Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Benzeneseleninic Acid Promoting the Selenofunctionalization of 2- Naphthol Derivatives: Synthesis and Antioxidant Activity of 1- Organoselanyl-naphthalen-2-ols

Author(s): Daniela H. Mailahn, Daniela R. Araujo, Patrick C. Nobre, Caren A. R. Fonseca, Filipe Penteado, Eder J. Lenardão*, Cristiane Luchese, Ethel A. Wilhelm and Gelson Perin*

Volume 17, Issue 1, 2023

Published on: 29 December, 2022

Page: [56 - 66] Pages: 11

DOI: 10.2174/2212796817666221220100340

Price: $65

Abstract

Background: We report the synthesis and antioxidant evaluation of 1-organoselanylnaphthalen- 2-ols. The title compounds were selectively prepared through the selenofunctionalization of 2-naphthol derivatives using benzeneseleninic acids as a selenium source.

Objective: We aimed at synthesizing 1-organoselanyl-naphthalen-2-ol by functionalizing 2-naphthol with arylseleninic acids using glycerol as the solvent and further evaluating the pharmacological activity.

Methods: The products were synthesized at 70°C using glycerol as a solvent in an oil bath. Reactive species (RS) tests, DPPH radical scavenging activity assay, and ABTS+ radical scavenging activity assay were performed. A statistical analysis of the data was performed.

Results and Discussion: A total of fifteen 1-organoselanyl-naphthalen-2-ols were selectively obtained in yields of 58-95% in 0.25-48 h of reaction. Additionally, all the synthesized seleno-derivatives exhibited antioxidant activity, as revealed by their ability to scavenge DPPH and ABTS+ radicals and reduce the reactive species (RS) levels.

Conclusion: The synthesis of 1-arylselanyl-naphthalen-2-ols was developed under mild reaction conditions using benzeneseleninic acid derivatives in reactions with 2-naphthol. All synthesized 2- naphthol derivatives exhibited antioxidant activity, as revealed by their DPPH and ABTS+ radical scavenging activity and reduced RS levels.

Graphical Abstract

[1]
Kharissova, O.V.; Kharisov, B.I.; Oliva, G.C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11), 191378.
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[2]
Mishra, M.; Sharma, M.; Dubey, R.; Kumari, P.; Ranjan, V.; Pandey, J. Green synthesis interventions of pharmaceutical industries for sustainable development. Curr. Res. Green. Sustain. Chem., 2021, 4, 100174.
[http://dx.doi.org/10.1016/j.crgsc.2021.100174]
[3]
Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim., 2018, 21(6), 572-580.
[http://dx.doi.org/10.1016/j.crci.2018.03.010]
[4]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[5]
Anastas, P.T.; Warner, J.C. Green chemistry: Theory and practice; Oxford University Press: New York, 1998.
[6]
Abd-Elmonem, M.; Mekheimer, R.A.; Hayallah, A.M.; Abo Elsoud, F.A.; Sadek, K.U. Recent advances in the utility of glycerol as a benign and biodegradable medium in heterocyclic synthesis. Curr. Org. Chem., 2019, 23, 3226-3246.
[http://dx.doi.org/10.2174/1385272823666191025150646]
[7]
Lenardão, E.J.; Barcellos, A.M.; Penteado, F.; Alves, D.; Perin, G. Glycerol as a solvent in organic synthesis. Rev. Virtual Quim, 2017, 9, 192-237.
[8]
Thurow, S.; Webber, R.; Perin, G.; Lenardão, E.J.; Alves, D. Glycerol/hypophosphorous acid: An efficient system solvent-reducing agent for the synthesis of 2-organylselanyl pyridines. Tetrahedron Lett., 2013, 54(24), 3215-3218.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.057]
[9]
Thurow, S.; Penteado, F.; Perin, G.; Jacob, R.G.; Alves, D.; Lenardão, E.J. Metal and base-free synthesis of arylselanyl anilines using glycerol as a solvent. Green Chem., 2014, 16(8), 3854-3859.
[http://dx.doi.org/10.1039/C4GC00874J]
[10]
Lenardão, E.J.; Santi, C.; Sancineto, L. New frontiers in organoselenium compounds; Springer International Publishing: Cham, Switzerland, 2018.
[http://dx.doi.org/10.1007/978-3-319-92405-2]
[11]
Casaril, A.M.; Segatto, N.; Simões, L.; Paschoal, J.; Domingues, M.; Vieira, B.; Sousa, F.S.S.; Lenardão, E.J.; Seixas, F.K.; Collares, T.; Savegnago, L. Neuroprotective effect of 3-[(4-Chlorophenyl)selanyl]-1-methyl-1H-indole on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Neurochem. Res., 2021, 46(3), 535-549.
[http://dx.doi.org/10.1007/s11064-020-03190-0] [PMID: 33548035]
[12]
Pinz, M.P.; Vogt, A.G.; da Costa, R.K.; dos Reis, A.S.; Duarte, L.F.B.; Fronza, M.G.; Domingues, W.B.; Blodorn, E.B.; Alves, D.; Campos, V.F.; Savegnago, L.; Wilhelm, E.A.; Luchese, C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na+/K+-ATPase in an Alzheimer’s disease model. Metab. Brain Dis., 2021, 36(5), 871-888.
[http://dx.doi.org/10.1007/s11011-021-00703-w] [PMID: 33651275]
[13]
Reis, A.S.; Paltian, J.J.; Domingues, W.B.; Costa, G.P.; Alves, D.; Giongo, J.L.; Campos, V.F.; Luchese, C.; Wilhelm, E.A. Pharmacological modulation of Na+, K+-ATPase as a potential target for OXA-induced neurotoxicity: Correlation between anxiety and cognitive decline and beneficial effects of 7-chloro-4-(phenylselanyl) quinoline. Brain Res. Bull., 2020, 162, 282-290.
[http://dx.doi.org/10.1016/j.brainresbull.2020.06.021] [PMID: 32628972]
[14]
Martinez, S.S.; Huang, Y.; Acuna, L.; Laverde, E.; Trujillo, D.; Barbieri, M.A.; Tamargo, J.; Campa, A.; Baum, M.K. Role of selenium in viral infections with a major focus on SARS-CoV-2. Int. J. Mol. Sci., 2021, 23(1), 280-299.
[http://dx.doi.org/10.3390/ijms23010280] [PMID: 35008706]
[15]
Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Naproxen up to date. Drugs, 1979, 18(4), 241-277.
[http://dx.doi.org/10.2165/00003495-197918040-00001] [PMID: 387372]
[16]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-Catalyzed C(sp2)-H bond selenylation/sulfenylation of (hetero)arenes: Synthesis of chalcogenated (hetero)arenes and their evaluation for anti-Alzheimer activity. Asian J. Org. Chem., 2018, 7(9), 1819-1824.
[http://dx.doi.org/10.1002/ajoc.201800346]
[17]
Engman, L.; Stern, D.; Frisell, H.; Vessman, K.; Berglund, M.; Ek, B.; Andersson, C.M. Synthesis, antioxidant properties, biological activity and molecular modelling of a series of chalcogen analogues of the 5-lipoxygenase inhibitor DuP 654. Bioorg. Med. Chem., 1995, 3(9), 1255-1262.
[http://dx.doi.org/10.1016/0968-0896(95)00111-S] [PMID: 8564418]
[18]
Lima, D.B.; Santos, P.H.V.; Fiori, P.; Badshah, G.; Luz, E.Q.; Seckler, D.; Rampon, D.S. Base-promoted direct chalcogenylation of 2-naphthols. ChemistrySelect, 2019, 4(46), 13558-13563.
[http://dx.doi.org/10.1002/slct.201903251]
[19]
Ding, C.; Yu, Y.; Yu, Q.; Xie, Z.; Zhou, Y.; Zhou, J.; Liang, G.; Song, Z. NIS/TBHP Induced regioselective selenation of (hetero)Arenes via direct C-H functionalization. ChemCatChem, 2018, 10(23), 5397-5401.
[http://dx.doi.org/10.1002/cctc.201801548]
[20]
Seckler, D.; Luz, E.Q.; Silvério, G.L.; Badshah, G.; Lima, D.B.; Abreu, E.A.; Albach, B.; Ribeiro, R.R.; Rampon, D.S. Chalcogenylation of naphthalene derivatives catalyzed by iron(III) chloride and potassium iodide. Synlett, 2021, 31, 940-946.
[21]
Meirinho, A.G.; Pereira, V.F.; Martins, G.M.; Saba, S.; Rafique, J.; Braga, A.L.; Mendes, S.R. Electrochemical oxidative C(sp2)-H bond selenylation of activated arenes. Eur. J. Org. Chem., 2019, 2019(38), 6465-6469.
[http://dx.doi.org/10.1002/ejoc.201900992]
[22]
Silva, L.T.; Azeredo, J.B.; Saba, S.; Rafique, J.; Bortoluzzi, A.J.; Braga, A.L. Solvent- and metal-free chalcogenation of bicyclic arenes using I2/DMSO as non-metallic catalytic system. Eur. J. Org. Chem., 2017, 2017(32), 4740-4748.
[http://dx.doi.org/10.1002/ejoc.201700744]
[23]
Ghosh, T.; Mukherjee, N.; Ranu, B.C. Transition metal-and oxidant-free base-mediated selenation of bicyclic arenes at room temperature. ACS Omega, 2018, 3(12), 17540-17546.
[http://dx.doi.org/10.1021/acsomega.8b02740] [PMID: 31458358]
[24]
Panja, S.; Paul, B.; Jalal, S.; Ghosh, T.; Ranu, B.C. Mechanochemically induced chalcogenation of bicyclic arenes under solvent-, ligand-, metal-, and oxidant-free conditions. ChemistrySelect, 2020, 5(44), 14198-14202.
[http://dx.doi.org/10.1002/slct.202003892]
[25]
Abenante, L.; Padilha, N.B.; Anghinoni, J.M.; Penteado, F.; Rosati, O.; Santi, C.; Silva, M.S.; Lenardão, E.J. Arylseleninic acid as a green, bench-stable selenylating agent: Synthesis of selanylanilines and 3-selanylindoles. Org. Biomol. Chem., 2020, 18(27), 5210-5217.
[http://dx.doi.org/10.1039/D0OB01073A] [PMID: 32602500]
[26]
Yoshida, S.; Shimizu, K.; Uchida, K.; Hazama, Y.; Igawa, K.; Tomooka, K.; Hosoya, T. Construction of condensed polycyclic aromatic frameworks through intramolecular cycloaddition reactions involving arynes bearing an internal alkyne moiety. Chemistry, 2017, 23(61), 15332-15335.
[http://dx.doi.org/10.1002/chem.201704345] [PMID: 28921682]
[27]
Lei, X.; Jalla, A.; Abou Shama, M.; Stafford, J.; Cao, B. Chromatography-free and eco-friendly synthesis of aryl tosylates and mesylates. Synthesis, 2015, 47(17), 2578-2585.
[http://dx.doi.org/10.1055/s-0034-1378867]
[28]
Syper, L.; Młochowski, J. A convenient oxidation of halomethylarenes and alcohols to aldehyde with dimethyl selenoxide and potassium benzeneselenite. Synthesis, 1984, 1984(9), 747-752.
[http://dx.doi.org/10.1055/s-1984-30956]
[29]
Leary, S.C.; Hill, B.C.; Lyons, C.N.; Carlson, C.G.; Michaud, D.; Kraft, C.S.; Ko, K.; Glerum, D.M.; Moyes, C.D. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation. J. Biol. Chem., 2002, 277(13), 11321-11328.
[http://dx.doi.org/10.1074/jbc.M112303200] [PMID: 11796734]
[30]
Bowler, M.W.; Montgomery, M.G.; Leslie, A.G.W.; Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA, 2006, 103(23), 8646-8649.
[http://dx.doi.org/10.1073/pnas.0602915103] [PMID: 16728506]
[31]
Tulpule, K.; Dringen, R. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia, 2012, 60(4), 582-593.
[http://dx.doi.org/10.1002/glia.22292] [PMID: 22258934]
[32]
Hempel, S.L.; Buettner, G.R.; O’Malley, Y.Q.; Wessels, D.A.; Flaherty, D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med., 1999, 27(1-2), 146-159.
[http://dx.doi.org/10.1016/S0891-5849(99)00061-1] [PMID: 10443931]
[33]
Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48(4), 412-422.
[http://dx.doi.org/10.1007/s13197-011-0251-1] [PMID: 23572765]
[34]
Hori, T.; Sharpless, K.B. Synthetic applications of arylselenenic and arylseleninic acids. Conversion of olefins to allylic alcohols and epoxides. J. Org. Chem., 1978, 43(9), 1689-1697.
[http://dx.doi.org/10.1021/jo00403a015]
[35]
Reich, H.J.; Wollowitz, S.; Trend, J.E.; Chow, F.; Wendelborn, D.F. Syn elimination of alkyl selenoxides. Side reactions involving selenenic acids. Structural and solvent effects of rates. J. Org. Chem., 1978, 43(9), 1697-1705.
[http://dx.doi.org/10.1021/jo00403a016]
[36]
Barton, D.H.R.; Lusinchi, X.; Milliet, P. Studies on the reaction of primary and secondary amines with phenylseleninic anhydride and with phenylseleninic acid. Tetrahedron, 1985, 41(21), 4727-4738.
[http://dx.doi.org/10.1016/S0040-4020(01)96711-0]
[37]
Henriksen, L.; Stuhr-hansen, N. Electrophilic organoselenium reagents; Approaches to the synthon Phenylselenenium ion (PhSe+). Phosphorus Sulfur Silicon Relat. Elem., 1998, 136(1), 175-190.
[http://dx.doi.org/10.1080/10426509808042610]
[38]
Gülçin, İ Antioxidant activity of l-adrenaline: A structure–activity insight. Chem. Biol. Interact., 2009, 179(2-3), 71-80.
[http://dx.doi.org/10.1016/j.cbi.2008.09.023] [PMID: 18929549]
[39]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[40]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19(6-7), 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[41]
Goslinski, T.; Piskorz, J. Fluorinated porphyrinoids and their biomedical applications. J. Photochem. Photobiol. Photochem. Rev., 2011, 12(4), 304-321.
[http://dx.doi.org/10.1016/j.jphotochemrev.2011.09.005]
[42]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[43]
Bala, S.; Uppal, G.; Kamboj, S.; Saini, V.; Prasad, D.N. Design, characterization, computational studies, and pharmacological evaluation of substituted-N′-[(1E) substituted-phenylmethylidene] benzohydrazide analogs. Med. Chem. Res., 2013, 22(6), 2755-2767.
[http://dx.doi.org/10.1007/s00044-012-0270-0]
[44]
Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother., 2003, 57(3-4), 134-144.
[http://dx.doi.org/10.1016/S0753-3322(03)00035-0] [PMID: 12818475]
[45]
Battin, E.E.; Brumaghim, J.L. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys., 2009, 55(1), 1-23.
[http://dx.doi.org/10.1007/s12013-009-9054-7] [PMID: 19548119]
[46]
Sacramento, M.; Reis, A.S.; Martins, C.C.; Luchese, C.; Wilhelm, E.A.; Alves, D. Synthesis and evaluation of antioxidant, anti-edematogenic and antinociceptive properties of selenium-sulfa compounds. ChemMedChem, 2022, 17(4), e202100507.
[http://dx.doi.org/10.1002/cmdc.202100507] [PMID: 34854233]
[47]
Vogt, A.G.; Voss, G.T.; de Oliveira, R.L.; Paltian, J.J.; Duarte, L.F.B.; Alves, D.; Jesse, C.R.; Roman, S.S.; Roehrs, J.A.; Wilhelm, E.A.; Luchese, C. Organoselenium group is critical for antioxidant activity of 7-chloro-4-phenylselenyl-quinoline. Chem. Biol. Interact., 2018, 282, 7-12.
[http://dx.doi.org/10.1016/j.cbi.2018.01.003] [PMID: 29317251]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy