Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

D-allose: Molecular Pathways and Therapeutic Capacity in Cancer

Author(s): Sahar Khajeh, Maryam Ganjavi, Ghodratollah Panahi, Mina Zare, Mohammadreza Zare, Seyed Mohammad Tahami* and Vahid Razban*

Volume 16, Issue 8, 2023

Published on: 03 March, 2023

Article ID: e271222212208 Pages: 10

DOI: 10.2174/1874467216666221227105011

Price: $65

conference banner
Abstract

Background: Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects.

Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.

Objective: We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.

Discussion: With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.

Conclusion: D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated in vitro or in vivo.

Graphical Abstract

[1]
Siegel, R.; Miller, K.; Jemal, A. Cancer statistics, 2020 CA Cancer J. Clin. American Cancer Society, 2020, 70, 7-30.
[2]
Siegel, R.; Miller, K.; Fuchs, H.; Jemal, A. Cancer statistics, 2022 CA Cancer J. Clin. American Cancer Society, 2022, 72, 7-33.
[3]
Kavousipour, S.; Solomon, C.; Barazeh, M.; Razban, V.; Alizadeh, J.; Mokarram, P. Interconnection of estrogen/testosterone metabolism and mevalonate pathway in breast and prostate cancers. Curr. Mol. Pharmacol., 2017, 10(2), 86-114.
[http://dx.doi.org/10.2174/1874467209666160112125631] [PMID: 26758947]
[4]
Andrei, L.; Kasas, S.; Ochoa Garrido, I.; Stanković, T.; Suárez Korsnes, M.; Vaclavikova, R.; Assaraf, Y.G.; Pešić, M. Advanced techno-logical tools to study multidrug resistance in cancer. Drug Resist. Updat., 2020, 48, 100658.
[http://dx.doi.org/10.1016/j.drup.2019.100658] [PMID: 31678863]
[5]
Yakisich, J.S.; Kaushik, V.; Guishard, A.R.; Afolabi, D.; Azad, N.; Iyer, A.K.V. B34 Combination therapy with Wnt pathway modulators to override chemoresistance in human lung cancer cells. J. Thorac. Oncol., 2020, 15(2), S37.
[http://dx.doi.org/10.1016/j.jtho.2019.12.099]
[6]
Khorsand, M.; Khajeh, S.; Eslami, M.; Nezafat, N.; Ghasemi, Y.; Razban, V.; Mostafavi-Pour, Z. Telmisartan anti‐cancer activities mech-anism through targeting N‐cadherin by mimicking ADH‐1 function. J. Cell. Mol. Med., 2022, 26(8), 2392-2403.
[http://dx.doi.org/10.1111/jcmm.17259] [PMID: 35224849]
[7]
Khorsand, M.; Mostafavi-Pour, Z.; Razban, V.; Khajeh, S.; Zare, R. Combinatorial effects of telmisartan and docetaxel on cell viability and metastatic gene expression in human prostate and breast cancer cells. Mol. Biol. Res. Commun., 2022, 11(1), 11-20.
[PMID: 35463822]
[8]
Yamazaki, K.; Hoshi, M.; Tezuka, H.; Morita, N.; Hirayama, M.; Sato, F.; Yoshida, S.; Saito, K. D allose enhances the efficacy of hy-droxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncol. Rep., 2022, 47(6), 117.
[http://dx.doi.org/10.3892/or.2022.8328] [PMID: 35543153]
[9]
Shintani, H.; Shintani, T.; Sato, M. D-Allose, a trace component in human serum, and its pharmaceutical applicability. Int. J. Appl. Biol. Pharm. Technol., 2020, 11, 200-213.
[10]
O’Neil, M.; Heckelman, P.; Koch, C.; Roman, K. The Merck index: An encyclopedia of chemicals, drugs, and biologicals, 14th; NJ; Merck & Co. Inc: Whitehouse Station, 2006, pp. 46-78.
[11]
Iga, Y.; Nakamichi, K.; Shirai, Y.; Matsuo, T. Acute and sub-chronic toxicity of D-allose in rats. Biosci. Biotechnol. Biochem., 2010, 74(7), 1476-1478.
[http://dx.doi.org/10.1271/bbb.100121] [PMID: 20622432]
[12]
Angyal, S.J. The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydr. Res., 1994, 263(1), 1-11.
[http://dx.doi.org/10.1016/0008-6215(94)00148-0]
[13]
Köpper, S.; Freimund, S. The composition of keto aldoses in aqueous solution as determined by NMR spectroscopy. Helv. Chim. Acta, 2003, 86(3), 827-843.
[http://dx.doi.org/10.1002/hlca.200390083]
[14]
Morimoto, K.; Park, C.S.; Ozaki, M.; Takeshita, K.; Shimonishi, T.; Granström, T.B.; Takata, G.; Tokuda, M.; Izumori, K. Large scale production of d-allose from d-psicose using continuous bioreactor and separation system. Enzyme Microb. Technol., 2006, 38(6), 855-859.
[http://dx.doi.org/10.1016/j.enzmictec.2005.08.014]
[15]
Matsuo, T.; Suzuki, H.; Hashiguchi, M.; Izumori, K. D-psicose is a rare sugar that provides no energy to growing rats. J. Nutr. Sci. Vitaminol., 2002, 48(1), 77-80.
[http://dx.doi.org/10.3177/jnsv.48.77] [PMID: 12026195]
[16]
Sakoguchi, H.; Yoshihara, A.; Izumori, K.; Sato, M. Screening of biologically active monosaccharides: Growth inhibitory effects of D -allose, D -talose, and L -idose against the nematode Caenorhabditis elegans. Biosci. Biotechnol. Biochem., 2016, 80(6), 1058-1061.
[http://dx.doi.org/10.1080/09168451.2016.1146069] [PMID: 27022778]
[17]
Lim, Y.R.; Oh, D.K. Microbial metabolism and biotechnological production of d-allose. Appl. Microbiol. Biotechnol., 2011, 91(2), 229-235.
[http://dx.doi.org/10.1007/s00253-011-3370-8] [PMID: 21655980]
[18]
Li, Z.; Gao, Y.; Nakanishi, H.; Gao, X.; Cai, L. Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein J. Org. Chem., 2013, 9, 2434-2445.
[http://dx.doi.org/10.3762/bjoc.9.281] [PMID: 24367410]
[19]
Johnson, D.B.; Flaherty, K.T.; Weber, J.S.; Infante, J.R.; Kim, K.B.; Kefford, R.F.; Hamid, O.; Schuchter, L.; Cebon, J.; Sharfman, W.H.; McWilliams, R.R.; Sznol, M.; Lawrence, D.P.; Gibney, G.T.; Burris, H.A., III; Falchook, G.S.; Algazi, A.; Lewis, K.; Long, G.V.; Patel, K.; Ibrahim, N.; Sun, P.; Little, S.; Cunningham, E.; Sosman, J.A.; Daud, A.; Gonzalez, R. Combined BRAF (Dabrafenib) and MEK inhibition (Trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J. Clin. Oncol., 2014, 32(33), 3697-3704.
[http://dx.doi.org/10.1200/JCO.2014.57.3535] [PMID: 25287827]
[20]
Nelson, E.R.; Li, S.; Kennedy, M.; Payne, S.; Kilibarda, K.; Groth, J.; Bowie, M.; Parilla-Castellar, E.; de Ridder, G.; Marcom, P.K.; Lyes, M.; Peterson, B.L.; Cook, M.; Pizzo, S.V.; McDonnell, D.P.; Bachelder, R.E. Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget, 2016, 7(51), 84030-84042.
[http://dx.doi.org/10.18632/oncotarget.12767] [PMID: 27768598]
[21]
Eslami, M.; Nezafat, N.; Khajeh, S.; Mostafavi-Pour, Z.; Bagheri Novir, S.; Negahdaripour, M.; Ghasemi, Y.; Razban, V. Deep analysis of N-cadherin/ADH-1 interaction: A computational survey. J. Biomol. Struct. Dyn., 2019, 37(1), 210-228.
[http://dx.doi.org/10.1080/07391102.2018.1424035] [PMID: 29301458]
[22]
Khajeh, S.; Eslami, M.; Nezafat, N.; Mostafavi-Pour, Z.; Negahdaripour, M.; Ghasemi, Y.; Razban, V. Surveying FDA-approved drugs as new potential inhibitors of N-cadherin protein: A virtual screening approach. Struct. Chem., 2020, 31(6), 2355-2369.
[http://dx.doi.org/10.1007/s11224-020-01595-9]
[23]
Zhang, X.; Liu, G.; Kang, Y.; Dong, Z.; Qian, Q.; Ma, X. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PLoS One, 2013, 8(3), e57692-e57692.
[http://dx.doi.org/10.1371/journal.pone.0057692] [PMID: 23520479]
[24]
Hoshikawa, H.; Indo, K.; Mori, T.; Mori, N. Enhancement of the radiation effects by d-allose in head and neck cancer cells. Cancer Lett., 2011, 306(1), 60-66.
[http://dx.doi.org/10.1016/j.canlet.2011.02.032] [PMID: 21439723]
[25]
Indo, K.; Hoshikawa, H.; Kamitori, K.; Yamaguchi, F.; Mori, T.; Tokuda, M.; Mori, N. Effects of d-allose in combination with docetaxel in human head and neck cancer cells. Int. J. Oncol., 2014, 45(5), 2044-2050.
[http://dx.doi.org/10.3892/ijo.2014.2590] [PMID: 25109398]
[26]
Hoshikawa, H.; Kamitori, K.; Indo, K.; Mori, T.; Kamata, M.; Takahashi, T.; Tokuda, M. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an inï¿1/2vivo model of head and neck cancer. Oncol. Lett., 2018, 15(3), 3422-3428.
[http://dx.doi.org/10.3892/ol.2018.7787] [PMID: 29456721]
[27]
Kanaji, N.; Kamitori, K.; Hossain, A.; Noguchi, C.; Katagi, A.; Kadowaki, N.; Tokuda, M. Additive antitumour effect of D allose in combi-nation with cisplatin in non-small cell lung cancer cells. Oncol. Rep., 2018, 39(3), 1292-1298.
[http://dx.doi.org/10.3892/or.2018.6192] [PMID: 29328484]
[28]
Venditti, P.; Di Stefano, L.; Di Meo, S. Mitochondrial metabolism of reactive oxygen species. Mitochondrion, 2013, 13(2), 71-82.
[http://dx.doi.org/10.1016/j.mito.2013.01.008] [PMID: 23376030]
[29]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen spe-cies. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[30]
Mikkelsen, R.B.; Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mecha-nisms. Oncogene, 2003, 22(37), 5734-5754.
[http://dx.doi.org/10.1038/sj.onc.1206663] [PMID: 12947383]
[31]
Martindale, J.L.; Holbrook, N.J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol., 2002, 192(1), 1-15.
[http://dx.doi.org/10.1002/jcp.10119] [PMID: 12115731]
[32]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[33]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[http://dx.doi.org/10.1038/nrc3803] [PMID: 25342630]
[34]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030]
[35]
Benhar, M.; Shytaj, I.L.; Stamler, J.S.; Savarino, A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J. Clin. Invest., 2016, 126(5), 1630-1639.
[http://dx.doi.org/10.1172/JCI85339] [PMID: 27135880]
[36]
Sun, X.; Wang, W.; Chen, J.; Cai, X.; Yang, J.; Yang, Y.; Yan, H.; Cheng, X.; Ye, J.; Lu, W.; Hu, C.; Sun, H.; Pu, J.; Cao, P. The Natural Diterpenoid Isoforretin A Inhibits Thioredoxin-1 and Triggers Potent ROS-Mediated Antitumor Effects. Cancer Res., 2017, 77(4), 926-936.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0987] [PMID: 28011619]
[37]
Mooradian, A.D.; Haas, M.J.; Onstead-Haas, L.; Tani, Y.; Iida, T.; Tokuda, M. Naturally occurring rare sugars are free radical scavengers and can ameliorate endoplasmic reticulum stress. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 210-220.
[http://dx.doi.org/10.1024/0300-9831/a000517] [PMID: 30806585]
[38]
Kimura, S.; Zhang, G.X.; Nishiyama, A.; Nagai, Y.; Nakagawa, T.; Miyanaka, H.; Fujisawa, Y.; Miyatake, A.; Nagai, T.; Tokuda, M.; Abe, Y. D-allose, an all-cis aldo-hexose, suppresses development of salt-induced hypertension in Dahl rats. J. Hypertens., 2005, 23(10), 1887-1894.
[http://dx.doi.org/10.1097/01.hjh.0000182523.29193.e3] [PMID: 16148613]
[39]
Suna, S.; Yamaguchi, F.; Kimura, S.; Tokuda, M.; Jitsunari, F. Preventive effect of d-psicose, one of rare ketohexoses, on di-(2-ethylhexyl) phthalate (DEHP)-induced testicular injury in rat. Toxicol. Lett., 2007, 173(2), 107-117.
[http://dx.doi.org/10.1016/j.toxlet.2007.06.015] [PMID: 17698303]
[40]
Nakamura, T.; Tanaka, S.; Hirooka, K.; Toyoshima, T.; Kawai, N.; Tamiya, T.; Shiraga, F.; Tokuda, M.; Keep, R.F.; Itano, T.; Miyamoto, O. Anti-oxidative effects of d-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neurosci. Lett., 2011, 487(1), 103-106.
[http://dx.doi.org/10.1016/j.neulet.2010.10.004] [PMID: 20937361]
[41]
Hirose, K.; Longo, D.L.; Oppenheim, J.J.; Matsushima, K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin‐1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J., 1993, 7(2), 361-368.
[http://dx.doi.org/10.1096/fasebj.7.2.8440412] [PMID: 8440412]
[42]
Mirkovic, N.; Voehringer, D.W.; Story, M.D.; McConkey, D.J.; McDonnell, T.J.; Meyn, R.E. Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene, 1997, 15(12), 1461-1470.
[http://dx.doi.org/10.1038/sj.onc.1201310] [PMID: 9333022]
[43]
Sun, J.; Chen, Y.; Li, M.; Ge, Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic. Biol. Med., 1998, 24(4), 586-593.
[http://dx.doi.org/10.1016/S0891-5849(97)00291-8] [PMID: 9559871]
[44]
Azzam, E.; de Toledo, S.; Little, J. Stress signaling from irradiated to non-irradiated cells. Curr. Cancer Drug Targets, 2004, 4(1), 53-64.
[http://dx.doi.org/10.2174/1568009043481641] [PMID: 14965267]
[45]
Lee, H.C.; Kim, D.W.; Jung, K.Y.; Park, I.C.; Park, M.J.; Kim, M.S.; Woo, S.H.; Rhee, C.H.; Yoo, H.; Lee, S.H.; Hong, S.I. Increased ex-pression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med., 2004, 13(6), 883-887.
[http://dx.doi.org/10.3892/ijmm.13.6.883] [PMID: 15138630]
[46]
Thioredoxin, H.A. Annu. Rev. Biochem., 1985, 54, 237-271.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.001321] [PMID: 3896121]
[47]
Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J., 1998, 17(9), 2596-2606.
[http://dx.doi.org/10.1093/emboj/17.9.2596] [PMID: 9564042]
[48]
Sheth, S.S.; Bodnar, J.S.; Ghazalpour, A.; Thipphavong, C.K.; Tsutsumi, S.; Tward, A.D.; Demant, P.; Kodama, T.; Aburatani, H.; Lusis, A.J. Hepatocellular carcinoma in Txnip-deficient mice. Oncogene, 2006, 25(25), 3528-3536.
[http://dx.doi.org/10.1038/sj.onc.1209394] [PMID: 16607285]
[49]
Matsuda, M.; Masutani, H.; Nakamura, H.; Miyajima, S.; Yamauchi, A.; Yonehara, S.; Uchida, A.; Irimajiri, K.; Horiuchi, A.; Yodoi, J. Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells. J. Immunol., 1991, 147(11), 3837-3841.
[PMID: 1719091]
[50]
Song, Z.; Saghafi, N.; Gokhale, V.; Brabant, M.; Meuillet, E.J. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster. Exp. Cell Res., 2007, 313(6), 1161-1171.
[http://dx.doi.org/10.1016/j.yexcr.2007.01.004] [PMID: 17316609]
[51]
Chen, K.S.; DeLuca, H.F. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim. Biophys. Acta Gene Struct. Expr., 1994, 1219(1), 26-32.
[http://dx.doi.org/10.1016/0167-4781(94)90242-9] [PMID: 8086474]
[52]
Nishiyama, A.; Matsui, M.; Iwata, S.; Hirota, K.; Masutani, H.; Nakamura, H.; Takagi, Y.; Sono, H.; Gon, Y.; Yodoi, J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem., 1999, 274(31), 21645-21650.
[http://dx.doi.org/10.1074/jbc.274.31.21645] [PMID: 10419473]
[53]
Junn, E.; Han, S.H. Im, J.Y.; Yang, Y.; Cho, E.W.; Um, H.D.; Kim, D.K.; Lee, K.W.; Han, P.L.; Rhee, S.G.; Choi, I. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol., 2000, 164(12), 6287-6295.
[http://dx.doi.org/10.4049/jimmunol.164.12.6287] [PMID: 10843682]
[54]
Takeuchi, J.; Hirota, K.; Itoh, T.; Shinkura, R.; Kitada, K.; Yodoi, J.; Namba, T.; Fukuda, K. Thioredoxin inhibits tumor necrosis factor- or interleukin-1-induced NF-kappaB activation at a level upstream of NF-kappaB-inducing kinase. Antioxid. Redox Signal., 2000, 2(1), 83-92.
[http://dx.doi.org/10.1089/ars.2000.2.1-83] [PMID: 11232604]
[55]
Ludwig, D.L.; Kotanides, H.; Le, T.; Chavkin, D.; Bohlen, P.; Witte, L. Cloning, genetic characterization, and chromosomal mapping of the mouse VDUP1 gene. Gene, 2001, 269(1-2), 103-112.
[http://dx.doi.org/10.1016/S0378-1119(01)00455-3] [PMID: 11376942]
[56]
Patwari, P.; Higgins, L.J.; Chutkow, W.A.; Yoshioka, J.; Lee, R.T. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J. Biol. Chem., 2006, 281(31), 21884-21891.
[http://dx.doi.org/10.1074/jbc.M600427200] [PMID: 16766796]
[57]
Shah, A.; Xia, L.; Goldberg, H.; Lee, K.W.; Quaggin, S.E.; Fantus, I.G. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J. Biol. Chem., 2013, 288(10), 6835-6848.
[http://dx.doi.org/10.1074/jbc.M112.419101] [PMID: 23329835]
[58]
Lee, K.N.; Kang, H.S.; Jeon, J.H.; Kim, E.M.; Yoon, S.R.; Song, H.; Lyu, C.Y.; Piao, Z.H.; Kim, S.U.; Han, Y.H.; Song, S.S.; Lee, Y.H.; Song, K.S.; Kim, Y.M.; Yu, D.Y.; Choi, I. VDUP1 is required for the development of natural killer cells. Immunity, 2005, 22(2), 195-208.
[http://dx.doi.org/10.1016/j.immuni.2004.12.012] [PMID: 15723808]
[59]
Nagaraj, K.; Lapkina-Gendler, L.; Sarfstein, R.; Gurwitz, D.; Pasmanik-Chor, M.; Laron, Z.; Yakar, S.; Werner, H. Identification of thiore-doxin-interacting protein (TXNIP) as a downstream target for IGF1 action. Proc. Natl. Acad. Sci. USA, 2018, 115(5), 1045-1050.
[http://dx.doi.org/10.1073/pnas.1715930115] [PMID: 29339473]
[60]
Han, S.H.; Jeon, J.H.; Ju, H.R.; Jung, U.; Kim, K.Y.; Yoo, H.S.; Lee, Y.H.; Song, K.S.; Hwang, H.M.; Na, Y.S.; Yang, Y.; Lee, K.N.; Choi, I. VDUP1 upregulated by TGF-β1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene, 2003, 22(26), 4035-4046.
[http://dx.doi.org/10.1038/sj.onc.1206610] [PMID: 12821938]
[61]
Minn, A.H.; Pise-Masison, C.A.; Radonovich, M.; Brady, J.N.; Wang, P.; Kendziorski, C.; Shalev, A. Gene expression profiling in INS-1 cells overexpressing thioredoxin-interacting protein. Biochem. Biophys. Res. Commun., 2005, 336(3), 770-778.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.161] [PMID: 16143294]
[62]
Zhang, P.; Gao, J.; Wang, X.; Wen, W.; Yang, H.; Tian, Y.; Liu, N.; Wang, Z.; Liu, H.; Zhang, Y.; Tu, Y. A novel indication of thioredoxin-interacting protein as a tumor suppressor gene in malignant glioma. Oncol. Lett., 2017, 14(2), 2053-2058.
[http://dx.doi.org/10.3892/ol.2017.6397] [PMID: 28781647]
[63]
Goldberg, S.F.; Miele, M.E.; Hatta, N.; Takata, M.; Paquette-Straub, C.; Freedman, L.P.; Welch, D.R. Melanoma metastasis suppression by chromosome 6: Evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res., 2003, 63(2), 432-440.
[PMID: 12543799]
[64]
Aitken, C.J.; Hodge, J.M.; Nishinaka, Y.; Vaughan, T.; Yodoi, J.; Day, C.J.; Morrison, N.A.; Nicholson, G.C. Regulation of human osteo-clast differentiation by thioredoxin binding protein-2 and redox-sensitive signaling. J. Bone Miner. Res., 2004, 19(12), 2057-2064.
[http://dx.doi.org/10.1359/jbmr.040913] [PMID: 15537450]
[65]
Minn, A.H.; Hafele, C.; Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology, 2005, 146(5), 2397-2405.
[http://dx.doi.org/10.1210/en.2004-1378] [PMID: 15705778]
[66]
Yoshihara, E.; Chen, Z.; Matsuo, Y.; Masutani, H.; Yodoi, J. Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling. Methods Enzymol., 2010, 474, 67-82.
[http://dx.doi.org/10.1016/S0076-6879(10)74005-2] [PMID: 20609905]
[67]
Zhou, J.; Yu, Q.; Chng, W.J. TXNIP (VDUP-1, TBP-2): A major redox regulator commonly suppressed in cancer by epigenetic mecha-nisms. Int. J. Biochem. Cell Biol., 2011, 43(12), 1668-1673.
[http://dx.doi.org/10.1016/j.biocel.2011.09.005] [PMID: 21964212]
[68]
Hirata, Y.; Saito, M.; Tsukamoto, I.; Yamaguchi, F.; Sui, L.; Kamitori, K.; Dong, Y.; Uehara, E.; Konishi, R.; Janjua, N.; Tokuda, M. Anal-ysis of the inhibitory mechanism of d-allose on MOLT-4F leukemia cell proliferation. J. Biosci. Bioeng., 2009, 107(5), 562-568.
[http://dx.doi.org/10.1016/j.jbiosc.2008.12.021] [PMID: 19393559]
[69]
Hoshikawa, H.; Mori, T.; Mori, N. In vitro and in vivo effects of D-allose: Up-regulation of thioredoxin-interacting protein in head and neck cancer cells. Ann. Otol. Rhinol. Laryngol., 2010, 119(8), 567-571.
[http://dx.doi.org/10.1177/000348941011900810] [PMID: 20860283]
[70]
Mitani, T.; Hoshikawa, H.; Mori, T.; Hosokawa, T.; Tsukamoto, I.; Yamaguchi, F.; Kamitori, K.; Tokuda, M.; Mori, N. Growth inhibition of head and neck carcinomas by D-allose. Head Neck, 2009, 31(8), 1049-1055.
[http://dx.doi.org/10.1002/hed.21070] [PMID: 19340872]
[71]
Tohi, Y.; Taoka, R.; Zhang, X.; Matsuoka, Y.; Yoshihara, A.; Ibuki, E.; Haba, R.; Akimitsu, K.; Izumori, K.; Kakehi, Y.; Sugimoto, M. Antitumor effects of orally administered rare sugar d-allose in bladder cancer. Int. J. Mol. Sci., 2022, 23(12), 6771.
[http://dx.doi.org/10.3390/ijms23126771] [PMID: 35743212]
[72]
Noguchi, C.; Kamitori, K.; Hossain, A.; Hoshikawa, H.; Katagi, A.; Dong, Y.; Sui, L.; Tokuda, M.; Yamaguchi, F. D-allose inhibits cancer cell growth by reducing GLUT1 expression. Tohoku J. Exp. Med., 2016, 238(2), 131-141.
[http://dx.doi.org/10.1620/tjem.238.131] [PMID: 26829886]
[73]
Kim, C.; Song, S.; Park, C. The D-allose operon of Escherichia coli K-12. J. Bacteriol., 1997, 179(24), 7631-7637.
[http://dx.doi.org/10.1128/jb.179.24.7631-7637.1997] [PMID: 9401019]
[74]
Bessell, E.M.; Thomas, P. The effect of substitution at C-2 of D -glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver). Biochem. J., 1973, 131(1), 83-89.
[http://dx.doi.org/10.1042/bj1310083] [PMID: 4578852]
[75]
Stoltzman, C.A.; Kaadige, M.R.; Peterson, C.W.; Ayer, D.E. MondoA senses non-glucose sugars: Regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J. Biol. Chem., 2011, 286(44), 38027-38034.
[http://dx.doi.org/10.1074/jbc.M111.275503] [PMID: 21908621]
[76]
Havula, E.; Hietakangas, V. Glucose sensing by ChREBP/MondoA–Mlx transcription factors. In: cell and developmental biology. Elsevier ; , 2012; pp. 640-647.
[77]
Sener, A.; Malaisse, W.J. Kinetics and specificity of human B-cell glucokinase: Relevance to hexose-induced insulin release. Biochim. Biophys. Acta Mol. Cell Res., 1996, 1312(1), 73-78.
[http://dx.doi.org/10.1016/0167-4889(96)00010-9] [PMID: 8679719]
[78]
Kasahara, T.; Kasahara, M. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: Comparison with Glut1 glucose transporter. Biochim. Biophys. Acta Biomembr., 1997, 1324(1), 111-119.
[http://dx.doi.org/10.1016/S0005-2736(96)00217-9] [PMID: 9059504]
[79]
Zambrano, A.; Molt, M.; Uribe, E.; Salas, M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strate-gy. Int. J. Mol. Sci., 2019, 20(13), 3374.
[http://dx.doi.org/10.3390/ijms20133374] [PMID: 31324056]
[80]
Stoltzman, C.A.; Peterson, C.W.; Breen, K.T.; Muoio, D.M.; Billin, A.N.; Ayer, D.E. Glucose sensing by MondoA:Mlx complexes: A role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6912-6917.
[http://dx.doi.org/10.1073/pnas.0712199105] [PMID: 18458340]
[81]
Wu, N.; Zheng, B.; Shaywitz, A.; Dagon, Y.; Tower, C.; Bellinger, G.; Shen, C.H.; Wen, J.; Asara, J.; McGraw, T.E.; Kahn, B.B.; Cantley, L.C. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell, 2013, 49(6), 1167-1175.
[http://dx.doi.org/10.1016/j.molcel.2013.01.035] [PMID: 23453806]
[82]
Singh, S.P.; Lipman, J.; Goldman, H.; Ellis, F.H., Jr; Aizenman, L.; Cangi, M.G.; Signoretti, S.; Chiaur, D.S.; Pagano, M.; Loda, M. Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma. Cancer Res., 1998, 58(8), 1730-1735.
[PMID: 9563491]
[83]
Tomoda, K.; Kubota, Y.; Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature, 1999, 398(6723), 160-165.
[http://dx.doi.org/10.1038/18230] [PMID: 10086358]
[84]
Chiarle, R.; Budel, L.M.; Skolnik, J.; Frizzera, G.; Chilosi, M.; Corato, A.; Pizzolo, G.; Magidson, J.; Montagnoli, A.; Pagano, M.; Maes, B.; De Wolf-Peeters, C.; Inghirami, G. Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a de-creased overall survival in mantle cell lymphoma. Blood, 2000, 95(2), 619-626.
[http://dx.doi.org/10.1182/blood.V95.2.619] [PMID: 10627471]
[85]
Jeon, J.H.; Lee, K.N.; Hwang, C.Y.; Kwon, K.S.; You, K.H.; Choi, I. Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res., 2005, 65(11), 4485-4489.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2271] [PMID: 15930262]
[86]
Philipp-Staheli, J.; Kim, K.H.; Liggitt, D.; Gurley, K.E.; Longton, G.; Kemp, C.J. Distinct roles for p53, p27Kip1, and p21Cip1 during tu-mor development. Oncogene, 2004, 23(4), 905-913.
[http://dx.doi.org/10.1038/sj.onc.1207220] [PMID: 14647411]
[87]
Yamaguchi, F.; Takata, M.; Kamitori, K.; Nonaka, M.; Dong, Y.; Sui, L.; Tokuda, M. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int. J. Oncol., 2008, 32(2), 377-385.
[http://dx.doi.org/10.3892/ijo.32.2.377] [PMID: 18202760]
[88]
Miyawaki, Y.; Ueki, M.; Ueno, M.; Asaga, T.; Tokuda, M.; Shirakami, G. D-allose ameliorates cisplatin-induced nephrotoxicity in mice. Tohoku J. Exp. Med., 2012, 228(3), 215-221.
[http://dx.doi.org/10.1620/tjem.228.215] [PMID: 23064522]
[89]
Yanagita, R.C.; Kobashi, K.; Ogawa, C.; Ashida, Y.; Yamaashi, H.; Kawanami, Y. Anti-proliferative activity of 6- O -acyl- D -allose against the human leukemia MOLT-4F cell line. Biosci. Biotechnol. Biochem., 2014, 78(2), 190-194.
[http://dx.doi.org/10.1080/09168451.2014.882747] [PMID: 25036670]
[90]
Yao, S.; Wei, B.; Yu, M.; Meng, X.; He, M.; Yao, R. Design, synthesis and evaluation of PD176252 analogues for ameliorating cisplatin-induced nephrotoxicity. MedChemComm, 2019, 10(5), 757-763.
[http://dx.doi.org/10.1039/C8MD00632F] [PMID: 31191866]
[91]
Li, F.; Yao, Y.; Huang, H.; Hao, H.; Ying, M. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and acti-vating Nrf2 signaling pathways. Int. Immunopharmacol., 2018, 61, 277-282.
[http://dx.doi.org/10.1016/j.intimp.2018.05.017] [PMID: 29906742]
[92]
Ishihara, Y.; Katayama, K.; Sakabe, M.; Kitamura, M.; Aizawa, M.; Takara, M.; Itoh, K. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells. J. Biosci. Bioeng., 2011, 112(6), 638-642.
[http://dx.doi.org/10.1016/j.jbiosc.2011.08.005] [PMID: 21889400]
[93]
Muneuchi, G.; Hossain, A.; Yamaguchi, F.; Ueno, M.; Tanaka, Y.; Suzuki, S.; Tokuda, M. The rare sugar D-allose has a reducing effect against ischemia-reperfusion injury on the rat abdominal skin island flap model. J. Surg. Res., 2013, 183, 976-981.
[94]
Liu, Y.; Nakamura, T.; Toyoshima, T.; Shinomiya, A.; Tamiya, T.; Tokuda, M.; Keep, R.F.; Itano, T. The effects of d-allose on transient ischemic neuronal death and analysis of its mechanism. Brain Res. Bull., 2014, 109, 127-131.
[http://dx.doi.org/10.1016/j.brainresbull.2014.10.005] [PMID: 25445611]
[95]
Malm, S.W.; Hanke, N.T.; Gill, A.; Carbajal, L.; Baker, A.F. The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines. J. Exp. Clin. Cancer Res., 2015, 34(1), 31.
[http://dx.doi.org/10.1186/s13046-015-0147-4] [PMID: 25888489]
[96]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[97]
Yamaguchi, F.; Kamitori, K.; Sanada, K.; Horii, M.; Dong, Y.; Sui, L.; Tokuda, M. Rare sugar d-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7. J. Biosci. Bioeng., 2008, 106(3), 248-252.
[http://dx.doi.org/10.1263/jbb.106.248] [PMID: 18930000]
[98]
Ishiyama, H.; Yanagita, R.C.; Takemoto, K.; Kobashi, K.; Sugiyama, Y.; Kawanami, Y. Development of a d-allose-6-phosphate derivative with anti-proliferative activity against a human leukemia MOLT-4F cell line. Carbohydr. Res., 2020, 487, 107859.
[http://dx.doi.org/10.1016/j.carres.2019.107859] [PMID: 31751780]
[99]
Zheng, H.; Shen, H.; Oprea, I.; Worrall, C.; Stefanescu, R.; Girnita, A.; Girnita, L. β-Arrestin–biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor–targeting antibodies in Ewing’s sarcoma. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20620-20625.
[http://dx.doi.org/10.1073/pnas.1216348110] [PMID: 23188799]
[100]
Granström, T.B.; Takata, G.; Tokuda, M.; Izumori, K. Izumoring: A novel and complete strategy for bioproduction of rare sugars. J. Biosci. Bioeng., 2004, 97(2), 89-94.
[http://dx.doi.org/10.1016/S1389-1723(04)70173-5] [PMID: 16233597]
[101]
Chen, Y.; Ning, J.; Cao, W.; Wang, S.; Du, T.; Jiang, J.; Feng, X.; Zhang, B. Research progress of TXNIP as a tumor suppressor gene partic-ipating in the metabolic reprogramming and oxidative stress of cancer cells in various cancers. Front. Oncol., 2020, 10, 568574.
[http://dx.doi.org/10.3389/fonc.2020.568574] [PMID: 33194655]
[102]
Li, Y.H.; Tong, K.L.; Lu, J.L.; Lin, J.B.; Li, Z.Y.; Sang, Y.; Ghodbane, A.; Gao, X.J.; Tam, M.S.; Hu, C.D.; Zhang, H.T.; Zha, Z.G. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging (Albany NY), 2020, 12(3), 2507-2529.
[http://dx.doi.org/10.18632/aging.102760] [PMID: 32023548]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy