Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Immunomodulatory Effects of Agarwood Leaf Extract on RAW264.7 Murine Macrophages

Author(s): Kok-Lun Pang, Kok-Yong Chin and Soelaiman Ima Nirwana*

Volume 23, Issue 7, 2023

Published on: 20 February, 2023

Page: [964 - 976] Pages: 13

DOI: 10.2174/1871530323666230103153134

Price: $65

Abstract

Background: The immunomodulatory effects of plants have been utilised to enhance the immunity of humans against infections. However, evidence of such effects of agarwood leaves is very limited despite the long tradition of consuming the leaves as tea.

Objective: This study aimed to investigate the immuno-modulatory effects of agarwood leaf extract (ALE) derived from Aquilaria malaccensis using RAW264.7 murine macrophages.

Methods: In this study, RAW264.7 macrophages were incubated with ALE alone for 26 hours or ALE for 2 hours, followed by bacterial lipopolysaccharide for 24 hours. The nitrite and cytokine production (tumour necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, and IL-10), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) expression in the macrophages were assayed.

Results: The study showed that ALE alone was immunostimulatory on the macrophages by increasing the nitrite, TNFα, and IL-6 production and COX2 expression (p<0.05 vs. untreated unstimulated cells). Pre-treatment of ALE suppressed nitrite level and iNOS expression but enhanced TNFα and IL-6 production and COX2 expression (p<0.05 vs. untreated lipopolysaccharides (LPS)-stimulated cells). ALE also increased IL-10 production regardless of LPS stimulation (p<0.05 vs. untreated cells).

Conclusion: ALE was able to promote the immune response of macrophages by upregulating pro-inflammatory cytokine levels and COX2 expression. It also regulated the extent of the inflammation by reducing iNOS expression and increasing IL-10 levels. Thus, ALE may have a role in enhancing the innate immune system against infection; however, its validation from in vivo studies is still pending.

Graphical Abstract

[1]
Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol., 2018, 14(S2), 49.
[http://dx.doi.org/10.1186/s13223-018-0278-1] [PMID: 30263032]
[2]
Yatim, K.M.; Lakkis, F.G. A brief journey through the immune system. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1274-1281.
[http://dx.doi.org/10.2215/CJN.10031014] [PMID: 25845377]
[3]
Scully, C.; Georgakopoulou, E.A.; Hassona, Y. The immune system: basis of so much health and disease: 2. Innate Immunity. Dent. Update, 2017, 44(3), 246-248.
[4]
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[5]
Nicholson, L.B. The immune system. Essays Biochem., 2016, 60(3), 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[6]
Fujiwara, N.; Kobayashi, K. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy, 2005, 4(3), 281-286.
[http://dx.doi.org/10.2174/1568010054022024] [PMID: 16101534]
[7]
Zhang, C.; Yang, M.; Ericsson, A.C. Function of macrophages in disease: current understanding on molecular mechanisms. Front. Immunol., 2021, 12, 620510.
[http://dx.doi.org/10.3389/fimmu.2021.620510] [PMID: 33763066]
[8]
Fujihara, M.; Muroi, M.; Tanamoto, K.; Suzuki, T.; Azuma, H.; Ikeda, H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther., 2003, 100(2), 171-194.
[http://dx.doi.org/10.1016/j.pharmthera.2003.08.003] [PMID: 14609719]
[9]
Puggioni, F.; Alves-Correia, M.; Mohamed, M.F.; Stomeo, N.; Mager, R.; Marinoni, M.; Racca, F.; Paoletti, G.; Varricchi, G.; Giorgis, V.; Melioli, G.; Canonica, G.W.; Heffler, E. Immunostimulants in respiratory diseases: focus on Pidotimod. Multidiscip. Respir. Med., 2019, 14(1), 31.
[http://dx.doi.org/10.1186/s40248-019-0195-2] [PMID: 31700623]
[10]
Rowley, A.F. The immune system of crustaceans.In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Oxford, 2016, pp. 437-453.
[http://dx.doi.org/10.1016/B978-0-12-374279-7.12005-3]
[11]
Bricknell, I.; Dalmo, R. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol., 2005, 19(5), 457-472.
[http://dx.doi.org/10.1016/j.fsi.2005.03.008] [PMID: 15890531]
[12]
Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol., 2018, 9, 1853.
[http://dx.doi.org/10.3389/fimmu.2018.01853] [PMID: 30150987]
[13]
Fricker, S.P. Physiology and pharmacology of plerixafor. Transfus. Med. Hemother., 2013, 40(4), 237-245.
[http://dx.doi.org/10.1159/000354132] [PMID: 24179472]
[14]
Brave, M.; Farrell, A.; Ching, Lin S.; Ocheltree, T.; Pope Miksinski, S.; Lee, S.L.; Saber, H.; Fourie, J.; Tornoe, C.; Booth, B.; Yuan, W.; He, K.; Justice, R.; Pazdur, R. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology, 2010, 78(3-4), 282-288.
[http://dx.doi.org/10.1159/000315736] [PMID: 20530974]
[15]
Magen, H.; Muchtar, E. Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment. Ther. Adv. Hematol., 2016, 7(4), 187-195.
[http://dx.doi.org/10.1177/2040620716652862] [PMID: 27493709]
[16]
Anassi, E.; Ndefo, U.A. Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P&T, 2011, 36(4), 197-202.
[PMID: 21572775]
[17]
Alesci, A.; Fumia, A.; Lo Cascio, P.; Miller, A.; Cicero, N. Immunostimulant and antidepressant effect of natural compounds in the management of covid-19 symptoms. J. Am. Coll. Nutr., 2021, 41(8), 1-15.
[http://dx.doi.org/10.1080/07315724.2021.1965503] [PMID: 34550044]
[18]
Burns, J.J.; Zhao, L.; Taylor, E.W.; Spelman, K. The influence of traditional herbal formulas on cytokine activity. Toxicology, 2010, 278(1), 140-159.
[http://dx.doi.org/10.1016/j.tox.2009.09.020] [PMID: 19818374]
[19]
Di Sotto, A.; Vitalone, A.; Di Giacomo, S. Plant-derived nutraceuticals and immune system modulation: an evidence-based overview. Vaccines, 2020, 8(3), 468.
[http://dx.doi.org/10.3390/vaccines8030468] [PMID: 32842641]
[20]
Spelman, K.; Burns, J.; Nichols, D.; Winters, N.; Ottersberg, S.; Tenborg, M. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern. Med. Rev., 2006, 11(2), 128-150.
[PMID: 16813462]
[21]
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci., 2015, 6, 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[22]
Kong, X.; Duan, W.; Li, D.; Tang, X.; Duan, Z. Effects of polysaccharides from Auricularia auricula on the immuno-stimulatory activity and gut microbiota in immunosuppressed mice induced by Cyclophosphamide. Front. Immunol., 2020, 11, 595700.
[http://dx.doi.org/10.3389/fimmu.2020.595700] [PMID: 33240285]
[23]
Perera, N.; Yang, F.L.; Lu, Y.T.; Li, L.H.; Hua, K.F.; Wu, S.H. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through toll-like receptor 4. Int. J. Biol. Sci., 2018, 14(10), 1378-1388.
[http://dx.doi.org/10.7150/ijbs.24564] [PMID: 30123083]
[24]
Azike, C.G.; Charpentier, P.A.; Hou, J.; Pei, H.; King Lui, E.M. The Yin and Yang actions of North American ginseng root in modulating the immune function of macrophages. Chin. Med., 2011, 6(1), 21.
[http://dx.doi.org/10.1186/1749-8546-6-21] [PMID: 21619635]
[25]
Chandrasekaran, C.; Sundarajan, K.; Edwin, J.; Gururaja, G.; Mundkinajeddu, D.; Agarwal, A. Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction. Pharmacognosy Res., 2013, 5(2), 71-79.
[http://dx.doi.org/10.4103/0974-8490.110527] [PMID: 23798880]
[26]
López-Sampson, A.; Page, T. History of use and trade of agarwood. Econ. Bot., 2018, 72(1), 107-129.
[http://dx.doi.org/10.1007/s12231-018-9408-4]
[27]
Naziz, P.S.; Das, R.; Sen, S. The Scent of Stress: Evidence From the Unique Fragrance of Agarwood. Front. Plant Sci., 2019, 10, 840.
[http://dx.doi.org/10.3389/fpls.2019.00840] [PMID: 31379890]
[28]
Hashim, Y.Z.H.Y.; Kerr, P.G.; Abbas, P.; Mohd Salleh, H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol., 2016, 189, 331-360.
[http://dx.doi.org/10.1016/j.jep.2016.06.055] [PMID: 27343768]
[29]
Adam, A.Z.; Lee, S.Y.; Mohamed, R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J. Herb. Med., 2017, 10, 37-44.
[http://dx.doi.org/10.1016/j.hermed.2017.06.002]
[30]
Surjanto, S.; Batubara, R.; Rangkuti, D.S. Safety test of agarwood leaves tea (Aquilaria malaccencis Lamk.) through skin sensitization test on albino rabbit. Open Access Maced. J. Med. Sci., 2019, 7(22), 3896-3899.
[http://dx.doi.org/10.3889/oamjms.2019.528] [PMID: 32128000]
[31]
Han, W.; Li, X. Antioxidant activity of aloeswood tea in vitro. Spatula DD - Peer Reviewed J. Complementary Med. Drug Discov., 2012, 2(1), 43-50.
[http://dx.doi.org/10.5455/spatula.20120331054309]
[32]
Yu, Q.; Qi, J.; Yu, H.X.; Chen, L.L.; Kou, J.P.; Liu, S.J.; Yu, B.Y. Qualitative and quantitative analysis of phenolic compounds in the leaves of aquilaria sinensis using liquid chromatography-mass spectrometry. Phytochem. Anal., 2013, 24(4), 349-356.
[http://dx.doi.org/10.1002/pca.2416] [PMID: 23483592]
[33]
Sattayasai, J.; Bantadkit, J.; Aromdee, C.; Lattmann, E.; Airarat, W. Antipyretic, analgesic and anti-oxidative activities of Aquilaria crassna leaves extract in rodents. J. Ayurveda Integr. Med., 2012, 3(4), 175-179.
[http://dx.doi.org/10.4103/0975-9476.104427] [PMID: 23326086]
[34]
Wisutthathum, S.; Kamkaew, N.; Inchan, A.; Chatturong, U.; Paracha, T.U.; Ingkaninan, K.; Wongwad, E.; Chootip, K. Extract of Aquilaria crassna leaves and mangiferin are vasodilators while showing no cytotoxicity. J. Tradit. Complement. Med., 2019, 9(4), 237-242.
[http://dx.doi.org/10.1016/j.jtcme.2018.09.002] [PMID: 31453117]
[35]
Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Chudapongse, N. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann. Clin. Microbiol. Antimicrob., 2013, 12(1), 20.
[http://dx.doi.org/10.1186/1476-0711-12-20] [PMID: 23962360]
[36]
Cheng, J.T.; Han, Y.Q.; He, J.; De Wu, X.; Dong, L.B.; Peng, L.Y.; Li, Y.; Zhao, Q.S. Two new tirucallane triterpenoids from the leaves of Aquilaria sinensis. Arch. Pharm. Res., 2013, 36(9), 1084-1089.
[http://dx.doi.org/10.1007/s12272-013-0088-4] [PMID: 23508744]
[37]
Pranakhon, R.; Pannangpetch, P.; Aromdee, C. Antihyperglycemic activity of agarwood leaf extracts in STZ-induced diabetic rats and glucose uptake enhancement activity in rat adipocytes. Songklanakarin J. Sci. Technol., 2011, 33(4), 405-410.
[38]
Nik Wil, N.N.A.; Mhd Omar, N.A.; Tajuddin, S.N. In vitro antioxidant activity and phytochemical screening of Aquilaria malaccensis leaf extracts. J. Chem. Pharm. Res., 2014, 6(12), 688-693.
[39]
Salmah, M. Phyto chemical and antioxidant screening of extracts of Aquilaria malaccensis leaves; IAEA, 2010. https://inis.iaea.org/search/search.aspx?orig_q=RN:43035289
[40]
Eissa, M.A.; Hashim, Y.Z.H.Y.; Mohd Nasir, M.H.; Nor, Y.A.; Salleh, H.M.; Isa, M.L.M.; Abd-Azziz, S.S.S.; Abd Warif, N.M.; Ramadan, E.; Badawi, N.M. Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos. Drug Deliv., 2021, 28(1), 2618-2633.
[http://dx.doi.org/10.1080/10717544.2021.2012307] [PMID: 34894947]
[41]
Zhou, M.; Wang, H. Suolangjiba; Kou, J.; Yu, B. Antinociceptive and anti-inflammatory activities of Aquilaria sinensis (Lour.) Gilg. Leaves extract. J. Ethnopharmacol., 2008, 117(2), 345-350.
[http://dx.doi.org/10.1016/j.jep.2008.02.005] [PMID: 18353573]
[42]
Ooi, T.C.; Chan, K.M.; Sharif, R. Zinc carnosine inhibits lipopolysaccharide-induced inflammatory mediators by suppressing NF-κb Activation in Raw 264.7 Macrophages, Independent of the MAPKs signaling pathway. Biol. Trace Elem. Res., 2016, 172(2), 458-464.
[http://dx.doi.org/10.1007/s12011-015-0615-x] [PMID: 26749414]
[43]
Fauzi, S.; Rajab, N.; Leong, L.; Pang, K.; Nawi, N.; Nasir, N. Apoptosis and cell cycle effect of Lignosus rhinocerus extract on HCT 116 human colorectal cancer cells. Int. J. Pharm. Sci. Rev. Res., 2015, 33(1), 13-17.
[44]
Wan, Hasan W.N.; Abd Ghafar, N.; Chin, K.Y.; Ima-Nirwana, S. Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: a temporal sequential study. Drug Des. Devel. Ther., 2018, 12, 1715-1726.
[http://dx.doi.org/10.2147/DDDT.S168935] [PMID: 29942115]
[45]
Pang, K.L.; Chow, Y.Y.; Leong, L.M.; Law, J.X.; Ghafar, N.A.; Soelaiman, I.N.; Chin, K.Y. Establishing SW1353 chondrocytes as a cellular model of chondrolysis. Life (Basel), 2021, 11(4), 272.
[http://dx.doi.org/10.3390/life11040272] [PMID: 33805920]
[46]
Pang, K.L.; Ghafar, N.A.; Soelaiman, I.N.; Chin, K.Y. Protective effects of annatto tocotrienol and palm tocotrienol-rich fraction on chondrocytes exposed to Monosodium Iodoacetate. Appl. Sci., 2021, 11(20), 9643.
[http://dx.doi.org/10.3390/app11209643]
[47]
Ooi, T.C.; Yaacob, M.; Rajab, N.F.; Shahar, S.; Sharif, R. The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi J. Biol. Sci., 2021, 28(5), 2987-2994.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.039] [PMID: 34025176]
[48]
Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. PARE, 2010, 15, 12.
[49]
Fan, H.; Wu, Q.; Peng, L.; Li, D.; Dong, Y.; Cao, M.; Liu, P.; Wang, X.; Hu, X.; Wang, Y. Phyllolobium chinense Fisch Flavonoids (PCFF) Suppresses the M1 Polarization of LPS-Stimulated RAW264.7 Macrophages by Inhibiting NF-κB/iNOS Signaling Pathway. Front. Pharmacol., 2020, 11(864), 864.
[http://dx.doi.org/10.3389/fphar.2020.00864]
[50]
Dai, B.; Wei, D.; Zheng, N.; Chi, Z.; Xin, N.; Ma, T.; Zheng, L.; Sumi, R.; Sun, L. Coccomyxa gloeobotrydiformis polysaccharide inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. Cell. Physiol. Biochem., 2018, 51(6), 2523-2535.
[http://dx.doi.org/10.1159/000495922] [PMID: 30562752]
[51]
Hwang, J.S.; Kwon, M.Y.; Kim, K.H.; Lee, Y.; Lyoo, I.K.; Kim, J.E.; Oh, E.S.; Han, I.O. Lipopolysaccharide (LPS)-stimulated iNOS induction is increased by glucosamine under normal glucose conditions but is inhibited by glucosamine under high glucose conditions in macrophage cells. J. Biol. Chem., 2017, 292(5), 1724-1736.
[http://dx.doi.org/10.1074/jbc.M116.737940] [PMID: 27927986]
[52]
Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev., 2020, 40(1), 158-189.
[http://dx.doi.org/10.1002/med.21599] [PMID: 31192483]
[53]
Anavi, S.; Tirosh, O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med., 2020, 146, 16-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.411] [PMID: 31672462]
[54]
Yang, X.B.; Feng, J.; Yang, X.W.; Zhao, B.; Liu, J.X. Aquisiflavoside, a new nitric oxide production inhibitor from the leaves of Aquilaria sinensis. J. Asian Nat. Prod. Res., 2012, 14(9), 867-872.
[http://dx.doi.org/10.1080/10286020.2012.701209] [PMID: 22924533]
[55]
Yu, Z.; Wang, C.; Zheng, W.; Chen, D.; Liu, Y.; Yang, Y.; Wei, J. Anti-inflammatory 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones from agarwood of Aquilaria sinensis. Bioorg. Chem., 2020, 99, 103789.
[http://dx.doi.org/10.1016/j.bioorg.2020.103789] [PMID: 32229346]
[56]
Huo, H.X.; Gu, Y.F.; Zhu, Z.X.; Zhang, Y.F.; Chen, X.N.; Guan, P.W.; Shi, S.P.; Song, Y.L.; Zhao, Y.F.; Tu, P.F.; Li, J. LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood (Aquilaria sinensis). Phytochemistry, 2019, 158, 46-55.
[http://dx.doi.org/10.1016/j.phytochem.2018.11.003] [PMID: 30453219]
[57]
Huo, H.X.; Gu, Y.F.; Sun, H.; Zhang, Y.F.; Liu, W.J.; Zhu, Z.X.; Shi, S.P.; Song, Y.L.; Jin, H.W.; Zhao, Y.F.; Tu, P.F.; Li, J. Anti-inflammatory 2-(2-phenylethyl)chromone derivatives from Chinese agarwood. Fitoterapia, 2017, 118, 49-55.
[http://dx.doi.org/10.1016/j.fitote.2017.02.009] [PMID: 28237880]
[58]
Ma, C.T.; Ly, T.L.; Le, T.H.V.; Tran, T.V.A.; Kwon, S.W.; Park, J.H. Sesquiterpene derivatives from the agarwood of Aquilaria malaccensis and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells. Phytochemistry, 2021, 183, 112630.
[http://dx.doi.org/10.1016/j.phytochem.2020.112630] [PMID: 33378718]
[59]
Zhu, Z.; Gu, Y.; Zhao, Y.; Song, Y.; Li, J.; Tu, P. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways. Int. Immunopharmacol., 2016, 35, 185-192.
[http://dx.doi.org/10.1016/j.intimp.2016.03.044] [PMID: 27064545]
[60]
Rossol, M.; Heine, H.; Meusch, U.; Quandt, D.; Klein, C.; Sweet, M.J.; Hauschildt, S. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol., 2011, 31(5), 379-446.
[http://dx.doi.org/10.1615/CritRevImmunol.v31.i5.20] [PMID: 22142165]
[61]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[62]
Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF–TNF Receptor 2 signal in regulatory T Cells and its therapeutic implications. Front. Immunol., 2018, 9, 784.
[http://dx.doi.org/10.3389/fimmu.2018.00784] [PMID: 29725328]
[63]
Wang, S.; Wang, C.; Yu, Z.; Wu, C.; Peng, D.; Liu, X.; Liu, Y.; Yang, Y.; Guo, P.; Wei, J. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA axis hyperactivity. Int. J. Mol. Sci., 2018, 19(11), 3468.
[http://dx.doi.org/10.3390/ijms19113468] [PMID: 30400578]
[64]
Yadav, D.; Mudgal, V.; Agrawal, J.; Maurya, A.; Bawankule, D.; Chanotiya, C.; Khan, F.; Thul, S. Molecular docking and ADME studies of natural compounds of Agarwood oil for topical anti-inflammatory activity. Curr. Computeraided Drug Des., 2013, 9(3), 360-370.
[http://dx.doi.org/10.2174/1573409911309030012] [PMID: 23566359]
[65]
Yao, C.; Narumiya, S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br. J. Pharmacol., 2019, 176(3), 337-354.
[http://dx.doi.org/10.1111/bph.14530] [PMID: 30381825]
[66]
Barrios-Rodiles, M.; Tiraloche, G.; Chadee, K. Lipopolysaccharide modulates cyclooxygenase-2 transcriptionally and posttranscriptionally in human macrophages independently from endogenous IL-1 beta and TNF-alpha. J. Immunol., 1999, 163(2), 963-969.
[PMID: 10395693]
[67]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[68]
Aoki, T. Frȍsen, J.; Fukuda, M.; Bando, K.; Shioi, G.; Tsuji, K.; Ollikainen, E.; Nozaki, K.; Laakkonen, J.; Narumiya, S. Prostaglandin E2 –EP2–NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci. Signal., 2017, 10(465), eaah6037.
[http://dx.doi.org/10.1126/scisignal.aah6037] [PMID: 28174280]
[69]
Ogawa, M.; Suzuki, J.I.; Kosuge, H.; Takayama, K.; Nagai, R.; Isobe, M. The mechanism of anti-inflammatory effects of prostaglandin E2 receptor 4 activation in murine cardiac transplantation. Transplantation, 2009, 87(11), 1645-1653.
[http://dx.doi.org/10.1097/TP.0b013e3181a5c84c] [PMID: 19502955]
[70]
Iyer, S.S.; Ghaffari, A.A.; Cheng, G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J. Immunol., 2010, 185(11), 6599-6607.
[http://dx.doi.org/10.4049/jimmunol.1002041] [PMID: 21041726]
[71]
Ernst, O.; Glucksam-Galnoy, Y.; Athamna, M.; Ben-Dror, I.; Ben-Arosh, H.; Levy-Rimler, G.; Fraser, I.D.C.; Zor, T. The cAMP Pathway amplifies early MyD88-dependent and Type I Interferon-Independent LPS-Induced Interleukin-10 expression in mouse macrophages. Mediators Inflamm., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/3451461] [PMID: 31148944]
[72]
Wang, C.; Peng, D.; Liu, Y.; Wu, Y.; Guo, P.; Wei, J. Agarwood alcohol extract protects against gastric ulcer by inhibiting oxidation and inflammation. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9944685] [PMID: 34580595]
[73]
Wang, C.; Wang, S.; Peng, D.; Yu, Z.; Guo, P.; Wei, J. Agarwood extract mitigates intestinal injury in fluorouracil-induced mice. Biol. Pharm. Bull., 2019, 42(7), 1112-1119.
[http://dx.doi.org/10.1248/bpb.b18-00805] [PMID: 31257287]
[74]
Chen, J.J.; Cho, J.Y.; Hwang, T.L.; Chen, I.S. Benzoic acid derivatives, acetophenones, and anti-inflammatory constituents from Melicope semecarpifolia. J. Nat. Prod., 2008, 71(1), 71-75.
[http://dx.doi.org/10.1021/np0704349] [PMID: 18163582]
[75]
Cárdeno, A.; Aparicio-Soto, M.; Montserrat-de la Paz, S.; Bermudez, B.; Muriana, F.J.G.; Alarcón-de-la-Lastra, C. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. J. Funct. Foods, 2015, 14, 779-790.
[http://dx.doi.org/10.1016/j.jff.2015.03.009]
[76]
Cao, Y.; Chen, J.; Ren, G.; Zhang, Y.; Tan, X.; Yang, L. Punicalagin prevents inflammation in LPS-Induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients, 2019, 11(11), 2794.
[http://dx.doi.org/10.3390/nu11112794] [PMID: 31731808]
[77]
Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. Ecosal Plus, 2018, 8(1), 10.1128.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0001-2018] [PMID: 30066669]
[78]
Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 2002, 71(1), 635-700.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135414] [PMID: 12045108]
[79]
Lin, T.L.; Shu, C.C.; Chen, Y.M.; Lu, J.J.; Wu, T.S.; Lai, W.F.; Tzeng, C.M.; Lai, H.C.; Lu, C.C. Like cures like: Pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front. Pharmacol., 2020, 11(554), 554.
[http://dx.doi.org/10.3389/fphar.2020.00554] [PMID: 32425790]
[80]
Hsiao, S.W.; Wu, Y.C.; Mei, H.C.; Chen, Y.H.; Hsiao, G.; Lee, C.K. Constituents of Aquilaria sinensis leaves upregulate the expression of matrix metalloproteases 2 and 9. Molecules, 2021, 26(9), 2537.
[http://dx.doi.org/10.3390/molecules26092537] [PMID: 33926142]
[81]
Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Luo, J.; Luo, Y.; Yu, B. Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Anim. Nutr., 2020, 6(2), 152-159.
[http://dx.doi.org/10.1016/j.aninu.2020.02.004] [PMID: 32542195]
[82]
Sánchez-Quesada, C.; López-Biedma, A.; Toledo, E.; Gaforio, J.J. Squalene stimulates a key innate immune cell to foster wound healing and tissue repair. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/9473094] [PMID: 30363968]
[83]
Kim, E.H.; Woodruff, M.C.; Grigoryan, L.; Maier, B.; Lee, S.H.; Mandal, P.; Cortese, M.; Natrajan, M.S.; Ravindran, R.; Ma, H.; Merad, M.; Gitlin, A.D.; Mocarski, E.S.; Jacob, J.; Pulendran, B. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. eLife, 2020, 9, e52687.
[http://dx.doi.org/10.7554/eLife.52687] [PMID: 32515732]
[84]
Lee, H.S.; Lee, J.; Smolensky, D.; Lee, S.H. Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review. Int. Immunopharmacol., 2020, 89(Pt A), 107056.
[http://dx.doi.org/10.1016/j.intimp.2020.107056] [PMID: 33039955]
[85]
Liao, J.B.; Wu, D.W.; Peng, S.Z.; Xie, J.H.; Li, Y.C.; Su, J.Y.; Chen, J.N.; Su, Z.R. Immunomodulatory potential of patchouli alcohol isolated from Pogostemon cablin (Blanco) Benth (Lamiaceae) in mice. Trop. J. Pharm. Res., 2013, 12(4), 12.
[http://dx.doi.org/10.4314/tjpr.v12i4.18]
[86]
Mendes, A.; Azevedo-Silva, J.; Fernandes, J.C. From sharks to yeasts: Squalene in the development of vaccine adjuvants. Pharmaceuticals, 2022, 15(3), 265.
[http://dx.doi.org/10.3390/ph15030265] [PMID: 35337064]
[87]
Beyer, W.E.P.; Palache, A.M.; Reperant, L.A.; Boulfich, M.; Osterhaus, A.D.M.E. Association between vaccine adjuvant effect and pre-seasonal immunity. Systematic review and meta-analysis of randomised immunogenicity trials comparing squalene-adjuvanted and aqueous inactivated influenza vaccines. Vaccine, 2020, 38(7), 1614-1622.
[http://dx.doi.org/10.1016/j.vaccine.2019.12.037] [PMID: 31879122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy