Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Insights Into Resveratrol as an Inhibitor Against Aβ1-42 Peptide Aggregation: A Molecular Dynamics Simulation Study

Author(s): Priyanka Borah and Venkata Satish Kumar Mattaparthi*

Volume 17, Issue 1, 2023

Published on: 29 December, 2022

Page: [67 - 78] Pages: 12

DOI: 10.2174/2212796817666221221151713

Price: $65

Abstract

Background: Resveratrol (RSV), a polyphenolic compound, is reported to have antiaggregation properties against Amyloid-beta peptides. It is, therefore, significant to understand the mechanism of inhibition of Aβ1-42 peptide aggregation by the RSV at the molecular level. We have used Molecular docking along with Molecular dynamics (MD) simulation techniques to address the role of RSV in the inhibition of Aβ1-42 peptide aggregation.

Objective: To understand the role of Resveratrol on the Aβ1-42 peptide aggregation.

Methods: In this computational study, we have docked the RSV to Aβ1-42 peptide using Molecular Docking software and then performed MD simulation for the Aβ1-42 peptide monomer Aβ1-42 peptide- RSV complex using the AMBER force field. From the analysis of MD trajectories, we obtained salient structural features and determined the Binding Free Energy(BFE) and Per-residue Energy Decomposition Analysis (PRED) using MM-PBSA/GBSA method.

Results: The secondary structure and the conformational analysis obtained from MD trajectories show that the binding of RSV with the Aβ1-42 peptide monomer causes an increase in the helical content in the structure of the Aβ1-42 peptide. The BFE and PRED results show a high binding affinity (GBtotal=- 11.07 kcal mol-1; PBtotal= -1.82 kcal mol-1) of RSV with Aβ1-42 peptide. Also, we found the RSV to interact with crucial residues (Asp 23 and Lys 28) of the Aβ1-42 peptide. These residues play a significant role in facilitating the formation of toxic amyloid oligomers and amyloid fibrils. The salt bridge interaction between these residues D23-K28 was found to be destabilized in the Aβ1-42 peptide when it is complexed with RSV.

Conclusion: In summary, it can be concluded that Resveratrol greatly aids the prevention of Aβ1-42 peptide aggregation. Therefore, it can be considered a possible drug candidate for therapeutic strategies for Alzheimer’s disease.

« Previous
Graphical Abstract

[1]
Díaz-Villanueva J, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteostasis. Int J Mol Sci 2015; 16(8): 17193-230.
[http://dx.doi.org/10.3390/ijms160817193] [PMID: 26225966]
[2]
Uversky VN. Intrinsically disordered proteins and their “Mysterious” (meta)physics. Front Phys 2019; 7: 10.
[http://dx.doi.org/10.3389/fphy.2019.00010]
[3]
Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta Proteins Proteomics 2010; 1804(6): 1231-64.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.017]
[4]
Rajan R, Ahmed S, Sharma N, Kumar N, Debas A, Matsumura K. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: Special focus on polymeric materials. Mater Adv 2021; 2(4): 1139-76.
[http://dx.doi.org/10.1039/D0MA00760A]
[5]
Wei G, Su Z, Reynolds NP, et al. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46(15): 4661-708.
[http://dx.doi.org/10.1039/C6CS00542J] [PMID: 28530745]
[6]
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type protein aggregation and prion-like properties of amyloids. Chem Rev 2021; 121(13): 8285-307.
[http://dx.doi.org/10.1021/acs.chemrev.1c00196] [PMID: 34137605]
[7]
Dutta M, Chutia R, Mattaparthi VSK. Cross-seeding interaction between amyloid β and tau protein can enhance aggregation. Curr Biotechnol 2017; 6(3): 273-9.
[http://dx.doi.org/10.2174/2211550105666160826151858]
[8]
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. “What doesn’t kill you makes you stronger”: Future applications of amyloid aggregates in biomedicine. Molecules 2020; 25(22): 5245.
[http://dx.doi.org/10.3390/molecules25225245] [PMID: 33187056]
[9]
Zapadka KL, Becher FJ, Gomes dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7(6): 20170030.
[http://dx.doi.org/10.1098/rsfs.2017.0030] [PMID: 29147559]
[10]
Borah P, Sanjeev A, Mattaparthi VSK. Computational investigation on the effect of Oleuropein aglycone on the α-synuclein aggregation. J Biomol Struct Dyn 2021; 39(4): 1259-70.
[http://dx.doi.org/10.1080/07391102.2020.1728384] [PMID: 32041489]
[11]
Kang J, Lemaire H-G, Unterbeck A, et al. The precursor of alzheimer's disease amyloid a4 protein resembles a cell-surface receptor. Alzheimer Dis Assoc Disord 1987; 1: 206-7.
[http://dx.doi.org/10.1097/00002093-198701030-00032]
[12]
Weidemann A, König G, Bunke D, et al. Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 1989; 57(1): 115-26.
[http://dx.doi.org/10.1016/0092-8674(89)90177-3] [PMID: 2649245]
[13]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[14]
Sultana R, Butterfield DA. Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer’s disease: Insight into the role of oxidative stress. Proteomics Clin Appl 2008; 2(5): 685-96.
[http://dx.doi.org/10.1002/prca.200780024] [PMID: 21136866]
[15]
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun 2018; 54(49): 6230-42.
[http://dx.doi.org/10.1039/C8CC03053G] [PMID: 29789820]
[16]
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991; 6(4): 487-98.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[17]
Tomaselli S, Esposito V, Vangone P, et al. The α-to-β conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem 2006; 7(2): 257-67.
[http://dx.doi.org/10.1002/cbic.200500223] [PMID: 16444756]
[18]
Nguyen P, Derreumaux P. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Acc Chem Res 2014; 47(2): 603-11.
[http://dx.doi.org/10.1021/ar4002075] [PMID: 24368046]
[19]
Mager PP. Molecular simulation of the primary and secondary structures of the Aβ(1-42)-peptide of Alzheimer’s disease. Med Res Rev 1998; 18(6): 403-30.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199811)18:6<403::AID-MED4>3.0.CO;2-C] [PMID: 9828040]
[20]
Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 2018; 21(10): 1332-40.
[http://dx.doi.org/10.1038/s41593-018-0235-9] [PMID: 30250260]
[21]
Zhuang W, Sgourakis NG, Li Z, Garcia AE, Mukamel S. Discriminating early stage Aβ42 monomer structures using chirality-induced 2DIR spectroscopy in a simulation study. Proc Natl Acad Sci 2010; 107(36): 15687-92.
[http://dx.doi.org/10.1073/pnas.1002131107] [PMID: 20798063]
[22]
Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat Struct Mol Biol 2010; 17(5): 561-7.
[http://dx.doi.org/10.1038/nsmb.1799] [PMID: 20383142]
[23]
Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener 2014; 9(1): 52.
[http://dx.doi.org/10.1186/1750-1326-9-52] [PMID: 25417177]
[24]
Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA. The production of amyloid β peptide is a critical requirement for the viability of central neurons. J Neurosci 2003; 23(13): 5531-5.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05531.2003] [PMID: 12843253]
[25]
Goyal D, Shuaib S, Mann S, Goyal B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s Disease. ACS Comb Sci 2017; 19(2): 55-80.
[http://dx.doi.org/10.1021/acscombsci.6b00116] [PMID: 28045249]
[26]
Grasso GI, Bellia F, Arena G, Satriano C, Vecchio G, Rizzarelli E. Multitarget trehalose-carnosine conjugates inhibit Aβ aggregation, tune copper(II) activity and decrease acrolein toxicity. Eur J Med Chem 2017; 135: 447-57.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.060] [PMID: 28475972]
[27]
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 2015; 22(3): 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[28]
Minicozzi V, Chiaraluce R, Consalvi V, et al. Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. J Biol Chem 2014; 289(16): 11242-52.
[http://dx.doi.org/10.1074/jbc.M113.537472] [PMID: 24584938]
[29]
Xu P, Zhang M, Sheng R, Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem 2017; 127: 174-86.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.045] [PMID: 28061347]
[30]
Dutta N, Borah P, Mattaparthi VSK. Effect of CTerm of human albumin on the aggregation propensity of Aβ1-42 peptide: A potential of mean force study. J Biomol Struct Dyn 2021; 39(4): 1334-42.
[http://dx.doi.org/10.1080/07391102.2020.1730970] [PMID: 32070240]
[31]
Pudlarz A, Szemraj J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci 2018; 13(1): 285-98.
[http://dx.doi.org/10.1515/biol-2018-0035] [PMID: 33817095]
[32]
Rivera-Marrero S, Bencomo-Martínez A, Orta Salazar E, et al. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 2020; 28(20): 115700.
[http://dx.doi.org/10.1016/j.bmc.2020.115700] [PMID: 33069076]
[33]
Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys J 2011; 101(9): 2267-76.
[http://dx.doi.org/10.1016/j.bpj.2011.09.046] [PMID: 22067167]
[34]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005; 280(45): 37377-82.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[35]
Madhuranthakam CMR, Shakeri A, Rao PPN. Modeling the inhibition kinetics of curcumin, Orange G, and resveratrol with amyloid-β peptide. ACS Omega 2021; 6(12): 8680-6.
[http://dx.doi.org/10.1021/acsomega.1c00610] [PMID: 33817530]
[36]
Ge JF, Qiao JP, Qi CC, Wang CW, Zhou JN. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 2012; 61(7): 1192-201.
[http://dx.doi.org/10.1016/j.neuint.2012.08.012] [PMID: 22981725]
[37]
Koukoulitsa C, Villalonga-Barber C, Csonka R, et al. Biological and computational evaluation of resveratrol inhibitors against Alzheimer’s disease. J Enzyme Inhib Med Chem 2016; 31(1): 67-77.
[http://dx.doi.org/10.3109/14756366.2014.1003928] [PMID: 26147348]
[38]
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation in the conformational and stability attributes of the Alzheimer’s disease associated amyloid-beta mutants and their favorable stabilization by curcumin: Molecular dynamics simulation analysis. J Biomol Struct Dyn 2018; 36(2): 407-22.
[http://dx.doi.org/10.1080/07391102.2017.1279078] [PMID: 28054501]
[39]
Narang SS, Shuaib S, Goyal B. Molecular insights into the inhibitory mechanism of rifamycin SV against β2–microglobulin aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2017; 102: 1025-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.086] [PMID: 28455257]
[40]
Saini RK, Shuaib S, Goyal D, Goyal B. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ 42 aggregation and protofibril destabilization: A molecular dynamics simulation study. J Biomol Struct Dyn 2019; 37(12): 3183-97.
[http://dx.doi.org/10.1080/07391102.2018.1511475] [PMID: 30582723]
[41]
Kannan S, Poulsen A, Yang HY, et al. Probing the binding mechanism of Mnk inhibitors by docking and molecular dynamics simulations. Biochemistry 2015; 54(1): 32-46.
[http://dx.doi.org/10.1021/bi501261j] [PMID: 25431995]
[42]
Li F, Zhan C, Dong X, Wei G. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ 42 aggregation and disruption of Aβ 42 protofibril: similarities and differences. Phys Chem Chem Phys 2021; 23(34): 18843-54.
[http://dx.doi.org/10.1039/D1CP01913A] [PMID: 34612422]
[43]
Nasica-Labouze J, Nguyen PH, Sterpone F, et al. Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chem Rev 2015; 115(9): 3518-63.
[http://dx.doi.org/10.1021/cr500638n] [PMID: 25789869]
[44]
Saini RK, Shuaib S, Goyal B. Molecular insights into Aβ 42 protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. J Mol Recognit 2017; 30(12): e2656.
[http://dx.doi.org/10.1002/jmr.2656] [PMID: 28850770]
[45]
Al-Edresi S, Alsalahat I, Freeman S, Aojula H, Penny J. Resveratrol-mediated cleavage of amyloid β1–42 peptide: Potential relevance to Alzheimer’s disease. Neurobiol Aging 2020; 94: 24-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.012] [PMID: 32512325]
[46]
Jia Y, Wang N, Liu X. Resveratrol and amyloid-beta: Mechanistic insights. Nutrients 2017; 9(10): 1122.
[http://dx.doi.org/10.3390/nu9101122] [PMID: 29036903]
[47]
Andrade S, Ramalho MJ, Pereira MC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 2018; 9: 1261.
[http://dx.doi.org/10.3389/fphar.2018.01261] [PMID: 30524273]
[48]
Chen Y, Shi GW, Liang ZM, et al. Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol Med Rep 2019; 19(5): 3783-90.
[http://dx.doi.org/10.3892/mmr.2019.10010] [PMID: 30864708]
[49]
Andrade S, Loureiro JA, Coelho MA, do Carmo Pereira M. Interaction studies of amyloid beta-peptide with the natural compound resveratrol. 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). Feb 26-28, 2015; Porto, Portugal. 2015; pp. 1-3.
[http://dx.doi.org/10.1109/ENBENG.2015.7088833]
[50]
Tu LH, Young LM, Wong AG, Ashcroft AE, Radford SE, Raleigh DP. Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: Critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 2015; 54(3): 666-76.
[http://dx.doi.org/10.1021/bi501016r] [PMID: 25531836]
[51]
Mehringer J, Navarro JA, Touraud D, Schneuwly S, Kunz W. Phosphorylated resveratrol as a protein aggregation suppressor in vitro and in vivo. RSC chemical biology 2022; 3(2): 250-60.
[52]
Crescenzi O, Tomaselli S, Guerrini R, et al. Solution structure of the Alzheimer amyloid β-peptide (1-42) in an apolar microenvironment. Eur J Biochem 2002; 269(22): 5642-8.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03271.x] [PMID: 12423364]
[53]
Rose PW, Prlić A, Bi C, et al. The RCSB Protein Data Bank: Views of structural biology for basic and applied research and education. Nucleic Acids Res 2014; 43: D345-56.
[54]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[55]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2015; 44.
[PMID: 26400175]
[56]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[57]
Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules. Lect Notes Comput Sci 2002; 2452: 185-200.
[http://dx.doi.org/10.1007/3-540-45784-4_14]
[58]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[59]
Henriques J, Cragnell C, Skepö M. Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment. J Chem Theory Comput 2015; 11(7): 3420-31.
[http://dx.doi.org/10.1021/ct501178z] [PMID: 26575776]
[60]
Case DA. Normal mode analysis of protein dynamics. Curr Opin Struct Biol 1994; 4(2): 285-90.
[http://dx.doi.org/10.1016/S0959-440X(94)90321-2]
[61]
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006; 65(3): 712-25.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[62]
Rauscher S, Gapsys V, Zhou M, et al. Structural ensembles of intrinsically disordered proteins depend strongly on force field: A comparison to experiment. Biophys J 2016; 110(3): 358a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.1932]
[63]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79(2): 926-35.
[http://dx.doi.org/10.1063/1.445869]
[64]
Darden T, York D, Pedersen L. Particle mesh Ewald: An N log( N ) method for Ewald sums in large systems. J Chem Phys 1993; 98(12): 10089-92.
[http://dx.doi.org/10.1063/1.464397]
[65]
Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J Chem Theory Comput 2013; 9(9): 3878-88.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[66]
Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 2013; 9(7): 3084-95.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[67]
Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51(1): 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[68]
Hou T, Li N, Li Y, Wang W. Characterization of domain-peptide interaction interface: Prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J Proteome Res 2012; 11(5): 2982-95.
[http://dx.doi.org/10.1021/pr3000688] [PMID: 22468754]
[69]
Bruce NJ, Ganotra GK, Kokh DB, Sadiq SK, Wade RC. New approaches for computing ligand–receptor binding kinetics. Curr Opin Struct Biol 2018; 49: 1-10.
[http://dx.doi.org/10.1016/j.sbi.2017.10.001] [PMID: 29132080]
[70]
Wan Y, Guan S, Qian M, et al. Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: insight into the inhibitory mechanism through molecular modeling studies. J Biomol Struct Dyn 2020; 38(2): 410-25.
[http://dx.doi.org/10.1080/07391102.2019.1576543] [PMID: 30706763]
[71]
Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 2001; 123(22): 5221-30.
[http://dx.doi.org/10.1021/ja003834q] [PMID: 11457384]
[72]
Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 2001; 30(1): 211-43.
[http://dx.doi.org/10.1146/annurev.biophys.30.1.211] [PMID: 11340059]
[73]
Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Computeraided Drug Des 2006; 2(3): 287-306.
[http://dx.doi.org/10.2174/157340906778226454]
[74]
Wang C, Greene DA, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci 2018; 4: 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[75]
Appiah-Kubi P, Soliman M. Hybrid receptor-bound/MM-GBSA-Per-residue energy-based pharmacophore modelling: Enhanced approach for identification of selective LTA4H inhibitors as potential anti-inflammatory drugs. Cell Biochem Biophys 2017; 75(1): 35-48.
[http://dx.doi.org/10.1007/s12013-016-0772-3] [PMID: 27914004]
[76]
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. J Biomol Struct Dyn 2018; 36(5): 1212-24.
[http://dx.doi.org/10.1080/07391102.2017.1317666] [PMID: 28466681]
[77]
chen J, Yin B, Pang L, Wang W, Zhang JZH, Zhu T. Binding modes and conformational changes of FK506-binding protein 51 induced by inhibitor bindings: Insight into molecular mechanisms based on multiple simulation technologies. J Biomol Struct Dyn 2020; 38(7): 2141-55.
[http://dx.doi.org/10.1080/07391102.2019.1624616] [PMID: 31198099]
[78]
Du Q, Qian Y, Yao X, Xue W. Elucidating the tight-binding mechanism of two oral anticoagulants to factor Xa by using induced-fit docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 38(2): 625-33.
[http://dx.doi.org/10.1080/07391102.2019.1583605] [PMID: 30806177]
[79]
Eduardo Sanabria-Chanaga E, Betancourt-Conde I, Hernández-Campos A, Téllez-Valencia A, Castillo R. In silico hit optimization toward AKT inhibition: Fragment-based approach, molecular docking and molecular dynamics study. J Biomol Struct Dyn 2019; 37(16): 4301-11.
[http://dx.doi.org/10.1080/07391102.2018.1546618] [PMID: 30477412]
[80]
Joshi T, Joshi T, Sharma P, Chandra S, Pande V. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. J Biomol Struct Dyn 2021; 39(3): 823-40.
[http://dx.doi.org/10.1080/07391102.2020.1719200] [PMID: 31965918]
[81]
Sk MF, Roy R, Kar P. Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. J Biomol Struct Dyn 2021; 39(3): 988-1003.
[http://dx.doi.org/10.1080/07391102.2020.1724196] [PMID: 32000612]
[82]
Zhang W, Yang F, Ou D, et al. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. J Biomol Struct Dyn 2019; 37(16): 4274-82.
[http://dx.doi.org/10.1080/07391102.2018.1547222] [PMID: 30477404]
[83]
Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004; 55(2): 383-94.
[http://dx.doi.org/10.1002/prot.20033] [PMID: 15048829]
[84]
Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 1999; 20(2): 217-30.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A]
[85]
Rambaran RN, Serpell LC. Amyloid fibrils. Prion 2008; 2(3): 112-7.
[http://dx.doi.org/10.4161/pri.2.3.7488] [PMID: 19158505]
[86]
Jiang P, Xu W, Mu Y. Amyloidogenesis abolished by proline substitutions but enhanced by lipid binding. PLOS Comput Biol 2009; 5(4): e1000357.
[http://dx.doi.org/10.1371/journal.pcbi.1000357] [PMID: 19360098]
[87]
Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol 2008; 42(4): 623-8.
[http://dx.doi.org/10.1134/S0026893308040195] [PMID: 18856071]
[88]
Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[89]
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 2002; 47(3): 393-402.
[http://dx.doi.org/10.1002/prot.10104] [PMID: 11948792]
[90]
Nerelius C, Sandegren A, Sargsyan H, et al. α-Helix targeting reduces amyloid-β peptide toxicity. Proc Natl Acad Sci USA 2009; 106(23): 9191-6.
[http://dx.doi.org/10.1073/pnas.0810364106] [PMID: 19458258]
[91]
Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 2006; 45(2): 498-512.
[http://dx.doi.org/10.1021/bi051952q] [PMID: 16401079]
[92]
Berhanu WM, Hansmann UHE. Side-chain hydrophobicity and the stability of Aβ 16-22 aggregates. Protein Sci 2012; 21(12): 1837-48.
[http://dx.doi.org/10.1002/pro.2164] [PMID: 23015407]
[93]
Reddy G, Straub JE, Thirumalai D. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation. J Phys Chem B 2009; 113(4): 1162-72.
[http://dx.doi.org/10.1021/jp808914c] [PMID: 19125574]
[94]
Tarus B, Straub JE, Thirumalai D. Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers. J Am Chem Soc 2006; 128(50): 16159-68.
[http://dx.doi.org/10.1021/ja064872y] [PMID: 17165769]
[95]
Truong PM, Viet MH, Nguyen PH, Hu CK, Li MS. Effect of Taiwan mutation (D7H) on structures of amyloid-β peptides: Replica exchange molecular dynamics study. J Phys Chem B 2014; 118(30): 8972-81.
[http://dx.doi.org/10.1021/jp503652s] [PMID: 25010208]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy