; Schmidt, M.; Collins, C.A.; Souers, A.J.; Iyengar, R.; Vasudevan, A.; Kym, P.R.; Hancock, A.A.; Rueter, L.E. Lack of efficacy of melanin-concentrating hormone-1 receptor antagonists in models of depression and anxiety. Eur. J. Pharmacol., 2006, 540(1-3), 115-120.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.043] [PMID: 16765941]
[9]
(a) Franklin, A.S.; Ly, S.K.; Mackin, G.H.; Overman, L.E.; Shaka, A.J. Application of the tethered biginelli reaction for enantioselective synthesis of batzelladine alkaloids. absolute configuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem., 1999, 64(5), 1512-1519.
[http://dx.doi.org/10.1021/jo981971o] [PMID: 11674213];
(b) Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34, 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904];
(c) Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946]. J. Cardiovasc. Pharmacol., 1995, 26, 286-289.;
(d) Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type-A literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403];
(e) Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222];
(f) Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63(10), 3454-3457.
[http://dx.doi.org/10.1021/jo970846u];
(g) Kappe, C.O.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53(8), 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7];
(h) Matos, L.H.S.; Masson, F.T.; Simeoni, L.A.; Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur. J. Med. Chem., 2018, 143, 1779-1789.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.073] [PMID: 29133039];
(i) Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532];
(j) Khasimbi, S.; Ali, F.; Manda, K.; Sharma, A.; Chauhan, G.; Wakode, S. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 2021, 18(3), 270-293.
[http://dx.doi.org/10.2174/1570179417666201207215710] [PMID: 33290199]
[10]
a) Sheykhan, M.; Yahyazadeh, A.; Rahemizadeh, Z. Cu–EDTA-modified APTMS-Fe3O4 @SiO2 core-shell nanocatalyst: A novel magnetic recoverable catalyst for the Biginelli reaction. RSC Advances, 2016, 6(41), 34553-34563.
[http://dx.doi.org/10.1039/C6RA02415G];
b) Shen, P.; Xu, M.; Yin, D.; Xie, S.; Zhou, C.; Li, F. Halogenated macroporous sulfonic resins as efficient catalysts for the Biginelli reaction. Catal. Commun., 2016, 77, 18-21.
[http://dx.doi.org/10.1016/j.catcom.2016.01.010];
c) Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41(20), 6173-6181.
[http://dx.doi.org/10.1039/c2dt30106g] [PMID: 22475989];
d) Alvim, H.G.O.; Lima, T.B.; de Oliveira, A.L.; de Oliveira, H.C.B.; Silva, F.M.; Gozzo, F.C.; Souza, R.Y.; da Silva, W.A.; Neto, B.A.D. Facts, presumptions, and myths on the solvent-free and catalyst-free Biginelli reaction. What is catalysis for? J. Org. Chem., 2014, 79(8), 3383-3397.
[http://dx.doi.org/10.1021/jo5001498] [PMID: 24665975];
e) Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO3)3. 9H2O as catalyst. Green Chem. Lett. Rev., 2010, 3(4), 329-334.
[http://dx.doi.org/10.1080/17518253.2010.487841];
f) Reddy, O.; Suryanarayana, C.; Sharmila, N.; Ramana, G.; Anuradha, V.; Babu, B. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity. Lett. Drug Des. Discov., 2013, 10(8), 699-705.
[http://dx.doi.org/10.2174/15701808113109990007]
[11]
Hassani, Z.; Islami, M.R.; Kalantari, M. An efficient one-pot synthesis of octahydroquinazolinone derivatives using catalytic amount of H2SO4 in water. Bioorg. Med. Chem. Lett., 2006, 16(17), 4479-4482.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.038] [PMID: 16806918]
[12]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Bodaghi, F.M.A. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44(14), 2889-2891.
[http://dx.doi.org/10.1016/S0040-4039(03)00436-2]
[13]
a) Khaskel, A.; Gogoi, P.; Barman, P.; Bandyopadhyay, B. Grindstone chemistry: a highly efficient and green method for synthesis of 3,4-dihydropyrimidin-2-(1H)-ones by L -tyrosine as an organocatalyst: a combined experimental and DFT study. RSC Advances, 2014, 4(67), 35559-35567.
[http://dx.doi.org/10.1039/C4RA05244G];
b) Costanzo, P.; Oliverio, M.; Nardi, M.; Rivalta, I.; Procopio, A. Facile ecofriendly synthesis of monastrol and its structural isomers via biginelli reaction. ACS Sustain. Chem.& Eng., 2014, 2(5), 1228-1233.;
c) Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett., 2008, 49(42), 6119-6121.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.016]
[14]
Fu, N.Y.; Yuan, Y.F.; Cao, Z.; Wang, S.W.; Wang, J.T.; Peppe, C. Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Tetrahedron, 2002, 58(24), 4801-4807.
[http://dx.doi.org/10.1016/S0040-4020(02)00455-6]
[15]
Ananda Kumar, K.; Kasthuraiah, M.; Suresh Reddy, C.; Devendranath Reddy, C. Mn(OAc)3•2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones. Tetrahedron Lett., 2001, 42(44), 7873-7875.
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[16]
(a) Dharma Rao, G.B.; Kaushik, M.P. Efficient trans-acetoacylation mediated by ytterbium(III) triflate as a catalyst under solvent-free condition. Tetrahedron Lett., 2011, 52(39), 5104-5106.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.108];
(b) Shapiro, G.; Marzi, M. Facile and selective O -Alkyl transesterification of Primary carbamates with titanium(IV) alkoxides. J. Org. Chem., 1997, 62(21), 7096-7097.
[http://dx.doi.org/10.1021/jo971498z] [PMID: 11671810];
(c) Fujita, T.; Tanaka, M.; Norimine, Y.; Suemune, H.; Sakai, K. Enantioselective synthesis of (−)-curcumanolide a using enzymatic transesterification of meso-spirodiol. J. Org. Chem., 1997, 62(12), 3824-3830.
[http://dx.doi.org/10.1021/jo962150r];
(d) Dharma Rao, G.B.; Kaushik, M.P. An efficient synthesis of β- ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Int. J. Sci. Thesis Dessert., 2013, 13(1), 25-29.;
(e) Frost, C.; Hartley, J. New applications of indium catalysts in organic synthesis. Mini Rev. Org. Chem., 2004, 1(1), 1-7.
[http://dx.doi.org/10.2174/1570193043489006];
(f) Patil, M.K.; Prasad, A.N.; Reddy, B.M. Zirconia-based solid acids: Green and heterogeneous catalysts for organic synthesis. Curr. Org. Chem., 2011, 15, 3961-3985.
[http://dx.doi.org/10.2174/138527211798072430];
(g) Siódmiak, T.; Piotr Marszall, M.; Proszowska, A. Ionic liquids: A new strategy in pharmaceutical synthesis. Mini Rev. Org. Chem., 2012, 9(2), 203-208.
[http://dx.doi.org/10.2174/157019312800604698]
[17]
a) Parmar, V.S.; Prasad, A.K.; Sharma, N.K.; Bisht, K.S.; Sinha, R.; Taneja, P. Potential applications of enzyme-mediated transesterifications in the synthesis of bioactive compounds. Pure Appl. Chem., 1992, 64(8), 1135-1139.
[http://dx.doi.org/10.1351/pac199264081135];
b) Otera, J. Transesterification. Chem. Rev., 1993, 93(4), 1449-1470.
[http://dx.doi.org/10.1021/cr00020a004]
[18]
Schuchardt, U.; Vargas, R.M.; Gelbard, G. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. J. Mol. Catal. Chem., 1996, 109(1), 37-44.
[http://dx.doi.org/10.1016/1381-1169(96)00014-3]
[19]
a) Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev., 2009, 109(8), 3708-3742.
[http://dx.doi.org/10.1021/cr800524f] [PMID: 19534492];
b) Wobser, S.D.; Stephenson, C.J.; Delferro, M.; Marks, T.J. Carbostannolysis mediated by bis(pentamethylcyclopentadienyl)lan-] thanide catalysts. Utility in accessing organotin synthons. Organometallics, 2013, 32(5), 1317-1327.
[http://dx.doi.org/10.1021/om301031e];
c) Chen, I.T.; Baitinger, I.; Schreyer, L.; Trauner, D. Total synthesis of sandresolide B and amphilectolide. Org. Lett., 2014, 16(1), 166-169.
[http://dx.doi.org/10.1021/ol403156r] [PMID: 24308854];
d) Seo, S.; Yu, X.; Marks, T.J. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. J. Am. Chem. Soc., 2009, 131(1), 263-276.
[http://dx.doi.org/10.1021/ja8072462] [PMID: 19086869];
e) Li, G.; Jin, R. Catalysis by gold nanoparticles: carbon-carbon coupling reactions. Nanotechnol. Rev., 2013, 2(5), 529-545.
[http://dx.doi.org/10.1515/ntrev-2013-0020]
[20]
Fürstner, A. Catalysis for total synthesis: A personal account. Angew. Chem. Int. Ed., 2014, 53(33), 8587-8598.
[http://dx.doi.org/10.1002/anie.201402719]
[21]
Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.W.N.M. Supramolecular catalysis. Part 1: Non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev., 2014, 43(5), 1660-1733.
[http://dx.doi.org/10.1039/C3CS60027K] [PMID: 24356298]
[22]
Dixneuf, P.H.; Cadierno, V. Metal-Catalyzed Reactions in Water, 1st ed; Wiley-VCH: Weinheim, 2013.
[http://dx.doi.org/10.1002/9783527656790]
[23]
a) Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev., 2013, 42(7), 2746-2762.
[http://dx.doi.org/10.1039/C2CS35261C] [PMID: 23072831];
b) McMorn, P.; Hutchings, G.J. Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem. Soc. Rev., 2004, 33(2), 108-122.
[http://dx.doi.org/10.1039/b200387m] [PMID: 14767506];
c) Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766];
d) Schitz, A.; Reiser, O.; Stark, W.J. Nanoparticles as semi-heterogeneous catalyst supports. Chemistry, 2010, 16, 8950-8967.
[http://dx.doi.org/10.1002/chem.200903462] [PMID: 20645330];
e) Roya, S.; Pericis, M.A. Functionalized nanoparticles as catalysts for enantioselective processes. Org. Biomol. Chem., 2009, 7, 2669-2677.
[http://dx.doi.org/10.1039/b903921j] [PMID: 19532980];
f) Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev., 2011, 111(2), 1072-1133.
[http://dx.doi.org/10.1021/cr1002084] [PMID: 21105733]
[24]
Benaglia, M. Recoverable and Recyclable Catalysts, 1st ed; Wiley VCH: Weinheim, 2009.
[http://dx.doi.org/10.1002/9780470682005];
b) Trindade, A.F.; Gois, P.M.P.; Afonso, C.A.M. Recyclable stereoselective catalysts. Chem. Rev., 2009, 109(2), 418-514.
[http://dx.doi.org/10.1021/cr800200t] [PMID: 19209946]
[25]
a) Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684];
b) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074];
c) Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866];
d) Nasir Baig, R.B.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.), 2013, 49, 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208];
e) Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5(5), 412-434.
[http://dx.doi.org/10.1016/j.nantod.2010.08.008];
f) Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127];
g) Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem., 2014, 16(6), 2906-2933.
[http://dx.doi.org/10.1039/c4gc00164h];
h) Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114(14), 6949-6985.
[http://dx.doi.org/10.1021/cr500134h] [PMID: 24892491]
[26]
Hernández-Vázquez, E.; Chávez-Riveros, A.; Romo-Pérez, A.; Ramírez-Apán, M.T.; Chávez-Blanco, A.D.; Morales-Bárcenas, R.; Dueñas-González, A.; Miranda, L.D. Cytotoxic activity and structure-activity relationship of triazole-containing bis(aryl ether) macrocycles. ChemMedChem, 2018, 13(12), 1193-1209.
[http://dx.doi.org/10.1002/cmdc.201800075] [PMID: 29771004]
[27]
Maddali, N.K.; Viswanath, I.V.K.; Murthy, Y.L.N.; Malkhed, V.; Kondaparthi, V.; Brahman, P.K.; Govindh, B. Novel pyrimidinone linked 1,2,3-triazole scaffolds as anti-microbial and antioxidant agents: Synthesis, in-vitro and in-silico studies. J. Pharm. Res. Int., 2022, 2021, 477-491.
[28]
Zhang, C.; You, L.; Chen, C. Palladium-catalyzed C-H arylation of 1,2,3-triazoles. Molecules, 2016, 21(10), 1268.
[http://dx.doi.org/10.3390/molecules21101268] [PMID: 27669198]
[29]
Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72(35), 5257-5283.
[http://dx.doi.org/10.1016/j.tet.2016.07.044]
[30]
Carreiro, E.P.; Sena, A.M.; Puerta, A.; Padrón, J.M.; Burke, A.J. Synthesis of novel 1,2,3-triazole-dihydropyrimidinone hybrids using multicomponent 1,3-dipolar cycloaddition (Click)–Biginelli reactions: Anticancer activity. Synlett, 2020, 31(6), 615-621.
[http://dx.doi.org/10.1055/s-0039-1690781]
[31]
González-Olvera, R.; Román-Rodríguez, V.; Negrón-Silva, G.; Espinoza-Vázquez, A.; Rodríguez-Gómez, F.; Santillan, R. Multicomponent synthesis and evaluation of new 1,2,3-triazole derivatives of dihydropyrimidinones as acidic corrosion inhibitors for steel. Molecules, 2016, 21(2), 250.
[http://dx.doi.org/10.3390/molecules21020250] [PMID: 26907242]
[32]
Gonçalves, I.L.; De Azambuja, G.O.; Davi, L.; Gonçalves, G.A.; Kagami, L.P.; Das Neves, G.M.; Silveira, J.P.; Canto, R.F.S.; Eifler-Lima, V.L. Ethyl 6-Methyl-2-Oxo-4-{4-[(1-Phenyl-1H-1,2,3-Triazol-4-Yl)Methoxy]Phenyl}-1,2,3,4-Tetrahydropyrimi-dine- 5-Carboxylate. Molbank, 2019, 2019(3), M1076.
[http://dx.doi.org/10.3390/M1076]
[33]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[34]
Ajumeera, R.; Thipparapu, G.; Boyapati, S.; Padya, B.S.; Venkatesan, V. Synthesis and evaluation of triazolyl dihydropyrimidines as potential anticancer agents. Int. J. Chem., 2018, 10(4), 18.
[http://dx.doi.org/10.5539/ijc.v10n4p18]
[35]
Matta, A.; Gupta, M.; Kumar, Y.; Taniike, T.; Van der Eycken, J.; Singh, B.K. One-pot synthesis and photophysical studies of dihydropyrimidinone-based dyes: Novel violet-blue light emitting fluorophores. ChemistrySelect, 2018, 3(38), 10815-10820.
[http://dx.doi.org/10.1002/slct.201802199]
[36]
a) Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435];
b) Hong, V.; Presolski, S.I.; Ma, C.; Finn, M.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed., 2009, 48(52), 9879-9883.
[http://dx.doi.org/10.1002/anie.200905087] [PMID: 19943299];
c) Mamidyala, S.K.; Finn, M.G. In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev., 2010, 39(4), 1252-1261.
[http://dx.doi.org/10.1039/b901969n] [PMID: 20309485]
[37]
(a) Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S. Cu-catalyzed click reaction in carbohydrate chemistry. Chen. Chem. Rev., 2016, 116, 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328];
(b) Chandrasekaran, S. Click Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2016, p. 349.
[http://dx.doi.org/10.1002/9783527694174]
[38]
a) Puthiyedath, T.; Bahulayan, D. A click derived triazole-coumarin derivative as fluorescence on-off PET based sensor for Ca2+and Fe3+ ions. Sens. Actuators B Chem., 2018, 272, 110-117.
[http://dx.doi.org/10.1016/j.snb.2018.05.126];
b) Pathoor, R. New J. Chem., 2018, 42, 6810-6816.
[http://dx.doi.org/10.1039/C8NJ00032H];
c) Salim, K.M.M.; Shamsiya, A.; Damodaran, B. Green synthesis of fluorescent peptidomimetic triazoles from biomass-derived 5-(chloromethyl)furfural. ChemistrySelect, 2018, 3(39), 11141-11146.
[http://dx.doi.org/10.1002/slct.201802310];
d) Raj, P.J.; Bahulayan, D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Lett., 2017, 58(22), 2122-2126.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.052];
e) Puthiyedath, T.; Bahulayan, D. A click-generated triazole tethered oxazolone-pyrimidinone dyad: A highly selective colorimetric and ratiometric FRET based fluorescent probe for sensing azide ions. Sens. Actuators B Chem., 2017, 239, 1076-1086.
[http://dx.doi.org/10.1016/j.snb.2016.08.044];
f) Thasnim, P.; Bahulayan, D. Click-on fluorescent triazolyl coumarin peptidomimetics as inhibitors of human breast cancer cell line MCF-7. New J. Chem., 2017, 41(22), 13483-13489.
[http://dx.doi.org/10.1039/C7NJ02712E]
[39]
Shamsiya, A.; Damodaran, B. A click strategy for the synthesis of fluorescent pyrimidinone‐triazole hybrids with CDK2 selectivity in HeLa and A549 cell lines. ChemistrySelect, 2019, 4(11), 3076-3082.
[http://dx.doi.org/10.1002/slct.201803748]
[40]
Silva, G.C.O.; Correa, J.R.; Rodrigues, M.O.; Alvim, H.G.O.; Guido, B.C.; Gatto, C.C.; Wanderley, K.A.; Fioramonte, M.; Gozzo, F.C.; de Souza, R.O.M.A.; Neto, B.A.D. The Biginelli reaction under batch and continuous flow conditions: Catalysis, mechanism and antitumoral activity. RSC Advances, 2015, 5(60), 48506-48515.
[http://dx.doi.org/10.1039/C5RA07677C]
[41]
Appel, R. Abbel Original. Angew. Chem. Int. Ed. Engl., 1975, 14(2), 801-811.
[http://dx.doi.org/10.1002/anie.197508011]
[42]
Vendrusculo, V.; de Souza, V.P.M.; Fontoura, L.A.M.; D’Oca, M.G.; Banzato, T.P.; Monteiro, P.A.; Pilli, R.A.; de Carvalho, J.E.; Russowsky, D. Synthesis of novel perillyl-dihydropyrimidinone hybrids designed for antiproliferative activity. MedChemComm, 2018, 9(9), 1553-1564.
[http://dx.doi.org/10.1039/C8MD00270C] [PMID: 30288229]
[43]
Mostafa, A.S.; Selim, K.B. Synthesis and anticancer activity of new dihydropyrimidinone derivatives. Eur. J. Med. Chem., 2018, 156, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.004] [PMID: 30015070]
[44]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[45]
Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J. Org. Chem., 2015, 80(14), 6959-6967.
[http://dx.doi.org/10.1021/acs.joc.5b00407] [PMID: 26066623]
[46]
Venugopala, K.; Rao, D.; Bhandary, S.; Pillay, M.; Chopra, D.; Aldhubiab, B.; Attimarad, M.; Alwassil, O.; Harsha, S.; Mlisana, K. Design, synthesis, and characterization of (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2681-2690.
[http://dx.doi.org/10.2147/DDDT.S109760] [PMID: 27601885]
[47]
Balan, B.; Bahulayan, D. A novel green synthesis of α/β-amino acid functionalized pyrimidinone peptidomimetics using triazole ligation through click-multi-component reactions. Tetrahedron Lett., 2014, 55(1), 227-231.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.002]
[48]
Dharma Rao, G.B.; Anjaneyulu, B.; Kaushik, M.P. A facile one-pot five-component synthesis of glycoside annulated dihydropyrimidinone derivatives with 1,2,3-triazol linkage via transesterification/Biginelli/click reactions in aqueous medium. Tetrahedron Lett., 2014, 55(1), 19-22.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.023]
[49]
Dabiri, M.; Salehi, P.; Bahramnejad, M.; Koohshari, M.; Aliahmadi, A. One-pot synthesis of (1,2,3-Triazolyl)methyl 3,4-Dihydro-2-oxo-1 H -pyrimidine-5-carboxylates as potentially active antimicrobial agents. Helv. Chim. Acta, 2014, 97(3), 375-383.
[http://dx.doi.org/10.1002/hlca.201300198]
[50]
Negrón-Silva, G.; González-Olvera, R.; Angeles-Beltrán, D.; Maldonado-Carmona, N.; Espinoza-Vázquez, A.; Palomar-Pardavé, M.; Romero-Romo, M.; Santillan, R. Synthesis of new 1,2,3-triazole derivatives of uracil and thymine with potential inhibitory activity against acidic corrosion of steels. Molecules, 2013, 18(4), 4613-4627.
[http://dx.doi.org/10.3390/molecules18044613] [PMID: 23599018]
[51]
Quan, Z.J.; Xu, Q.; Zhang, Z.; Da, Y.X.; Wang, X.C. Copper-catalyzed click synthesis of functionalized 1,2,3-triazoles with 3,4-dihydropyrimidinone or amide group via a one-pot four-component reaction. Tetrahedron, 2013, 69(2), 881-887.
[http://dx.doi.org/10.1016/j.tet.2012.10.097]
[52]
Stefani, H.A.; Amaral, M.F.Z.J.; Manarin, F.; Ando, R.A.; Silva, N.C.S.; Juaristi, E. Functionalization of 2-(S)-isopropyl-5-iodo-pyrimidin-4-ones through Cu(I)-mediated 1,3-dipolar azide–alkyne cycloadditions. Tetrahedron Lett., 2011, 52(51), 6883-6886.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.011]
[53]
Salehi, P.; Dabiri, M.; Koohshari, M.; Movahed, S.K.; Bararjanian, M. One-pot synthesis of 1,2,3-triazole linked dihydropyrimidinones via Huisgen 1,3-dipolar/Biginelli cycloaddition. Mol. Divers., 2011, 15(4), 833-837.
[http://dx.doi.org/10.1007/s11030-011-9313-6] [PMID: 21505758]
[54]
Liu, C.; Zhao, X.; Li, Y. An efficient protocol for the one-pot synthesis of 4-(2-(4-bromophenyl)-1,2,3-triazol-4-yl)-3,4-dihydropyri-midin-2(1H)-ones/thiones catalyzed by Mg(NO3)2. J. Heterocycl. Chem., 2011, 48(1), 92-95.
[http://dx.doi.org/10.1002/jhet.517]
[55]
Liu, C.J.; Wang, J.D. Ultrasound-assisted synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-dihydropyrimidin-(1H)-(thio)ones catalyzed by Sm(ClO(4))(3). Molecules, 2010, 15(4), 2087-2095.
[http://dx.doi.org/10.3390/molecules15042087] [PMID: 20428028]
[56]
CO. K. A Reexamination of the mechanism of the biginelli dihydropyrimidine synthesis. Support for an n-acyliminium ion intermediate1. J. Org. Chem., 1997, 62(21), 7201-7204.
[57]
Khanetskyy, B.; Dallinger, D.; Kappe, C.O. Combining Biginelli multicomponent and click chemistry: Generation of 6-(1,2,3-triazol-1-yl)-dihydropyrimidone libraries. J. Comb. Chem., 2004, 6(6), 884-892.
[http://dx.doi.org/10.1021/cc0498938] [PMID: 15530114]
[58]
Reiter, J.; Pongó, L.; Sohár, P.; Dvortsák, P. On Triazoles. XIII. The reaction of 5-benzalimino-1,2,4-triazoles with substituted acetyl chlorides. J. Heterocycl. Chem., 1988, 25(1), 173-176.
[http://dx.doi.org/10.1002/jhet.5570250125]
[59]
Ramalingan, C.; Jayalakshmi, L.; Stalindurai, K.; Karuppasamy, A.; Sivaramakarthikeyan, R.; Devadoss, V. A Green and facile synthesis of biopertinent pyrazole-decorated nitriles and acrylates under catalyst-free conditions. Synlett, 2015, 26(13), 1857-1861.
[http://dx.doi.org/10.1055/s-0034-1380742]
[60]
Padmavathy, K.; Sutha, P.; Krishnan, K.G.; Kumar, C.U.; Iniyaval, S.; Ramalingan, C. Synthesis and antioxidant evaluation of dihydropyrimidinone integrated pyrazoles. Lett. Org. Chem., 2019, 16(12), 969-977.
[http://dx.doi.org/10.2174/1570178616666190305125745]
[61]
Iftikhar, F.; Yaqoob, F.; Tabassum, N.; Jan, M.S.; Sadiq, A.; Tahir, S.; Batool, T.; Niaz, B.; Ansari, F.L.; Choudhary, M.I.; Rashid, U. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg. Chem., 2018, 80(April), 99-111.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.026] [PMID: 29894893]
[62]
Desai, N.C.; Vaghani, H.V.; Patel, B.Y.; Karkar, T.J. Synthesis and antimicrobial activity of fluorine containing pyrazole-clubbed dihydropyrimidinones. Indian J. Pharm. Sci., 2018, 80(2), 242-252.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000351]
[63]
Allam, M.; Bhavani, A.K.D.; Vodnala, S. The new green procedure for pyrazolopyrimidinone based dihydropyrimidinones and their antibacterial screening. Russ. J. Gen. Chem., 2017, 87(11), 2712-2718.
[http://dx.doi.org/10.1134/S1070363217110299]
[64]
Cruickshank, R.; Duguid, J.P.; Marion, B.P.; Swain, R.H.A. Medicinal Microbiology, London. Churchil Livingstone, 1975, 2, 196.
[65]
a) Viveka, S. Dinesha.; Laxmeshwar, S.S.; Nagaraja, G.K. Ethyl 7-methyl-5-(4-methylphenyl)-3-oxo-2-{[3-(3,4-dichloro-phenyl)-1-phenyl-1H-pyrazol-4-yl]methylidene}-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Molbank, 2012, M776, 1-5.;
b) Viveka, S. Dinesha.; Shama, P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem., 2015101, 442-451.;
c) Viveka, S.; Dinesha, D.; Shama, P.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: A Knoevenagel reaction approach. RSC Advances, 2015, 5(115), 94786-94795.
[http://dx.doi.org/10.1039/C5RA17391D]
[66]
Viveka, S. Dinesha; Nagaraja, G.K.; Shama, P.; Basavarajaswamy, G.; Rao, K.P.; Yanjarappa Sreenivasa, M. One pot synthesis of thiazolo[2,3-b]dihydropyrimidinone possessing pyrazole moiety and evaluation of their anti-inflammatory and antimicrobial activities. Med. Chem. Res., 2018, 27(1), 171-185.
[http://dx.doi.org/10.1007/s00044-017-2058-8]
[67]
Zarghi, A.; Arfaei, S.; Ghodsi, R. Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. Res., 2012, 21(8), 1803-1810.
[http://dx.doi.org/10.1007/s00044-011-9710-5]
[68]
Viveka, S. Dinesha; Madhu, L.N.; Nagaraja, G.K. Synthesis of new pyrazole derivatives via multicomponent reaction and evaluation of their antimicrobial and antioxidant activities. Monatsh. Chem., 2015, 146(9), 1547-1555.
[http://dx.doi.org/10.1007/s00706-015-1428-5]
[69]
Jensen, K.A.; Henriksen, L.; Weeks, O.B.; Schwieter, U.; Paasivirta, J. Studies on thioacids and their derivatives. xiv. reactions of carbon disulfide with active methylene compounds. Acta Chem. Scand., 1968, 22, 1107-1128.
[http://dx.doi.org/10.3891/acta.chem.scand.22-1107]
[70]
Yewale, S.B.; Ganorkar, S.B.; Baheti, K.G.; Shelke, R.U. Novel 3-substituted-1-aryl-5-phenyl-6-anilinopyrazolo[3,4-d]pyrimidin-4-ones: Docking, synthesis and pharmacological evaluation as a potential anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(21), 6616-6620.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.119] [PMID: 23036953]
[71]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[72]
El-Hamouly, W.S.; Amine, K.M.; Tawfik, H.A.; Dawood, D.H.; Moharam, M.E. Synthesis and antimicrobial activity of new 3, 4- dihydropyrimidinones. Int. J. Pharm. Sci. Res., 2011, 2(4), 1054-1062.
[73]
Ramesh, B.; Bharathi, D.R.; Basavaraj, H.S.; Jayadevaiah, K.V. Synthesis and antimicrobial activity of trisubstituted 1,6-dihydropyrimidines. Asian J. Chem., 2008, 20, 2591-2596.
[74]
Ramesh, B.; Bhalgat, C.M. Novel dihydropyrimidines and its pyrazole derivatives: Synthesis and pharmacological screening. Eur. J. Med. Chem., 2011, 46(5), 1882-1891.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.052] [PMID: 21414695]
[75]
Trivedi, A.R.; Bhuva, V.R.; Dholariya, B.H.; Dodiya, D.K.; Kataria, V.B.; Shah, V.H. Novel dihydropyrimidines as a potential new class of antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(20), 6100-6102.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.046] [PMID: 20813528]
[76]
Tominaga, Y.; Honkawa, Y.; Hara, M.; Hosomi, A. Synthesis of pyrazolo[3,4- d]pyrimidine derivatives using ketene dithioacetals. J. Heterocycl. Chem., 1990, 27(3), 775-783.
[http://dx.doi.org/10.1002/jhet.5570270355]
[77]
El-Enany, M.M.; Kamel, M.M.; Khalil, O.M.; El-Nassan, H.B. Synthesis and antitumor activity of novel 6-aryl and 6-alkylpyrazolo[3,4-d]pyrimidin-4-one derivatives. Eur. J. Med. Chem., 2010, 45(11), 5286-5291.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.048] [PMID: 20846758]
[78]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s text book of practical organic chemistry. Longman Sci. Technical, 1989, 5, 1, 1540.
[79]
Tumma, R.; Shaik, N.B. Synthesis and anti-inflammatory activity of some 5-phenyl-(Acyl)-1, 2, 3, 4-tetrazole. Inter. J. Chem. Analyt. Sci., 2010, 1(16), 127-129.
[80]
Vilsmeier, A.; Haack, A. On the action of halophosphorus on alkyl formanilides. A new method for the preparation of secondary and tertiary p‐alkylamino‐benzaldehydes. approx. Dtsch. Chem. Ges. B, 1927, 60(1), 119-122.
[http://dx.doi.org/10.1002/cber.19270600118]
[81]
Kumar, R.; Malik, S.; Chandra, R. Synthesis and antimicrobial activity of 4- [5-dihydropyridines and 4- [ 5-chloro-3-methyl-1-. Indian J. Chem., 2009, 48, 718-724.
[82]
Zhang, X.; Li, Y.; Liu, C.; Wang, J. An efficient synthesis of 4-substituted pyrazolyl-3,4-dihydropyrimidin-2(1H)-(thio)ones catalyzed by Mg(ClO4)2 under ultrasound irradiation. J. Mol. Catal. Chem., 2006, 253(1-2), 207-211.
[http://dx.doi.org/10.1016/j.molcata.2006.03.018]
[83]
Markwalder, J.A.; Arnone, M.R.; Benfield, P.A.; Boisclair, M.; Burton, C.R.; Chang, C.H.; Cox, S.S.; Czerniak, P.M.; Dean, C.L.; Doleniak, D.; Grafstrom, R.; Harrison, B.A.; Kaltenbach, R.F., III; Nugiel, D.A.; Rossi, K.A.; Sherk, S.R.; Sisk, L.M.; Stouten, P.; Trainor, G.L.; Worland, P.; Seitz, S.P. Synthesis and biological evaluation of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one inhibitors of cyclin-dependent kinases. J. Med. Chem., 2004, 47(24), 5894-5911.
[http://dx.doi.org/10.1021/jm020455u] [PMID: 15537345]
[84]
Peet, N.P.; Lentz, N.L.; Sunder, S.; Dudley, M.W.; Ogden, A.M.L. Conformationally restrained, chiral (phenylisopropyl)amino-substituted pyrazolo[3,4-d]pyrimidines and purines with selectivity for adenosine A1 and A2 receptors. J. Med. Chem., 1992, 35(17), 3263-3269.
[http://dx.doi.org/10.1021/jm00095a024] [PMID: 1507211]
[85]
El-bendary, E.R.; Badria, F.A. Synthesis, DNA-binding, and antiviral activity of certain pyrazolo; Pyrimidine Derivatives, 2000, pp. 99-103. 3, 4- d.
[86]
Sagha, M.; Mousaei, F.; Salahi, M.; Razzaghi-Asl, N. Synthesis of new 2-aminothiazolyl/benzothiazolyl-based 3,4-dihydropyrimi-dinones and evaluation of their effects on adenocarcinoma gastric cell migration. Mol. Divers., 2021, 5(0123456789)
[PMID: 34050874]
[87]
Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Y.; Vovk, M.V. The synthesis and cyclofunctionalization of (1,3-thiazolidin-2-ylidene)ketones. J. Org. Pharm. Chem., 2018, 16(4(64)), 18-27.
[http://dx.doi.org/10.24959/ophcj.18.951]
[88]
Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Y.; Rusanov, E.B.; Vovk, M.V. A convenient method of synthesis of 8-acyl-2,3,6,7-tetrahydro-5Н-[1,3]thiazolo[3,2-c]pyrimidin-5-ones. Chem. Heterocycl. Compd., 2020, 56(1), 101-107.
[http://dx.doi.org/10.1007/s10593-020-02629-0]
[89]
Evans, D.A.; Cee, V.J.; Smith, T.E.; Santiago, K.J. Selective lithiation of 2-methyloxazoles. Applications to pivotal bond constructions in the phorboxazole nucleus. Org. Lett., 1999, 1(1), 87-90.
[http://dx.doi.org/10.1021/ol990027r] [PMID: 10822540]
[90]
Kim, J.; Ok, T.; Park, C.; So, W.; Jo, M.; Kim, Y.; Seo, M.; Lee, D.; Jo, S.; Ko, Y.; Choi, I.; Park, Y.; Yoon, J.; Ju, M.K.; Ahn, J.; Kim, J.; Han, S.J.; Kim, T.H.; Cechetto, J.; Nam, J.; Liuzzi, M.; Sommer, P.; No, Z. A novel 3,4-dihydropyrimidin-2(1H)-one: HIV-1 replication inhibitors with improved metabolic stability. Bioorg. Med. Chem. Lett., 2012, 22(7), 2522-2526.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.133] [PMID: 22374216]
[91]
Solanki, M.J.; Chavda, M.M. Synthesis and antimicrobial activity of some novel derivatives of Thiazolo[2,3-b] dihydropyrimidine containing 4-pyrazolyl moiety. Rasayan J. Chem., 2011, 4(3), 605-608.
[92]
Russowsky, D.; Lopes, F.A.; Silva, V.S.S.; Canto, K.F.S.; D’Oca, M.G.M.; Godoi, M.N. Multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones promoted by SnCl2.2H2O. J. Braz. Chem. Soc., 2004, 15(2), 165-169.
[http://dx.doi.org/10.1590/S0103-50532004000200002]
[93]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[94]
Holla, B.S.; Rao, B.S.; Sarojini, B.K.; Akberali, P.M. One pot synthesis of thiazolodihydropyrimidinones and evaluation of their anticancer activity. Eur. J. Med. Chem., 2004, 39(9), 777-783.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.001] [PMID: 15337290]
[95]
Stull, R.E.; Jobe, P.C.; Seiger, P.F. Brain areas involved in the catecholamine mediated regulation of electroshock seizure intensity. J. Pharm. (Cairo), 1977, 161(3), 5-10.
[96]
Bekhit, A.; Fahmy, H.T.Y.; Rostom, S.A.F.; Baraka, A.M. Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial Agents. Eur. J. Med. Chem., 2003, 38(1), 27-36.
[http://dx.doi.org/10.1016/S0223-5234(02)00009-0] [PMID: 12593914]
[97]
Matloobi, M.; Kappe, C.O. Microwave-assisted solution- and solid-phase synthesis of 2-amino-4-arylpyrimidine derivatives. J. Comb. Chem., 2007, 9(2), 275-284.
[http://dx.doi.org/10.1021/cc0601377] [PMID: 17348733]
[98]
Shaikh, A.; Meshram, J. Novel 1,3,4-oxadiazole derivatives of dihydropyrimidinones: Synthesis, anti-inflammatory, anthelmintic, and antibacterial activity evaluation. J. Heterocycl. Chem., 2016, 53(4), 1176-1182.
[http://dx.doi.org/10.1002/jhet.2377]
[99]
Shaikh, A.S.; Meshram, J. Facile microwave-assisted synthesis and pharmacological appraisal of bioactive dihydropyrimidinone derivatives. Curr. Microw. Chem., 2015, 2(2), 166-172.
[http://dx.doi.org/10.2174/2213335602666141217222008]
[100]
Yang, X.; Sun, H.; Maddili, S.K.; Li, S.; Yang, R.G.; Zhou, C.H. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens. Eur. J. Med. Chem., 2022, 232114188
[http://dx.doi.org/10.1016/j.ejmech.2022.114188] [PMID: 35168152]
[101]
Bhat, M.A.; Al-Omar, M.A.; Naglah, A.M.; Kalmouch, A.; Al-Dhfyan, A. Synthesis and characterization of novel biginelli dihydropyrimidinone derivatives containing imidazole moiety. J. Chem., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/3131879]
[102]
King, F.E.; Acheson, R.M.; Spensley, P.C. 275. Benziminazole analogues of paludrine. J. Chem. Soc., 1948, 17(1366), 1366-1371.
[http://dx.doi.org/10.1039/jr9480001366] [PMID: 18893616]
[103]
Shaaban, M.K.; Soliman, A.M.; El-Remaily, M.A.A. Eco-friendly synthesis of pyrimidine and dihydropyrimidinone derivatives under solvent free condition and their anti-microbial activity. Chem. Sci. J., 2013, 2013(110), 1-9.
[104]
Jiang, X.Q.; Chen, S.Q.; Liu, Y.F.; Pan, X.G.; Chen, D.; Wang, S.F. Solvothermal synthesis of multiple dihydropyrimidinones at a time as inhibitors of Eg5. Molecules, 2021, 26(7), 1925.
[http://dx.doi.org/10.3390/molecules26071925] [PMID: 33808108]
[105]
Khalilpour, A.; Asghari, S. Synthesis, characterization and evaluation of cytotoxic and antioxidant activities of dihydropyrimidone substituted pyrrole derivatives. Med. Chem. Res., 2018, 27(1), 15-22.
[http://dx.doi.org/10.1007/s00044-017-2041-4]
[106]
Ahmad Bhat, M.; Al-Omar, M.A.; Naglah, A.M. Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 978-988.
[http://dx.doi.org/10.1080/14756366.2018.1474212] [PMID: 29792357]
[107]
Soumyanarayanan, U.; Bhat, V.G.; Kar, S.S.; Mathew, J.A. Monastrol mimic Biginelli dihydropyrimidinone derivatives: Synthesis, cytotoxicity screening against HepG2 and HeLa cell lines and molecular modeling study. Org. Med. Chem. Lett., 2012, 2(1), 23.
[http://dx.doi.org/10.1186/2191-2858-2-23] [PMID: 22691177]
[108]
Fan, W.; Queneau, Y.; Popowycz, F.; Fan, W.; Queneau, Y.; Popowycz, F.; Fan, W.; Queneau, Y.; Popowycz, F. HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction. Green Chem., 2018, 20(2), 485-492.
[http://dx.doi.org/10.1039/C7GC03425C]
[109]
Lacotte, P.; Buisson, D.; Ambroise, Y. Synthesis, evaluation and absolute Configuration assignment of novel dihydropyrimidin-2-ones as picomolar sodium iodide symporter inhibitors. Eur. J. Med. Chem., 2013, 62, 722-727.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.043] [PMID: 23454514]
[110]
Karimian, S.; Moghdani, Y.; Khoshneviszadeh, M.; Pirhadi, S.; Iraji, A.; Khoshneviszadeh, M. Rational design, synthesis, in vitro, and in silico studies of dihydropyrimidinone derivatives as β-glucuronidase inhibitors. J. Chem., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6664756]
[111]
Santos, F.S.; Medeiros, N.G.; Affeldt, R.F.; Duarte, R.C.; Moura, S.; Rodembusch, F.S. Small heterocycles as highly luminescent building blocks in the solid state for organic synthesis. New J. Chem., 2016, 40(3), 2785-2791.
[http://dx.doi.org/10.1039/C5NJ02943K]
[112]
de Souza, V.P.; Vendrusculo, V.; Morás, A.M.; Steffens, L.; Santos, F.S.; Moura, D.J.; Rodembusch, F.S.; Russowsky, D. Synthesis and photophysical study of new fluorescent proton transfer dihydropyrimidinone hybrids as potential candidates for molecular probes. New J. Chem., 2017, 41(24), 15305-15311.
[http://dx.doi.org/10.1039/C7NJ02289A]
[113]
Rajanarendar, E.; Ramesh, P.; Mohan, G.; Rao, E.K. An efficient and modified biginelli one-pot synthesis of new isoxazole substitted 3,4-dihydropyrimidin-2(1 H)-ones and thiones catalyzed by VCl3. J. Heterocycl. Chem., 2007, 44(2), 483-486.
[http://dx.doi.org/10.1002/jhet.5570440235]
[114]
Kaur, H.; Persoons, L.; Andrei, G.; Singh, K. Quinoline‐Dihydropyrimidin‐2(1 H)‐one Hybrids: Synthesis, biological activity, and mechanistic studies. ChemMedChem, 2022, 2, 1-11.
[115]
Paul, D.; Reddy, R.G.; Rajendran, S.P. Facile ecofriendly one pot synthesis of heterocyclic priviledged medicinal scaffolds via biginelli reaction using retrievable nickel nanoparticles as catalyst. J. Chil. Chem. Soc., 2018, 63(2), 3974-3982.
[http://dx.doi.org/10.4067/s0717-97072018000203974]
[116]
Shaikh, A.; Meshram, J.S. Quinoline fused 2-azetidinone derivatives bearing dihyropyrimidinone: Benign synthesis and its pharmacological assessment. Curr. Bioact. Compd., 2018, 14(2), 134-141.
[http://dx.doi.org/10.2174/1573407213666170201113846]
[117]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. (Maywood), 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[118]
Hamama, W.S.; Ibrahim, M.E.; Gooda, A.A.; Zoorob, H.H. Convenient synthesis, antimicrobial evaluation and molecular modeling of some novel quinoline derivatives. Synth. Commun., 2017, 47(3), 224-231.
[http://dx.doi.org/10.1080/00397911.2016.1258580]
[119]
Naik, P.; Naik, B.; Aravinda, T. Nano-titanium dioxide (TiO2) mediated simple and efficient modification to biginelli reaction. African J. Pure Appl. Chem., 2009, 3(9), 202-207.
[120]
De, D.; Byers, L.D.; Krogstad, D.J. Antimalarials: Synthesis of 4-aminoquinolines that circumvent drug resistance in malaria parasites. J. Heterocycl. Chem., 1997, 34(1), 315-320.
[http://dx.doi.org/10.1002/jhet.5570340149]
[121]
Watermeyer, N.D.; Chibale, K.; Caira, M.R. Pharmacologically relevant bifunctional compounds containing chloroquinoline and dihydropyrimidone moieties: syntheses and crystal structures of a target molecule and selected intermediates. J. Chem. Crystallogr., 2009, 39(10), 753-760.
[http://dx.doi.org/10.1007/s10870-009-9568-2]
[122]
Bhat, M.; Al-Omar, M.; Ghabbour, H.; Naglah, A. A one-pot biginelli synthesis and characterization of novel dihydropyrimidinone derivatives containing piperazine/morpholine moiety. Molecules, 2018, 23(7), 1559.
[http://dx.doi.org/10.3390/molecules23071559] [PMID: 29954138]
[123]
Shorey, S.; Choudhary, P.C.; Intodia, K. Microwave irradiation synthesis of various substituted chalcones using various heterogeneous catalysts under solvent - free conditions and their biological studies. Chem. Sci. Trans., 2013, 2(2), 343-348.
[http://dx.doi.org/10.7598/cst2013.319]
[124]
Patel, N.; Pathan, S.; Soni, H.I. 3,4-dihydropyrimidin-2(1h)-one analogues: microwave irradiated synthesis with antimicrobial and antituberculosis study. Curr. Microw. Chem., 2019, 6(1), 61-70.
[http://dx.doi.org/10.2174/2213335606666190724093305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy