Abstract
In medicinal chemistry, Dihydropyrimidinone-based heterocycle scaffolds have attained a prominent place due to their enormous pharmacological and biological activities. The discovery and development of innovative drugs to combat a wide range of diseases exemplify the utility of these compounds. The present study summarizes the variety of methods available to synthesize various dihydropyrimidinone- based heterocycle scaffolds and their beneficial medicinal properties with the available literature until 2022.
Graphical Abstract
b) Panda, S.S. Biginelli Reaction A green perspective Biginelli reaction A green perspective. Curr. Org. Chem., 2012, 16, 507-520.;
c) Heravi, M.M.; Ghavidel, M.; Heidari, B. Microwave-assisted biginelli reaction: An old reaction, a new perspective. Curr. Org. Synth., 2016, 13, 569-600.
[http://dx.doi.org/10.1021/tx3004483] [PMID: 23270282];
b) Jamison, M.T.; Molinski, T.F. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. J. Nat. Prod., 2015, 78(3), 557-561.
[http://dx.doi.org/10.1021/np501052a] [PMID: 25738226];
c) El-Demerdash, A.; Moriou, C.; Martin, M.T.; Rodrigues-Stien, A.S.; Petek, S.; Demoy-Schneider, M.; Hall, K.; Hooper, J.N.A.; Debitus, C.; Al-Mourabit, A. Cytotoxic guanidine alkaloids from a french polynesian monanchora n. sp. sponge. J. Nat. Prod., 2016, 79(8), 1929-1937.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00168] [PMID: 27419263];
d) Nakazaki, A.; Nakane, Y.; Ishikawa, Y.; Yotsu-Yamashita, M.; Nishikawa, T. Asymmetric synthesis of crambescin A–C carboxylic acids and their inhibitory activity on voltage-gated sodium channels. Org. Biomol. Chem., 2016, 14(23), 5304-5309.
[http://dx.doi.org/10.1039/C6OB00914J] [PMID: 27215973]
[http://dx.doi.org/10.1021/jm990612y] [PMID: 10893308]
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[http://dx.doi.org/10.1021/ol015848m] [PMID: 11388864];
b) Elliott, M.C.; Long, M.S. Studies towards the total synthesis of batzelladine A: synthesis of a model pyrrolo[1,2-c]pyrimidine. Tetrahedron Lett., 2002, 43(50), 9191-9194.
[http://dx.doi.org/10.1016/S0040-4039(02)02261-X];
c) Shimokawa, J.; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Enantioselective total synthesis of batzelladine A. Angew. Chem. Int. Ed., 2004, 43(12), 1559-1562.
[http://dx.doi.org/10.1002/anie.200353200];
d) Arnold, M.A.; Day, K.A.; Durón, S.G.; Gin, D.Y. Total synthesis of (+)-batzelladine A and (-)-batzelladine D via [4 + 2]-annulation of vinyl carbodiimides with N-alkyl imines. J. Am. Chem. Soc., 2006, 128(40), 13255-13260.
[http://dx.doi.org/10.1021/ja063860+] [PMID: 17017806];
e) Davies, C.D.; Elliott, M.C.; Hill-Cousins, J.; Khan, M.A.; Maqbool, T. A concise diastereoselective approach to the left-hand side of batzelladine A. Synlett, 2008, 13, 2028-2033.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155];
b) Haggarty, S.J.; Mayer, T.U.; Miyamoto, D.T.; Fathi, R.; King, R.W.; Mitchison, T.J.; Schreiber, S.L. Dissecting cellular processes using small molecules: Identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol., 2000, 7(4), 275-286.
[http://dx.doi.org/10.1016/S1074-5521(00)00101-0] [PMID: 10780927]
[http://dx.doi.org/10.1038/nm741] [PMID: 12118247];
b) Basso, A.M.; Bratcher, N.A.; Gallagher, K.B.; Cowart, M.D.; Zhao, C.; Sun, M.; Esbenshade, T.A.; Brune, M.E.; Fox, G.B.; Schmidt, M.; Collins, C.A.; Souers, A.J.; Iyengar, R.; Vasudevan, A.; Kym, P.R.; Hancock, A.A.; Rueter, L.E. Lack of efficacy of melanin-concentrating hormone-1 receptor antagonists in models of depression and anxiety. Eur. J. Pharmacol., 2006, 540(1-3), 115-120.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.043] [PMID: 16765941]
[http://dx.doi.org/10.1021/jo981971o] [PMID: 11674213];
(b) Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34, 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904];
(c) Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946]. J. Cardiovasc. Pharmacol., 1995, 26, 286-289.;
(d) Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type-A literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403];
(e) Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222];
(f) Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63(10), 3454-3457.
[http://dx.doi.org/10.1021/jo970846u];
(g) Kappe, C.O.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53(8), 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7];
(h) Matos, L.H.S.; Masson, F.T.; Simeoni, L.A.; Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur. J. Med. Chem., 2018, 143, 1779-1789.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.073] [PMID: 29133039];
(i) Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532];
(j) Khasimbi, S.; Ali, F.; Manda, K.; Sharma, A.; Chauhan, G.; Wakode, S. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 2021, 18(3), 270-293.
[http://dx.doi.org/10.2174/1570179417666201207215710] [PMID: 33290199]
[http://dx.doi.org/10.1039/C6RA02415G];
b) Shen, P.; Xu, M.; Yin, D.; Xie, S.; Zhou, C.; Li, F. Halogenated macroporous sulfonic resins as efficient catalysts for the Biginelli reaction. Catal. Commun., 2016, 77, 18-21.
[http://dx.doi.org/10.1016/j.catcom.2016.01.010];
c) Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41(20), 6173-6181.
[http://dx.doi.org/10.1039/c2dt30106g] [PMID: 22475989];
d) Alvim, H.G.O.; Lima, T.B.; de Oliveira, A.L.; de Oliveira, H.C.B.; Silva, F.M.; Gozzo, F.C.; Souza, R.Y.; da Silva, W.A.; Neto, B.A.D. Facts, presumptions, and myths on the solvent-free and catalyst-free Biginelli reaction. What is catalysis for? J. Org. Chem., 2014, 79(8), 3383-3397.
[http://dx.doi.org/10.1021/jo5001498] [PMID: 24665975];
e) Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO3)3. 9H2O as catalyst. Green Chem. Lett. Rev., 2010, 3(4), 329-334.
[http://dx.doi.org/10.1080/17518253.2010.487841];
f) Reddy, O.; Suryanarayana, C.; Sharmila, N.; Ramana, G.; Anuradha, V.; Babu, B. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity. Lett. Drug Des. Discov., 2013, 10(8), 699-705.
[http://dx.doi.org/10.2174/15701808113109990007]
[http://dx.doi.org/10.1016/j.bmcl.2006.06.038] [PMID: 16806918]
[http://dx.doi.org/10.1016/S0040-4039(03)00436-2]
[http://dx.doi.org/10.1039/C4RA05244G];
b) Costanzo, P.; Oliverio, M.; Nardi, M.; Rivalta, I.; Procopio, A. Facile ecofriendly synthesis of monastrol and its structural isomers via biginelli reaction. ACS Sustain. Chem.& Eng., 2014, 2(5), 1228-1233.;
c) Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett., 2008, 49(42), 6119-6121.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.016]
[http://dx.doi.org/10.1016/S0040-4020(02)00455-6]
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[http://dx.doi.org/10.1016/j.tetlet.2011.07.108];
(b) Shapiro, G.; Marzi, M. Facile and selective O -Alkyl transesterification of Primary carbamates with titanium(IV) alkoxides. J. Org. Chem., 1997, 62(21), 7096-7097.
[http://dx.doi.org/10.1021/jo971498z] [PMID: 11671810];
(c) Fujita, T.; Tanaka, M.; Norimine, Y.; Suemune, H.; Sakai, K. Enantioselective synthesis of (−)-curcumanolide a using enzymatic transesterification of meso-spirodiol. J. Org. Chem., 1997, 62(12), 3824-3830.
[http://dx.doi.org/10.1021/jo962150r];
(d) Dharma Rao, G.B.; Kaushik, M.P. An efficient synthesis of β- ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Int. J. Sci. Thesis Dessert., 2013, 13(1), 25-29.;
(e) Frost, C.; Hartley, J. New applications of indium catalysts in organic synthesis. Mini Rev. Org. Chem., 2004, 1(1), 1-7.
[http://dx.doi.org/10.2174/1570193043489006];
(f) Patil, M.K.; Prasad, A.N.; Reddy, B.M. Zirconia-based solid acids: Green and heterogeneous catalysts for organic synthesis. Curr. Org. Chem., 2011, 15, 3961-3985.
[http://dx.doi.org/10.2174/138527211798072430];
(g) Siódmiak, T.; Piotr Marszall, M.; Proszowska, A. Ionic liquids: A new strategy in pharmaceutical synthesis. Mini Rev. Org. Chem., 2012, 9(2), 203-208.
[http://dx.doi.org/10.2174/157019312800604698]
[http://dx.doi.org/10.1351/pac199264081135];
b) Otera, J. Transesterification. Chem. Rev., 1993, 93(4), 1449-1470.
[http://dx.doi.org/10.1021/cr00020a004]
[http://dx.doi.org/10.1016/1381-1169(96)00014-3]
[http://dx.doi.org/10.1021/cr800524f] [PMID: 19534492];
b) Wobser, S.D.; Stephenson, C.J.; Delferro, M.; Marks, T.J. Carbostannolysis mediated by bis(pentamethylcyclopentadienyl)lan-] thanide catalysts. Utility in accessing organotin synthons. Organometallics, 2013, 32(5), 1317-1327.
[http://dx.doi.org/10.1021/om301031e];
c) Chen, I.T.; Baitinger, I.; Schreyer, L.; Trauner, D. Total synthesis of sandresolide B and amphilectolide. Org. Lett., 2014, 16(1), 166-169.
[http://dx.doi.org/10.1021/ol403156r] [PMID: 24308854];
d) Seo, S.; Yu, X.; Marks, T.J. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. J. Am. Chem. Soc., 2009, 131(1), 263-276.
[http://dx.doi.org/10.1021/ja8072462] [PMID: 19086869];
e) Li, G.; Jin, R. Catalysis by gold nanoparticles: carbon-carbon coupling reactions. Nanotechnol. Rev., 2013, 2(5), 529-545.
[http://dx.doi.org/10.1515/ntrev-2013-0020]
[http://dx.doi.org/10.1002/anie.201402719]
[http://dx.doi.org/10.1039/C3CS60027K] [PMID: 24356298]
[http://dx.doi.org/10.1002/9783527656790]
[http://dx.doi.org/10.1039/C2CS35261C] [PMID: 23072831];
b) McMorn, P.; Hutchings, G.J. Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem. Soc. Rev., 2004, 33(2), 108-122.
[http://dx.doi.org/10.1039/b200387m] [PMID: 14767506];
c) Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766];
d) Schitz, A.; Reiser, O.; Stark, W.J. Nanoparticles as semi-heterogeneous catalyst supports. Chemistry, 2010, 16, 8950-8967.
[http://dx.doi.org/10.1002/chem.200903462] [PMID: 20645330];
e) Roya, S.; Pericis, M.A. Functionalized nanoparticles as catalysts for enantioselective processes. Org. Biomol. Chem., 2009, 7, 2669-2677.
[http://dx.doi.org/10.1039/b903921j] [PMID: 19532980];
f) Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev., 2011, 111(2), 1072-1133.
[http://dx.doi.org/10.1021/cr1002084] [PMID: 21105733]
[http://dx.doi.org/10.1002/9780470682005];
b) Trindade, A.F.; Gois, P.M.P.; Afonso, C.A.M. Recyclable stereoselective catalysts. Chem. Rev., 2009, 109(2), 418-514.
[http://dx.doi.org/10.1021/cr800200t] [PMID: 19209946]
[http://dx.doi.org/10.1002/anie.200905684];
b) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074];
c) Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866];
d) Nasir Baig, R.B.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.), 2013, 49, 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208];
e) Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5(5), 412-434.
[http://dx.doi.org/10.1016/j.nantod.2010.08.008];
f) Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127];
g) Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem., 2014, 16(6), 2906-2933.
[http://dx.doi.org/10.1039/c4gc00164h];
h) Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114(14), 6949-6985.
[http://dx.doi.org/10.1021/cr500134h] [PMID: 24892491]
[http://dx.doi.org/10.1002/cmdc.201800075] [PMID: 29771004]
[http://dx.doi.org/10.3390/molecules21101268] [PMID: 27669198]
[http://dx.doi.org/10.1016/j.tet.2016.07.044]
[http://dx.doi.org/10.1055/s-0039-1690781]
[http://dx.doi.org/10.3390/molecules21020250] [PMID: 26907242]
[http://dx.doi.org/10.3390/M1076]
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[http://dx.doi.org/10.5539/ijc.v10n4p18]
[http://dx.doi.org/10.1002/slct.201802199]
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435];
b) Hong, V.; Presolski, S.I.; Ma, C.; Finn, M.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed., 2009, 48(52), 9879-9883.
[http://dx.doi.org/10.1002/anie.200905087] [PMID: 19943299];
c) Mamidyala, S.K.; Finn, M.G. In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev., 2010, 39(4), 1252-1261.
[http://dx.doi.org/10.1039/b901969n] [PMID: 20309485]
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328];
(b) Chandrasekaran, S. Click Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2016, p. 349.
[http://dx.doi.org/10.1002/9783527694174]
[http://dx.doi.org/10.1016/j.snb.2018.05.126];
b) Pathoor, R. New J. Chem., 2018, 42, 6810-6816.
[http://dx.doi.org/10.1039/C8NJ00032H];
c) Salim, K.M.M.; Shamsiya, A.; Damodaran, B. Green synthesis of fluorescent peptidomimetic triazoles from biomass-derived 5-(chloromethyl)furfural. ChemistrySelect, 2018, 3(39), 11141-11146.
[http://dx.doi.org/10.1002/slct.201802310];
d) Raj, P.J.; Bahulayan, D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Lett., 2017, 58(22), 2122-2126.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.052];
e) Puthiyedath, T.; Bahulayan, D. A click-generated triazole tethered oxazolone-pyrimidinone dyad: A highly selective colorimetric and ratiometric FRET based fluorescent probe for sensing azide ions. Sens. Actuators B Chem., 2017, 239, 1076-1086.
[http://dx.doi.org/10.1016/j.snb.2016.08.044];
f) Thasnim, P.; Bahulayan, D. Click-on fluorescent triazolyl coumarin peptidomimetics as inhibitors of human breast cancer cell line MCF-7. New J. Chem., 2017, 41(22), 13483-13489.
[http://dx.doi.org/10.1039/C7NJ02712E]
[http://dx.doi.org/10.1002/slct.201803748]
[http://dx.doi.org/10.1039/C5RA07677C]
[http://dx.doi.org/10.1002/anie.197508011]
[http://dx.doi.org/10.1039/C8MD00270C] [PMID: 30288229]
[http://dx.doi.org/10.1016/j.ejmech.2018.07.004] [PMID: 30015070]
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[http://dx.doi.org/10.1021/acs.joc.5b00407] [PMID: 26066623]
[http://dx.doi.org/10.2147/DDDT.S109760] [PMID: 27601885]
[http://dx.doi.org/10.1016/j.tetlet.2013.11.002]
[http://dx.doi.org/10.1016/j.tetlet.2013.09.023]
[http://dx.doi.org/10.1002/hlca.201300198]
[http://dx.doi.org/10.3390/molecules18044613] [PMID: 23599018]
[http://dx.doi.org/10.1016/j.tet.2012.10.097]
[http://dx.doi.org/10.1016/j.tetlet.2011.10.011]
[http://dx.doi.org/10.1007/s11030-011-9313-6] [PMID: 21505758]
[http://dx.doi.org/10.1002/jhet.517]
[http://dx.doi.org/10.3390/molecules15042087] [PMID: 20428028]
[http://dx.doi.org/10.1021/cc0498938] [PMID: 15530114]
[http://dx.doi.org/10.1002/jhet.5570250125]
[http://dx.doi.org/10.1055/s-0034-1380742]
[http://dx.doi.org/10.2174/1570178616666190305125745]
[http://dx.doi.org/10.1016/j.bioorg.2018.05.026] [PMID: 29894893]
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000351]
[http://dx.doi.org/10.1134/S1070363217110299]
b) Viveka, S. Dinesha.; Shama, P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem., 2015101, 442-451.;
c) Viveka, S.; Dinesha, D.; Shama, P.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: A Knoevenagel reaction approach. RSC Advances, 2015, 5(115), 94786-94795.
[http://dx.doi.org/10.1039/C5RA17391D]
[http://dx.doi.org/10.1007/s00044-017-2058-8]
[http://dx.doi.org/10.1007/s00044-011-9710-5]
[http://dx.doi.org/10.1007/s00706-015-1428-5]
[http://dx.doi.org/10.3891/acta.chem.scand.22-1107]
[http://dx.doi.org/10.1016/j.bmcl.2012.08.119] [PMID: 23036953]
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[http://dx.doi.org/10.1016/j.ejmech.2011.02.052] [PMID: 21414695]
[http://dx.doi.org/10.1016/j.bmcl.2010.08.046] [PMID: 20813528]
[http://dx.doi.org/10.1002/jhet.5570270355]
[http://dx.doi.org/10.1016/j.ejmech.2010.08.048] [PMID: 20846758]
[http://dx.doi.org/10.1002/cber.19270600118]
[http://dx.doi.org/10.1016/j.molcata.2006.03.018]
[http://dx.doi.org/10.1021/jm020455u] [PMID: 15537345]
[http://dx.doi.org/10.1021/jm00095a024] [PMID: 1507211]
[PMID: 34050874]
[http://dx.doi.org/10.24959/ophcj.18.951]
[http://dx.doi.org/10.1007/s10593-020-02629-0]
[http://dx.doi.org/10.1021/ol990027r] [PMID: 10822540]
[http://dx.doi.org/10.1016/j.bmcl.2012.01.133] [PMID: 22374216]
[http://dx.doi.org/10.1590/S0103-50532004000200002]
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[http://dx.doi.org/10.1016/j.ejmech.2004.06.001] [PMID: 15337290]
[http://dx.doi.org/10.1016/S0223-5234(02)00009-0] [PMID: 12593914]
[http://dx.doi.org/10.1021/cc0601377] [PMID: 17348733]
[http://dx.doi.org/10.1002/jhet.2377]
[http://dx.doi.org/10.2174/2213335602666141217222008]
[http://dx.doi.org/10.1016/j.ejmech.2022.114188] [PMID: 35168152]
[http://dx.doi.org/10.1155/2019/3131879]
[http://dx.doi.org/10.1039/jr9480001366] [PMID: 18893616]
[http://dx.doi.org/10.3390/molecules26071925] [PMID: 33808108]
[http://dx.doi.org/10.1007/s00044-017-2041-4]
[http://dx.doi.org/10.1080/14756366.2018.1474212] [PMID: 29792357]
[http://dx.doi.org/10.1186/2191-2858-2-23] [PMID: 22691177]
[http://dx.doi.org/10.1039/C7GC03425C]
[http://dx.doi.org/10.1016/j.ejmech.2013.01.043] [PMID: 23454514]
[http://dx.doi.org/10.1155/2021/6664756]
[http://dx.doi.org/10.1039/C5NJ02943K]
[http://dx.doi.org/10.1039/C7NJ02289A]
[http://dx.doi.org/10.1002/jhet.5570440235]
[http://dx.doi.org/10.4067/s0717-97072018000203974]
[http://dx.doi.org/10.2174/1573407213666170201113846]
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[http://dx.doi.org/10.1080/00397911.2016.1258580]
[http://dx.doi.org/10.1002/jhet.5570340149]
[http://dx.doi.org/10.1007/s10870-009-9568-2]
[http://dx.doi.org/10.3390/molecules23071559] [PMID: 29954138]
[http://dx.doi.org/10.7598/cst2013.319]
[http://dx.doi.org/10.2174/2213335606666190724093305]