Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Effects and Mechanisms of Ban-Xia Xie-Xin Decoction on Type 2 Diabetes Mellitus: Network Pharmacology Analysis and Experimental Evidence

Author(s): Maoyi Yang, Zhipeng Hu*, Lili Zhang and Rensong Yue

Volume 23, Issue 7, 2023

Published on: 01 March, 2023

Page: [947 - 963] Pages: 17

DOI: 10.2174/1871530323666221220141716

Price: $65

Abstract

Background: Studies have indicated that Ban-Xia Xie-Xin Decoction (BXXXD) has therapeutic effects on type 2 diabetes mellitus (T2DM). However, due to the complexity of components and diversity of targets, the mechanisms are still not fully elucidated.

Objective: In this research, we systematically analysed the targets of BXXXD through the method of network pharmacology and further validated them through experiments.

Methods: The active components and therapeutic targets were identified, and these targets were analysed by the methods of gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analysis. Then, based on these network pharmacology analyses, we validated the main targets through animal experiments.

Results: A total of 169 active components and 159 targets were identified. KEGG analysis showed that the mitogen-activated protein kinase (MAPK) signalling pathway, tumour necrosis factor (TNF) signalling pathway, the phosphatidylinositol 3' -kinase (PI3K), Akt signalling pathway, and other pathways were related to the treatment of T2DM by BXXXD. PPI network analysis showed that the key genes included signal transducers and activators of transcription 3 (STAT3), JUN, TNF, Recombinant V-Rel Reticuloendotheliosis Viral Oncogene Homolog A (RELA), Akt/PKB- 1 (Protein kinase B), TP53, mitogen-activated protein kinase-1 (MAPK-1), mitogen-activated protein kinase-3 (MAPK-3), interleukin- 6 (IL6), and mitogen-activated protein kinase-14 (MAPK- 14), respectively. Animal experiments showed that BXXXD could reduce blood glucose and improve insulin resistance, which may be related to the mechanisms of inhibiting TNF, interleukin-1 (IL-1), IL-6, and interleukin-17 (IL-17) and promoting Akt phosphorylation.

Conclusion: Our research revealed the mechanisms of BXXXD in the treatment of diabetes, which laid a solid foundation for further studies on the molecular mechanisms of BXXXD in the treatment of T2DM.

Graphical Abstract

[1]
Pinhas-Hamiel, O.; Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr., 2005, 146(5), 693-700.
[http://dx.doi.org/10.1016/j.jpeds.2004.12.042] [PMID: 15870677]
[2]
Dabelea, D.; Mayer-Davis, E.J.; Saydah, S.; Imperatore, G.; Linder, B.; Divers, J.; Bell, R.; Badaru, A.; Talton, J.W.; Crume, T.; Liese, A.D.; Merchant, A.T.; Lawrence, J.M.; Reynolds, K.; Dolan, L.; Liu, L.L.; Hamman, R.F. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA, 2014, 311(17), 1778-1786.
[http://dx.doi.org/10.1001/jama.2014.3201] [PMID: 24794371]
[3]
Bullock, A.; Sheff, K. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med., 2017, 377(3), 301.
[http://dx.doi.org/10.1056/NEJMc1706291] [PMID: 28727405]
[4]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[5]
Magliano, D.J.; Islam, R.M.; Barr, E.L.M.; Gregg, E.W.; Pavkov, M.E.; Harding, J.L.; Tabesh, M.; Koye, D.N.; Shaw, J.E. Trends in incidence of total or type 2 diabetes: systematic review. BMJ, 2019, 366, l5003.
[http://dx.doi.org/10.1136/bmj.l5003] [PMID: 31511236]
[6]
Li, Y.; Teng, D.; Shi, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; Li, Y.; Chi, H.; Liao, E.; Liu, C.; Liu, L.; Tang, X.; Tong, N.; Wang, G.; Zhang, J.; Wang, Y.; Xue, Y.; Yan, L.; Yang, J.; Yang, L.; Yao, Y.; Ye, Z.; Zhang, Q.; Zhang, L.; Zhu, J.; Zhu, M.; Ning, G.; Mu, Y.; Zhao, J.; Teng, W.; Shan, Z. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ, 2020, 369, m997.
[http://dx.doi.org/10.1136/bmj.m997] [PMID: 32345662]
[7]
Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract., 2020, 162, 108086.
[http://dx.doi.org/10.1016/j.diabres.2020.108086] [PMID: 32068099]
[8]
Dieleman, J.L.; Baral, R.; Birger, M.; Bui, A.L.; Bulchis, A.; Chapin, A.; Hamavid, H.; Horst, C.; Johnson, E.K.; Joseph, J.; Lavado, R.; Lomsadze, L.; Reynolds, A.; Squires, E.; Campbell, M.; DeCenso, B.; Dicker, D.; Flaxman, A.D.; Gabert, R.; Highfill, T.; Naghavi, M.; Nightingale, N.; Templin, T.; Tobias, M.I.; Vos, T.; Murray, C.J.L. US spending on personal health care and public health, 1996-2013. JAMA, 2016, 316(24), 2627-2646.
[http://dx.doi.org/10.1001/jama.2016.16885] [PMID: 28027366]
[9]
Pedron, S.; Emmert-Fees, K.; Laxy, M.; Schwettmann, L. The impact of diabetes on labour market participation: a systematic review of results and methods. BMC Public Health, 2019, 19(1), 25.
[http://dx.doi.org/10.1186/s12889-018-6324-6] [PMID: 30616606]
[10]
Menon, K.; de Courten, B.; Liew, D.; Ademi, Z.; Owen, A.J.; Magliano, D.J.; Zomer, E. Productivity benefits of preventing type 2 diabetes in australia: a 10-year analysis. Diabetes Care, 2021, 44(3), 715-721.
[http://dx.doi.org/10.2337/dc20-1429] [PMID: 33419933]
[11]
Phatak, H.M.; Yin, D.D. Factors associated with the effect-size of thiazolidinedione (TZD) therapy on HbA 1c:a meta-analysis of published randomized clinical trials. Curr. Med. Res. Opin., 2006, 22(11), 2267-2278.
[http://dx.doi.org/10.1185/030079906X148328] [PMID: 17076987]
[12]
Monami, M.; Genovese, S.; Mannucci, E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes. Metab., 2013, 15(10), 938-953.
[http://dx.doi.org/10.1111/dom.12116] [PMID: 23594109]
[13]
Athyros, V.G.; Imprialos, K.; Stavropoulos, K.; Sahinidis, A.; Doumas, M. Understanding the cardiovascular risk with non-insulin antidiabetic drugs. Expert Opin. Drug Saf., 2019, 18(3), 241-251.
[http://dx.doi.org/10.1080/14740338.2019.1586881] [PMID: 30810055]
[14]
Chang, H.; Xiaofeng, J.; Mengchen, Z.; Tulin, L.; Hefang, D.; Hui, X. Study on fingerprint and content determination of index components of Banxia Xiexin Decoction. Research and practice of modern. Chin. Med., 2022, 36(02), 44-52.
[15]
Yanping, J.; Xujian, Z. Clinical observation of Banxia Xiexin Decoction in the treatment of impaired fasting blood glucose. J. Practic. Diabet., 2020, 16(06), 49-50.
[16]
Jing, W.; Xiaomin, W.; Xiaoping, W.; Li, Z.; Rensong, Y. Effect of Banxia Xiexin Decoction on blood glucose and islets of Langerhans in patients with type 2 diabetes mellitus (spleen weakness and stomach strength syndrome) β Effect of cell function. Journal of Chengdu University of traditional. Chin. Med., 2021, 44(01), 81-85.
[17]
Lifang, F; Yuduan, C Analysis on the effect and adverse reaction rate of Banxia Xiexin Decoction in the treatment of diabetes with spleen deficiency and stomach stagnation syndrome. Strait pharmacy, 2021, 33(12), 158-159.
[18]
Ming, X. Clinical observation on Banxia Xiexin Decoction in the treatment of spleen deficiency and stomach stagnation syndrome of type 2 diabetes mellitus. Guangming traditional. Chin. Med., 2021, 36(06), 933-934.
[19]
Qian, W. Clinical observation on Banxia Xiexin Decoction in the treatment of spleen stomach disharmony syndrome of type 2 diabetes mellitus [master]: Beijing University of traditional. Chin. Med., 2021.
[20]
Shaoxie, Z; Mei, D; Bihua, T Observation on the efficacy and safety of Banxia Xiexin Decoction in the treatment of spleen deficiency and stomach stagnation syndrome of type 2 diabetes mellitus. Application of modern medicine in China, 2021, 15(14), 211-213.
[21]
Yuqin, Z.; Xin, W. Clinical observation of Banxia Xiexin Decoction Combined with metformin in secondary failure of sulfonylurea drugs. Clinical research of traditional. Chin. Med., 2021, 13(30), 81-83.
[22]
Lingfu, M. Clinical effect of Banxia Xiexin Decoction on spleen deficiency and stomach stagnation syndrome of type 2 diabetes mellitus and its influence on HbA1c level. Chinese Practical Medicine., 2022, 17(06), 189-191.
[23]
Yumeng, T.; Jun, H.; Hui, Z.; Qing, N. A randomized controlled clinical study of Banxia Xiexin Decoction in the treatment of mixed cold and heat syndrome of type 2 diabetes. J. Tradit. Chin. Med., 2022, 63(14), 1343-1349.
[24]
Fuping, Q; Yanqin, H; Yunzhu, C. Research progress of Banxia Xiexin Decoction in the treatment of Diabetes Gastroparesis. Chin. J. Tradit. Chin. Med. Inform., , 1-4.
[25]
Wang, B.; Zeng, K.W.; Hong, Z.F.; Ti, G.X.; Wang, L.Y.; Lu, P.; Liu, Z. Banxia Xiexin Decoction () treats diabetic gastroparesis through PLC-IP3-Ca2+/NO-cGMP-PKG signal pathway. Chin. J. Integr. Med., 2020, 26(11), 833-838.
[http://dx.doi.org/10.1007/s11655-020-3077-8] [PMID: 32418177]
[26]
Na, L.; Chunmei, D.; Ma’er, H. Clinical observation on 31 cases of diabetes gastroparesis treated with banxia xiexin decoction. hunan. J. Tradit. Chin. Med., 2020, 36(02), 1-3.
[27]
Jun, Z.; Jingjing, H. Effect of Banxia xiexin decoction on blood glucose level, MTL and SS in patients with diabetes gastroparesis. Modern Distance Education of Chinese Traditional Medicine, 2021, 19(04), 101-103.
[28]
Lingling, Y. Clinical observation on Banxia Xiexin Decoction Combined with mosapride in the treatment of Diabetes Gastroparesis. J. Practic. Chin. Med., 2021, 37(05), 777-778.
[29]
Qingbo, G.; Shengli, M. Observation on the curative effect of Banxia Xiexin Decoction Combined with Jiang Wen separated acupuncture in the treatment of diabetes complicated with gastroparesis. Pract. Diabetes, 2021, 17(01), 138-139.
[30]
Chuanhe, Z.; Cheng, M. Effect of Banxia Xiexin Decoction on Diabetes Gastroparesis and its impact on patients’ quality of life. J. Mathematic. Med., 2022, 35(07), 1057-1059.
[31]
Xu, Y. Clinical and experimental study of Banxia Xiexin Decoction on metabolic injury in type 2 diabetes; Chengdu University of TCM, 2020. doctor
[32]
Lijuan, D.; Qiang, W.; Qing, N. Effects of Banxia Xiexin Decoction on glucose and lipid metabolism and insulin secretion in diabetes mice. Beijing Tradit. Chin. Med., 2021, 40(03), 246-249.
[33]
Lina, M.; Dan, M.; Xinzhu, X.; Yixuan, W.; Wenjun, L. Zhiyuan, D Effect of Banxia Xiexin Decoction on mitochondrial unfolded protein reaction in type 2 diabetes rats. Chin. Med. Innovat., 2021, 18(32), 1-6.
[34]
Lijuan, D. Protective effect and mechanism of Banxia Xiexin Decoction on diabetes islet cells [doctor]: Chinese academy of traditional. Chin. Med., 2020, 2020, 3695689.
[35]
Lijuan, D.; Min, S.; Fan, W.; Liwei, S.; Yanan, Y.; Meizhen, Z. Effects of Banxia Xiexin Decoction on islets of Langerhans β Effects of apoptosis and oxidative stress. Chinese. J. Tradit. Chin. Med., 2020, 35(09), 4390-4394.
[36]
Lijuan, D; Min, S; Fan, W; Liwei, S; Yanan, Y Meizhen, Z Effect of Banxia Xiexin Decoction on diabetes islets β effect of apoptosis. Liaoning J. Tradit. Chin. Med., 2020, 27(04)
[37]
Hongyu, Z. Study on the mechanism of Banxia Xiexin decoction’s intervention on PCOS by regulating intestinal flora and improving IR [master]: Chinese academy of traditional. Chin. Med., 2021, 12, 854796.
[38]
Yonghua, Z.; Xuehong, W.; Fang, W. Clinical effect of Banxia Xiexin Decoction on nonalcoholic fatty liver and its regulating effect on insulin resistance. Chin. J. Experimen. Formulary, 2021, 27(03), 117-122.
[39]
Juan, L.; Yan, L. Clinical effect of modified Banxia Xiexin decoction on type 2 diabetes patients with depressive symptoms and changes of inflammatory factor levels. Clinical research of traditional. Chin. Med., 2021, 13(30), 78-80.
[40]
Haimei, Y.; Jie, L.; Xiudao, S.; Jin, C.; Liang, Z.; Guorong, J. Protective effect of Banxia Xiexin Decoction on diabetes rats induced by 3-deoxyglyoxal ketone. Chin. J. Clin. Pharmacol., 2022, 38(11), 1211-1214.
[41]
Jing, W; Xiaomin, W; Rensong, Y. Effect of Banxia Xiexin Decoction on cellular immunity and intestinal flora in patients with type 2 diabetes (spleen weakness and stomach strength syndrome). Shizhen national medicine, 2020, 31(09), 2163-2166.
[42]
Jie, L.; Haimei, Y.; Xiudao, S.; Liang, Z.; Guorong, J. Study on the effect of Banxia Xiexin Decoction on intestinal flora of diabetes rats induced by 3-deoxyglyoxal ketone based on high-throughput sequencing. Chin. J. Clin. Pharmacol., 2022, 38(02), 132-136.
[43]
Yumeng, T. Observation on the curative effect of Banxia Xiexin Decoction in the treatment of mixed cold and heat syndrome of type 2 diabetes and Discussion on the related mechanism of GLP-1 [doctor]: Chinese Academy of traditional. Chin. Med., 2021.
[44]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[45]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[46]
Li, J.; Zhao, P.; Li, Y.; Tian, Y.; Wang, Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 2015, 5(1), 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[47]
Yang, L.; Liu, W.; Hu, Z.; Yang, M.; Li, J.; Fan, X.; Pan, H. A systems pharmacology approach for identifying the multiple mechanisms of action of the Wei Pi Xiao decoction for the treatment of gastric precancerous lesions. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/1562707] [PMID: 30854000]
[48]
Yueru, L.; Yanhong, W.; Xiuwei, Y.; Yinan, Z. Analysis of ginsenosides in purple ginseng by high performance liquid chromatography tandem mass spectrometry. J. Pharm. Anal., 2013, 33(05), 812-817.
[49]
Dashuang, Q.; Weizao, L.; Jianbin, S.; Xin, W.; Yong, Y.; Dejiang, W. Determination of six alkaloids in Rhizoma Coptidis and its processed products by one assay and multiple evaluation method. Chin. Herb. Med., 2016, 47(02), 324-329.
[50]
Yongfeng, Z.; Jiajing, W.; Chaomei, F.; Jianxin, W. Research progress on chemical constituents and pharmacological effects of Scutellaria baicalensis Georgi. Chinese patent medicine, 2016, 38(01), 141-147.
[51]
Xingying, Q.; Ling, Z.; Bingtao, L.; Yulin, F.; Guoliang, X.; Shilin, Y. Analysis of chemical constituents in Pinellia ternata by uplc-q-tof-ms/ms. Chin. J. Experiment. Formular., 2019, 25(07), 173-183.
[52]
Abdel-Moneim, A.; Bakery, H.H.; Allam, G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed. Pharmacother., 2018, 101, 287-292.
[http://dx.doi.org/10.1016/j.biopha.2018.02.103] [PMID: 29499402]
[53]
Wang, M.; Chen, F.; Wang, J.; Zeng, Z.; Yang, Q.; Shao, S. Th17 and Treg lymphocytes in obesity and type 2 diabetic patients. Clin. Immunol., 2018, 197, 77-85.
[http://dx.doi.org/10.1016/j.clim.2018.09.005] [PMID: 30218707]
[54]
Kiernan, K.; MacIver, N.J. A novel mechanism for Th17 inflammation in human type 2 diabetes mellitus. Trends Endocrinol. Metab., 2019, 31(1), 1-2.
[PMID: 31767267]
[55]
Nicholas, D.A.; Proctor, E.A.; Agrawal, M.; Belkina, A.C.; Van Nostrand, S.C.; Panneerseelan-Bharath, L.; Jones, A.R., IV; Raval, F.; Ip, B.C.; Zhu, M.; Cacicedo, J.M.; Habib, C.; Sainz-Rueda, N.; Persky, L.; Sullivan, P.G.; Corkey, B.E.; Apovian, C.M.; Kern, P.A.; Lauffenburger, D.A.; Nikolajczyk, B.S. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 Diabetes. Cell Metab., 2019, 30(3), 447-461.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.07.004] [PMID: 31378464]
[56]
Pernow, J.; Kiss, A.; Tratsiakovich, Y.; Climent, B. Tissue-specific up-regulation of arginase I and II induced by p38 MAPK mediates endothelial dysfunction in type 1 diabetes mellitus. Br. J. Pharmacol., 2015, 172(19), 4684-4698.
[http://dx.doi.org/10.1111/bph.13242] [PMID: 26140333]
[57]
Choi, J.; Kim, K.J.; Koh, E.J.; Lee, B.Y. Gelidium elegans extract ameliorates type 2 diabetes via regulation of MAPK and PI3K/Akt signaling. Nutrients, 2018, 10(1), 51.
[http://dx.doi.org/10.3390/nu10010051] [PMID: 29316644]
[58]
Xu, H.; Wang, Q.; Sun, Q.; Qin, Y.; Han, A.; Cao, Y.; Yang, Q.; Yang, P.; Lu, J.; Liu, Q.; Xiang, Q. In type 2 diabetes induced by cigarette smoking, activation of p38 MAPK is involved in pancreatic β-cell apoptosis. Environ. Sci. Pollut. Res. Int., 2018, 25(10), 9817-9827.
[http://dx.doi.org/10.1007/s11356-018-1337-3] [PMID: 29372523]
[59]
Yang, M.; Chen, J.; Xu, L.; Shi, X.; Zhou, X.; An, R.; Wang, X. A network pharmacology approach to uncover the molecular mechanisms of herbal formula ban-Xia-Xie-Xin-Tang. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-22.
[http://dx.doi.org/10.1155/2018/4050714] [PMID: 30410554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy